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Abstract

Context

Obesity in men is associated with low serum testosterone and both are associated with sev-

eral diseases and increased mortality.

Objectives

Examine the direction and causality of the relationship between body mass index (BMI) and

serum testosterone.

Design

Bi-directional Mendelian randomization (MR) analysis on prospective cohorts.

Setting

Five cohorts from Denmark, Germany and Sweden (Inter99, SHIP, SHIP Trend, GOOD and

MrOS Sweden).

Participants

7446 Caucasian men, genotyped for 97 BMI-associated SNPs and three testosterone-asso-

ciated SNPs.
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Main outcome measures

BMI and serum testosterone adjusted for age, smoking, time of blood sampling and site.

Results

1 SD genetically instrumented increase in BMI was associated with a 0.25 SD decrease in

serum testosterone (IV ratio: -0.25, 95% CI: -0.42–-0.09, p = 2.8*10−3). For a body weight

reduction altering the BMI from 30 to 25 kg/m2, the effect would equal a 13% increase in

serum testosterone. No association was seen for genetically instrumented testosterone with

BMI, a finding that was confirmed using large-scale data from the GIANT consortium (n =

104349).

Conclusions

Our results suggest that there is a causal effect of BMI on serum testosterone in men. Popu-

lation level interventions to reduce BMI are expected to increase serum testosterone in

men.

Introduction

Observational studies demonstrate that obesity is associated with low serum testosterone (T)

[1], but the direction and causality of this relationship is unclear. Most randomized, placebo-

controlled trials have indicated that T treatment increases lean mass and reduces fat mass in

men with low serum T [2–7], but the overall effect on body weight and BMI in men with dif-

ferent T-status is inconsistent. One possible explanation for the conflicting results regarding

the effects of T treatment on body weight and BMI might be that the observational association

between low T and high BMI is subject to reverse causation [8–10]. Based on the inverse asso-

ciation between T and obesity-related diseases [11–13], it has been hypothesized that T supple-

mentation could be used as a means to reduce the risk of developing obesity-associated cardio-

metabolic diseases in men with low serum T. However, safety concerns have been raised, since

some studies have reported an increase in cardiovascular events after T supplementation [14,

15] and randomized controlled trials are still needed [16].

A Mendelian randomization (MR) approach uses genetic variants that index the exposure

of interest to test for a causal relationship between exposure and outcome. Since genes can be

thought of as randomized and fixed at conception, confounding factors will be equally distrib-

uted among different genotypes. As a consequence, MR analyses will be less prone to con-

founding than the directly observed association. Furthermore, it will be free of reverse

causation since a phenotypic trait cannot cause genetic variation.

The most recent and largest genome wide association study (GWAS) on BMI identified 97

independent genetic variants associated with BMI while the largest GWAS on serum T identi-

fied three independent genetic variants associated with serum T in men [17, 18].

As the prescription of T to men has increased substantially [19] and its impact on obesity

and obesity-related diseases is unclear, we believe it is important to determine the direction

and causality of the relatively strong observational relationship between BMI and serum T.

The aim of the present study was to identify a possible causative relationship, and its direction

of effect, between BMI and serum T using genetic variants as instruments in bi-directional MR

analyses.
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Göteborg, Box 401, 405 30 Göteborg, Sweden and
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Methods

Participants

This study included participants from five different cohorts of Caucasian men (Inter99, SHIP,

SHIP Trend, GOOD and MrOS Sweden) from Denmark, Germany and Sweden. A total of

7446 participants with available genotype and phenotype data were included (Table 1).

Subjects known to use medications affecting sex hormones (testosterone, 5-alpha reductase

inhibitors and antiandrogens) and/or who were surgically or chemically castrated, were

excluded when this information was available. A more detailed description of the cohorts is

available in the supplemental methods. All participants provided written, informed consent,

and ethical permission was granted by the local research ethics committees for all participating

studies (GOOD: local ethics committee at University of Gothenburg; MrOS Sweden: local eth-

ics committees at Gothenburg University and Lund University; SHIP and SHIP Trend: local

ethics committee of the University of Greifswald; Inter99: local ethics committee of Copenha-

gen County).

Serum testosterone

GOOD and MrOS Sweden used a validated gas chromatography/mass spectroscopy (intra-

assay CV, 2.9%; inter-assay CV, 3.4%) to measure serum T [20]. SHIP and Inter99 used immu-

noassays (intra-assay CV 8.9–13.3%, inter-assay CV 2.3%) [21] to measure serum T. A liquid

chromatography-tandem mass spectrometry was used to measure serum T (intra-assay and

inter-assay CVs<10%) in SHIP Trend [22].

Table 1. Characteristics of the cohorts.

GOOD MrOS Sweden SHIP SHIP Trend INTER99

Characteristics (n = 929) (n = 1682) (n = 1912) (n = 427) (n = 2496)

Outcomes

Testosterone—ng/ml 4.7 (1.5) 4.5 (1.7) 4.8 (1.7) 4.0 (1.3) 4.4 (1.6)

BMI—kg/m2 22.4 (3.2) 26.3 (3.6) 27.7 (4.0) 27.8 (3.7) 26.8 (4.0)

SHBG—nmol/l 20.4 (7.2) 46.0 (22.9) 51.3 (25.6) 38.3 (14.2) 31.8 (13.1)

Covariates

Age—years 18.9 (0.6) 75.4 (3.2) 50.8 (16.4) 50.1 (14.2) 46.7 (7.9)

Smoking—percent 9% 9% 34% 22% 36%

Genetic Risk scores

wGRSBMI 88.8 (6.3) 89.0 (6.3) 89.1 (6.2) 88.8 (6.2) 87.6 (6.1)*

uwGRSBMI 91.4 (6.4) 91.7 (6.3) 91.6 (6.1) 91.5 (6.2) 90.6 (6.0)*

wGRST 1.4 (0.6) 1.4 (0.6) 1.4 (0.5) 1.4 (0.5) 1.3 (0.5)

uwGRST 2.3 (0.7) 2.4 (0.8) 2.3 (0.7) 2.3 (0.7) 2.3 (0.8)

Values are given as mean with standard deviation within brackets.

wGRSBMI = Weighted genetic risk score based on 97 BMI-associated SNPs.

uwGRSBMI = Un-weighted genetic risk score based on 97 BMI-associated SNPs.

wGRSTestosterone = Weighted genetic risk score based on 3 SNPs associated with serum testosterone.

uwGRST = Un-weighted genetic risk score based on 3 SNPs associated with serum testosterone.

*) Based on 96 instead of 97 SNPs.

https://doi.org/10.1371/journal.pone.0176277.t001
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Serum SHBG

GOOD and MrOS Sweden used an immunoradiometric assay to measure serum SHBG (sex

hormone-binding globuline; GOOD: intra-assay CV 3%, inter-assay CV 7%; MrOS Sweden:

intra-assay CV<5.5%, inter-assay CV< 6.9%) [23]. SHIP used a competitive chemilumines-

cent enzyme immunoassays (inter-assay CV 6.6–7.7%) to measure serum SHBG [24]. Inter99

used a time-resolved immunofluorometric assay to measure serum SHBG (inter- and intra-

assay CVs < 8%)[25].

Genotyping and genetic risk scores

All cohorts except Inter99 used imputed genotype dosage SNP data (HapMap CEU r22) for

the analyses. Inter99 had directly genotyped data (BeadChip) available for the BMI-associated

SNPs and used KASPar from KBioscience for the three testosterone-associated SNPs. For

details, please see supplemental methods.

The 97 BMI-associated SNPs identified in a recent large-scale GWAS on BMI were used to

construct a weighted genetic risk score, wGRSBMI, where weights were based on each SNP´s

effect size with BMI in the meta-analysis by Locke et al [17]. For the primary analyses, the

wGRSBMI was used.

For T, a weighted T-decreasing genetic risk score (wGRST) was developed based on three

SNPs (rs6258, rs12150660, rs5934505) with weights identified in a recent large-scale GWAS on

T [18].

Due to a partial overlap between the cohorts used by the original GWA studies identifying

the SNPs and the present study an unweighted BMI-increasing genetic risk score (uwGRSBMI)

and an unweighted T-decreasing genetic risk score (uwGRST) were also developed. Please see

supplemental methods for further details.

Statistical analysis

The BMI data distribution was positively skewed and was therefore natural log transformed

(Shapiro-Wilk test, p-value < 2.2e-16). Standardized residuals of ln BMI, serum SHBG and

serum T (Z-scores) were calculated. An additive genetic model was used. Furthermore,

although covariates are expected to be randomly distributed with respect to genotype, the asso-

ciations between genotype and known confounders (age and smoking) were examined as this

is a key assumption in MR analyses. In addition, due to the close connection between T and

SHBG, the association between genotypes and SHBG were analyzed. Models with BMI as an

outcome were adjusted for age, smoking and site, whereas models with serum T as an outcome

were additionally adjusted for time of sampling. When evaluating a possible interaction effect

between covariates and the genetic risk scores, an interaction term was added to the regression

models.

The strength of the genetic risk scores as instruments was determined using the F statistic

which was calculated as [F-stat = (n-2)�R2/(1-R2)], where R2 refers to the proportion of vari-

ance explained [26]. Two independent instrumental variables were used for each phenotype to

assess pleiotropy. Linearity was assessed by adding a quadratic term to the regression analyses.

The IV ratio method, using a two-stage least squares regression, was used to estimate the

unconfounded causal effect of BMI on serum T and vice versa [27]. In addition, we also deter-

mined the causal effect of BMI on serum T after adjustment for serum SHBG as well as the

causal effect of BMI on serum SHBG after adjustment for serum T.

In order to confirm the validity of our data, we also performed the combined analyses by

pooling the samples. The effect on T as a result of a decline in BMI from 30 kg/m2 to 25 kg/m2

was estimated using pooled data and the obtained causal effect (the IV ratio) adjusted for age,
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smoking, cohort, site and blood sampling time. Since the IV ratio was calculated as standard

deviations of T (SD(T)) per standard deviation of natural log transformed BMI (SD(log BMI)),

the IV ratio was multiplied with SD(T) divided by SD(log BMI) to obtain the IV ratio in terms

of T units per unit of log BMI. This was then multiplied with the difference between log 25 and

log 30 to arrive at the difference in T levels given the decline in BMI from 30 kg/m2 to 25 kg/m2.

In order to obtain the percentage change in T levels, the difference in T levels was then divided

by the predicted T levels given a BMI of 30 kg/m2. In order to confirm our lack of evidence of a

causal effect of T on BMI, we used summary statistics from the GIANT consortium (please see

supplemental methods for details) [17, 28].

Power calculations for IV regression were based on a previously published analytical

approach, using sample size, the observed association between phenotypes and the association

between each phenotype and their genetic proxies [29]. To evaluate the ability to detect weaker

effects on BMI using the wGRST and on serum T using wGRSBMI, power was also calculated

based on half the observed association effect between BMI and serum T (1/2β).

Please see supplemental methods for further details on the statistical analysis.

Results

Phenotypic association between BMI and serum T: Observational

estimates

The observational association between BMI and serum T was significant in all cohorts after

adjustment for age, smoking, site and blood sampling time, but slightly more pronounced in

the MrOS cohort including the oldest men (mean age 75.4 years; -0.35 SD T per SD ln BMI)

compared to the GOOD cohort including the youngest men (mean age 18.9 years; -0.20 SD T

per SD ln BMI; Fig 1). In the meta-analysis of the five cohorts, we found evidence of heteroge-

neity (I-squared = 82%, p = 0.0005) among cohorts and therefore performed a random effect

inverse-variance meta-analysis, demonstrating that a 1 SD increase in ln-transformed BMI

was associated with a 0.30 SD decrease in serum T (95% CI -0.35–-0.24; Fig 1). A similar

Fig 1. Observational estimates. An increased BMI is associated with a decreased serum testosterone (T). Linear regression models were

used adjusting for age, smoking, site and time of day for blood sample, when applicable. The combined effect was calculated with random

effect meta-analysis (I-squared = 82%, p = 0.0005) using all cohorts (n = 7446). Effect sizes are given in standard deviations (SD) of T per

SD ln-transformed BMI. Horizontal bars represent 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0176277.g001
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observational estimate was found in a pooled analysis of the five participating cohorts, reveal-

ing that 1 SD increase in ln-transformed BMI was associated with 0.30 SD decrease in serum T

(95% CI: -0.33–-0.28).

Validation of the instruments

Although both BMI and serum T were associated with age and smoking (p<0.05), the different

GRSs evaluated in the present study (wGRSBMI, uwGRSBMI, wGRST and uwGRST) were not asso-

ciated with these two potential confounders (p>0.05; S1 Fig). This illustrates that these GRSs

can be used as largely un-confounded instruments to assess the causality of the inverse associa-

tion between BMI and serum T.

BMI SNPs. Both wGRSBMI and uwGRSBMI were highly significantly associated with ln-

transformed BMI in all cohorts individually and when combined in a meta-analytic approach

(wGRSBMI p = 4.2�10−35, R2 = 1.9%; uwGRSBMI p = 5.0�10−27, R2 = 1.5%; Fig 2A, S1 Table).

Fig 2. The genetic risk scores’ association with BMI and serum T. A) High weighted genetic risk score on BMI (wGRSBMI) is associated with high BMI. B)

The weighted genetic risk score on serum testosterone (T; wGRST) is inversely associated with serum T. C) The weighted genetic risk score on BMI

(wGRSBMI) is inversely associated with serum testosterone (T). D) The weighted genetic risk score on serum T (wGRST) is not associated with BMI. Linear

regression models were used adjusting for age, smoking, site and time of day for blood sample, when applicable. The combined effect was calculated with

fixed-effect meta-analysis (A: I-squared = 0%, p = 0.63; B: I-squared = 0%, p = 0.49; C: I-squared = 0%, p = 0.51; D: I-squared = 0%, p = 0.62) using all

cohorts (n = 7446). Effect sizes are given in standard deviations (SD) of ln-transformed BMI per weighted BMI risk allele in A, SD of T per weighted T risk

allele in B, SD of T per weighted BMI risk allele in C and SD of ln-transformed BMI per weighted T risk allele in D. Horizontal bars represent 95% confidence

intervals.

https://doi.org/10.1371/journal.pone.0176277.g002
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There was no evidence of heterogeneity in these analyses. The F-statistics, reflecting the strength

of the instruments, were 147 and 111 for wGRSBMI and uwGRSBMI, respectively (S1 Table). Simi-

lar significant associations were observed using pooling instead of a meta-analytic approach (S1

Table). The wGRSBMI and uwGRSBMI associations with BMI did not vary by age, smoking or

serum T (p> 0.05 for all interaction terms in pooled analyses). No evidence of non-linearity

was found for wGRSBMI or uwGRSBMI. When the 97 SNPs included in the wGRSBMI were evalu-

ated separately, 16 SNPs were nominally (p<0.05) significantly associated with BMI. Three of

these SNPs were still, after a conservative Bonferroni adjustment (p<0.05/97), significantly

associated with BMI (S2 Table).

Testosterone SNPs. Both wGRST and uwGRST were highly significantly associated with

serum T in the meta-analyzed combined data set (wGRST p = 4.7�10−45, R2 = 2.5%; uwGRST

p = 3.9�10−38, R2 = 2.1%; Fig 2B, S3 Table). There was no evidence of heterogeneity in these

analyses (Fig 2B). The F-statistics were 188 and 156 for wGRST and uwGRST, respectively (S3

Table). Similar significant associations were observed using pooling instead of a meta-analytic

approach (S3 Table). The wGRST and uwGRST associations with T did not vary by age, smoking

or BMI (p values > 0.05 for all interaction terms in pooled analyses). No evidence of non-lin-

earity was found for wGRST or uwGRST. All three SNPs included in the wGRST were individu-

ally associated with serum T (p<0.05/3; S4 Table).

Power analysis

The present study was adequately powered to detect a causal association between BMI and T if

the strength of this association was equal to the observed association between serum BMI and

T. In theory, we had approximately similar power to detect an association between BMI and T

using the wGRSBMI (95%) compared with an equal sized effect in the other direction using the

wGRST (98%, n = 7446 subjects; S2 Fig).

Evaluation of causal association using MR approach

BMI has a causal effect on serum testosterone. Both wGRSBMI (p = 2.0�10−3) and

uwGRSBMI (p = 1.7�10−3) were significantly and inversely associated with serum T in the meta-

analyzed combined cohort (Fig 2C; S1 Table). Similar significant associations were observed

using pooling instead of a meta-analytic approach (S1 Table). After adjustment for BMI, none

of these associations were still significant. The wGRSBMI and uwGRSBMI associations with T did

not vary by age or smoking (p> 0.05 for interaction terms in pooled analyses). Interestingly,

the two BMI SNPs that were most robustly associated with BMI were also significantly associ-

ated with serum T, but in the opposite direction (rs1558902 in the FTO locus, p = 4.0�10−2

and rs6567160 in the M4CR locus, p = 3.0�10−3; S2 Table). However, none of the SNPs were

still significant after adjustment for BMI. IV analyses used to establish the direction and causal-

ity of the BMI-T association, revealed that 1 SD increase in ln-transformed BMI lead to a 0.25

(using wGRSBMI, p = 2.8�10−3) to 0.29 (using uwGRSBMI, p = 2.5�10−3) SD decrease in serum T

(Table 2, S1 Table). There was no significant difference between β-coefficients from observa-

tional and IV analysis (wGRSBMI: p value 0.44, uwGRSBMI: p value 0.82).

Notably, for a body weight reduction altering the BMI from 30 (cut off for obesity) to 25

(cut off for overweight) kg/m2, the effect would equal a 13% (using IV ratio from wGRSBMI) to

15% (using IV ratio from uwGRSBMI) increase in serum T while a corresponding observational

effect would equal a 16% increase in serum T (Fig 3). To reduce the risk of pleiotropy, we next

evaluated two separate independent genetic instruments (rs1558902 from the FTO locus and a

weighted risk score based on the remaining 96 SNPs). These two independent genetic instru-

ments had similar point estimates of the causal effect of BMI on serum T (S5 Table).

Obesity and serum testosterone in men
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No evidence of a causal effect of serum testosterone on BMI. Neither the wGRST nor the

uwGRST was associated with BMI (Fig 2D, S3 Table). Furthermore, the IV ratio analyses pro-

vided no evidence for a causal effect of serum T on BMI (Table 2, S3 Table). For the two auto-

somal SNPs it was possible to use the GIANT consortium, including up to 104349 men, to

evaluate the causal effect of serum T on BMI in a larger setting. However, no significant evi-

dence was found supporting that any of these T SNPs were associated with BMI individually,

or when combined as a genetic risk score (S6 Table).

Due to the complexity of the T synthesis and bio-availability we also performed sub-analyses

using two separate GRSs based on SNPs located within, or outside, the SHBG locus. Although

both these two separate T GRSs were robustly associated with serum T, no evidence of signifi-

cant associations between these two separate T GRSs and BMI was observed (S7 Table).

Table 2. Summary of the coefficients used for IV ratio analyses.

IV Risk Score with the Intermediate Trait Risk score with the Outcome IV Ratio

Coefficient (95% CI) Coefficient (95% CI) Coefficient (95% CI) P value

wGRSBMI 0.022 (0.019–0.026) -0.006 (-0.009–-0.002) -0.25 (-0.42–-0.09) 0.003

uwGRSBMI 0.020 (0.016–0.023) -0.006 (-0.009–-0.002) -0.29 (-0.48–-0.10) 0.003

wGRST -0.281 (-0.320–-0.242) -0.020 (-0.060–0.020) 0.07 (-0.56–0.70) 0.214

uwGRST -0.191 (-0.220–-0.162) -0.004 (-0.034–0.025) 0.02 (-0.13–0.18) 0.777

IV ratio was calculated as the ratio between the genetic risk score’s association with the outcome and intermediate trait (n = 7446).

Coefficients for intermediate trait and outcome are given as SD per unit in genetic risk score.

wGRSBMI = Weighted genetic risk score on BMI.

uwGRSBMI = Un-weighted genetic risk score on BMI

wGRST = Weighted genetic risk score on serum testosterone.

uwGRSTT = Un-weighted genetic risk score on serum testosterone.

IV ratio is expressed in SD testosterone per SD ln-transformed BMI for wGRSBMI and uwGRSBMI, while it is expressed in SD ln-transformed BMI per SD

testosterone for wGRST and uwGRST.

https://doi.org/10.1371/journal.pone.0176277.t002

Fig 3. Genetic and observational estimates of the influence of altering BMI on serum testosterone (T).

Effect sizes are given in percent change in serum T based on a decrease in BMI from 30 (cut off for obesity) to

25 (cut off for overweight) kg/m2 (n = 7446). wGRSBMI = weighted genetic risk score on BMI. uwGRSBMI = un-

weighted genetic risk score on BMI. Horizontal bars represent 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0176277.g003
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Genetic risk scores for BMI and serum T in relation to serum SHBG. Since serum

SHBG is a known major determinant of serum total T, we also tested the association between

serum SHBG and the weighted genetic risk scores for BMI (wGRSBMI) and serum T (wGRST).

wGRSBMI was inversely associated with serum SHBG in the pooled combined cohort (S3 Fig).

However, after adjustment for serum T wGRSBMI was not significantly associated with SHBG

(combined cohort: p = 0.59). wGRST was robustly associated with serum SHBG (combined

cohort: p = 2.7�10−49, S3 Fig). Interestingly, the association between wGRSBMI and serum T

remained significant (p = 0.02) after adjustment for serum SHBG in the pooled combined

cohort.

Discussion

Obesity is associated with low serum T in men, but the direction of the association and the

potentially causal effect is still debated. Herein, we presented evidence that higher BMI leads to

lower serum T. Conversely, our analyses provided no evidence for a causal role of serum T on

BMI. These results suggest that although increases in T status are not likely to help with weight

regulation in the general male population, low serum T could contribute to the adverse health

effects associated with obesity in men. Our study highlights the importance of considering

obesity as a risk factor for low serum T in men with implications on the possible targeting of

relevant health promotion strategies.

We evaluated the relationship between BMI and serum T using a bi-directional MR analysis

which is free of reverse causation. Our genetic instruments in these analyses were derived

from the most recent large-scale GWAS-meta-analyses on serum T and BMI [17, 18]. Three

key assumptions underlie the MR randomization approach: the genotypes are randomized; the

genetic variants considered as instruments affect the outcome only by modifying the bio-

marker—that is, these variants have no pleiotropic effects on the outcome; and the genotype is

independent of confounders [27, 30, 31]. We did not detect any violations of the assumptions

underlying MR as far as they could be tested. For instance, although both BMI and T were

associated with age and smoking, the different GRSs used in the present study were not associ-

ated with these two potential confounders. It could be argued that as the biological functions

for some of the used BMI-associated SNPs are yet to be established [17, 28], there could be

alternative biological pathways explaining their association with BMI. However, using as many

as 97 recently reported independent SNPs to index BMI, we were able to minimize the risk of

shared pleiotropy and linkage-disequilibrium-induced confounding pleiotropic effects [32,

33]. Moreover, the use of two separate independent genetic instruments with similar point

estimates of the causal effect of BMI on serum T further reduced the risk of pleiotropy [32, 33].

In the present study, there was a small overlap (less than 2%), between the cohorts used in

the present study and the study by Locke et al that identified the BMI-associated SNPs[17]. As

a consequence, there is a chance that the causal estimate calculated using the wGRSBMI could

be biased. It is, however, highly unlikely that this has had a major impact on the results for two

reasons. Firstly, very similar results were obtained using an unweighted genetic risk score that

avoids the potential bias from the use of internal weights. Secondly, similar results were also

obtained using a genetic risk score based solely on the SNP in the FTO gene, which is a gene

that has been found to be associated with BMI in numerous studies, where none of the cohorts

used in the present study were included [34–36]. The validity of our findings was strengthened

by the fact that very similar results were obtained for both weighted and un-weighted genetic

risk scores and when combined estimates were calculated using pooling and a meta-analytic

approach. Also, as we included participants at random and consecutively from the general

population, the potential for selection bias is minimal.
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Cross-sectional data from the large European Male Aging Study (EMAS) revealed that BMI

was the strongest determinant of serum T and obese men (BMI > 30 kg/m2) had as much as

1.47 ng/ml lower serum T compared with normal weight subjects (BMI < 25 kg/m2; [1]). The

main finding in the present study is our results supporting a causal effect of BMI on serum T.

The magnitude of this effect is similar to the observational association. Each SD genetically

instrumented increase in BMI was associated with a 0.25 SD decrease in serum T. For a body

weight reduction altering the BMI from 30 to 25 kg/m2, the effect would equal a 13–15%

increase in serum T. This evidence of a causative effect of BMI on serum T is supported by a

recent meta-analysis of the impact of body weight reduction on serum T, revealing that body

weight reductions as a result of both low-calorie diet and bariatric surgery are associated with

significantly increased serum T [37]. Notably, this meta-analysis demonstrated that the degree

of body weight loss is a robust determinant of the increase in serum T. The mean percent body

weight loss at endpoint was 10% in low-calorie diet studies and 32% in bariatric surgery studies

and the corresponding increases in serum T levels were 0.83 ng/ml and 2.54 ng/ml, respec-

tively. It was even proposed that normalization of T levels is a possible mechanism contribut-

ing to the beneficial health effect of bariatric surgery in morbid obesity [37].

Although the present study provides compelling evidence that obesity reduces serum T

levels, it cannot determine the mechanism for this causal effect which may occur at several

levels of the hypothalamus-pituitary-gonadal axis. Obese subjects often have reduced gonad-

otropin concentrations indicating that the primary effect is mediated at the hypothalamus-

pituitary level rather than at the testicular level [38]. Not only serum T but also the gonado-

tropins FSH and LH were increased by body weight reduction, suggesting that body weight

loss reverses obesity-associated hypogonadotropic hypogonadism [37]. It is well known

that in morbidly obese men, LH levels and pulse amplitude are attenuated when compared

with normal-weight controls [39, 40]. Thus high BMI seems to repress serum T mainly via

central inhibitory effects on gonadotropin secretion [38, 41]. The exact mechanism for this

inhibitory effect of high BMI/obesity on gonadotropin secretion is unclear but might include

insulin resistance, inflammatory mediators, leptin, hypothalamic kisspeptin affecting gonad-

otropin -releasing hormone (GnRH) secretion and/or increased aromatase activity resulting

in elevated estradiol levels which in turn augment negative feed-back regulation [7, 37, 38,

42–44].

Notably, the two SNPs most robustly associated with BMI in the present study are also sig-

nificantly associated with serum T but in the opposite direction. The underlying loci of these

two SNPs, FTO and MC4R, are well established obesity-related loci [35, 36, 45]. The FTO locus

has previously been reported to be associated with affected androgen levels, polycystic ovary

syndrome susceptibility and age at menarche in females while its impact on serum T and T-

related diseases in men is unknown and warrants further investigations [46, 47].

Our study highlights the importance of considering obesity as a risk factor for low testo-

sterone concentrations in men with implications for its possible targeting in relevant health

promotion strategies. Our finding supports the notions that male hypogonadism can be con-

sidered as one of the many adverse consequences of overweight and obesity and that body

weight loss and lifestyle interventions should be the first approach offered to obese men with

low serum T [48]. Based on the described significant secular trends of reduced serum T and

increased BMI in men [25, 49] and the present evidence of a causative effect of BMI on T, we

propose that successful population level interventions reverting the obesity epidemic might

also lead to a reversal of the secular trend of reduction in serum T.

Our analyses provided no evidence for a causal role of serum T on BMI. It could be argued

that if a possible effect of serum T on BMI would be substantially less pronounced than the

observational association between T and BMI, then our study would not be adequately
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powered. However, the use of the GIANT consortium to test the association between T-related

autosomal SNPs and BMI in a much larger sample including 104349 men also failed to identify

a causal role of T on BMI. While the MR approach enables the approximation of life-long dif-

ferences in average concentrations, genetic markers do not examine the influences arising

from the extremes of non-linear distributions [28, 50]. Consequently, we cannot discount a

possible causative effect of severe T-deficiency on BMI. Due to the complexity of the T synthe-

sis and bio-availability we performed sub-analyses using two separate GRSs based on SNPs

located within, or outside, the SHBG locus. SHBG is the dominant high-affinity binding pro-

tein for serum T and its primary function is to bind and transport steroids in the blood to

access target tissues and to determine the bioavailable fraction. Although both these two sepa-

rate T GRSs were robustly associated with serum T, no evidence of significant associations

between these two separate T GRSs and BMI was observed.

Serum SHBG is a major well-known determinant of total serum T. In fact, in the cohorts

included in this study SHBG explained about 26% of the total variance in serum T. This close

connection between serum T and SHBG makes it difficult to discriminate between an effect

directly on serum T and an effect mediated via SHBG. In the present study, we found evidence

of a causal effect of BMI on serum T, but the BMI-based genetic risk score was also associated

with serum SHBG. When serum T was added as a covariate to the analysis, the association

between the BMI-based genetic risk scores and SHBG was no longer significant. However, in

the opposite analysis where serum T was the outcome and SHBG the covariate, wGRSBMI was

significantly associated with serum T, supporting a SHBG-independent effect of BMI on

serum T. Two of the three SNPs constituting the genetic risk score for BMI reside in the SHBG

locus and have previously been reported to associate with SHBG (18). In line with this, both

wGRST and uwGRST were significantly associated with SHBG in the present study.

The participant data used in the present study were unrelated men with European ancestry,

limiting the generalizability of the observed findings to other ethnic groups. However, this also

means that a major influence from population stratification is unlikely.

In conclusion, our results suggest that there is a causal effect of BMI on serum T in men.

Population level interventions to reduce BMI are expected to increase serum T in men.
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