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Abstract: Biomagnetic nano and microparticles platforms have attracted considerable 

interest in the field of biological sensors due to their interesting physico-chemical 

properties, high specific surface area, good mechanical stability and opportunities for 

generating magneto-switchable devices. This review discusses recent advances in the 

development and characterization of active biomagnetic nanoassemblies, their interaction 

with biological molecules and their use in bioanalytical sensors. 
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1. Introduction 

 

In recent years, numerous types of magnetic particles of nanometer and micrometer dimensions and 

composites of these materials have become key components in different areas like catalysis, 

environmental remediation, the biomedical field and sensing devices, cell labeling and 

immunomagnetic separations, magnetic resonance imaging, targeted drug delivery, and bio-imaging 
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[1-12]. Cell isolation, enzyme immobilization, drug targeting, waste water treatment are just few 

examples of such applications. These materials offer the potential of enhanced mechanical and 

catalytic properties when compared to their bulk counterparts. In the biosensors field, they have been 

used as bioimmobilization platforms, magnetic carriers of biomolecules, to separate or concentrate 

analytes and to control electrochemical processes at electrode surfaces [2,11,13-17]. The combination 

of magnetic manipulation with bioimmobilization, separation and detection capabilities have created 

unique opportunities for enhancing the performance of sensing devices. 

Of the various magnetic materials reported in the literature for sensing purposes, iron oxides, 

mainly Fe3O4 have been the most widely used because of their simple preparation and 

superparamagnetic properties. Iron oxide nanoparticles (NPs) are also biocompatible, displaying no 

hemolytic activity or genotoxicity. The NPs can either be used for simple adsorption of biomolecules, 

or functionalized or encapsulated in polymers or silica materials to fabricate hybrid composites with 

increased biocompatibility and added functionalities. These materials, deposited onto the surface of a 

glassy carbon (GCE) electrode have provided performance characteristics comparable with those of 

Prussian Blue modified electrodes [14]. Fe3O4 particles have catalytic active sites for sensing hydrogen 

peroxide  [14,18], which is the product of many enzymatic reactions (e.g. glucose oxidase, lactate 

dehydrogenase, cholesterol oxidase) and a key component in various chemical, biological, 

pharmaceutical, clinical, environmental, and food processes. Magnetic iron oxide NPs have gained a 

great deal of attention also due to their potential for providing control of electrochemical processes 

[19,20] and creating magneto-switchable devices [14,21]. Biological recognition elements can be 

attached to their surface to develop various catalytic and affinity sensors. The use of magnetic particles 

for this purpose brings a number of additional advantages such as control and transport of the 

bioassembly to a specific location onto/close to the transducer surface. Furthermore, they can be 

retained and removed with a magnet without affecting the transducer surface, thus creating 

possibilities for regeneration and reuse. 

Extensive research papers and reviews covering the synthesis and characterization of various 

magnetic particles were published in literature in recent years. In this review, we focus on the most 

important and widely used magnetic particles-biomolecule hybrid systems for sensing applications, 

their use as electrode materials and immobilization matrices, and discuss the success and limitations of 

these materials in biological sensors.  

 

2. Biomagnetic Particles Platforms 

 

Significant progress has been made in the control of size, size distribution, shape, and chemical 

composition of magnetic particles in recent years [22-40]. These are readily available in different 

forms (Fe2O3, Fe3O4, Fe3S4, MO-Fe2O3 where M = Ni, Co, Zn etc) and can be purchased from several 

companies or prepared using established synthetic procedures [10]. However, bare magnetic particles 

tend to easily aggregate and therefore their use for bioanalytical purposes can be difficult. In addition, 

most of these particles are prepared in hexane or other organic solvents and therefore many biological 

applications involve particles with modified surfaces that render them biocompatible. For example, 

they can be surface functionalized with different organic or inorganic coatings in a core-shell format or 

be prepared in a composite form using various synthetic polymers and natural polysaccharides, like 
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alginate cellulose and dextran [41-44], polyaniline [45-55], or silica glasses [45,56-68]. Tridimensional 

multilayer films of carbon nanotubes with Fe2O3 introduced in the nanotubes have also been reported 

for development of a magnetic electrochemical platform for enzyme sensors [69]. This material 

provided enhanced adsorption of protein molecules, controlled deposition of higher density of carbon 

nanotubes onto the electrode surface and improved electrochemical properties. 

An elegant approach is to coat the particle surface with a gold shell [23,70-83], favouring protein 

binding by taking advantage of their gold affinity. Another interesting example is to coat the NPs with 

a porous, optically transparent sol-gel layer resulting in a multifunctional hybrid material in which the 

outer silica shell stabilizes the particles, induces biocompatibility and provides sites for surface 

modification with biological molecules, electronic mediators or fluorescent labels [84,85]. Such hybrid 

materials combining the properties of silica microspheres with the advantages of magnetic particles 

hold promise for additional applications. For example, multifunctional magnetic particles that 

incorporate chromophores can be easily manipulated through the use of an external magnetic field, 

while their position at a given time and place can be monitored using fluorescence methods [86,87]. 

Chromophores used for such applications included organic dyes such as rodhamine [84] as well as 

quantum dots, featuring narrow emission bandwidth, large two-photon absorption and continuous 

adsorption spectra [12,88-94].  

Anker et al. [95] synthesized metal-capped magnetically-modulated nanoprobes (Mag-MOON), that 

have the capacity to rotate under changing magnetic fields and emit light fluxes in different 

orientations. In general, fluorescent NPs emit light uniformly in all directions. When coated with a 

metal layer the symmetry is disturbed and the particles start emitting different amounts of light in 

different orientations. The orientation of the particle can also be tracked in time. The use of Mag-

MOON particles allows in-situ fast background subtraction and provides a significant increase of 

signal-to-noise ratio. Therefore, immunoassays with a variety of fluorescent labels can be designed. 

For example, fluorescent dyes have limitations in terms of signal-to-noise ratio when cellular 

responses are investigated. Mag-MOONs have the potential to increase the sensitivity of these assays 

when used in nanosensors that are designed to perform rapid single cell measurements. Immunoassays 

based on Mag-MOONs can be designed for protein detection. Briefly, the Mag-MOONs can be 

functionalized with molecular recognition elements or antibodies that can bind specifically analytes of 

interest. In a subsequent step a fluorescent tag is added to increase Mag-MOONs brightness and allow 

antigen detection (Figure 1). 

Silica-coated magnetites were obtained using various synthetic procedures [93,94,96-101]. The 

thickness of the outer silica shell can be tuned by changing the concentration of the silica precursors 

during synthesis [84]. Zhao et al. [102] fabricated magnetic nanospheres covered with a mesoporous 

silica shell starting from uniform magnetite NPs, with a mean diameter of 120 nm. These were 

subsequently covered by a mesoporous silica coating via sol-gel polymerization using tetraetoxysilane 

(TEOS) and n-octadecyltrimethoxysilane (C18TMS). In the last step, a reduction of the hematite core 

under an atmosphere of H2 and N2 was performed, to lead to the formation of magnetic 

core/mesoporous silica shells with a narrow size distribution and a mean diameter of approximately 

270 nm. 

Lee, et al. [97] recently reported a one-pot synthesis of uniformly sized, non-agglomerated 

magnetic silica core-shell particles by using a reverse micelles procedure and alkoxide precursors. The 
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synthesis was performed at 90 ºC, which allowed maintaining the micelle structure. Two model 

enzymes (lipase and α-chemotrypsin) were crosslinked with glutaraldehyde (GA) and the results were 

compared with those obtained by covalent attachment on the NPs surface, through amine 

functionalization. As an alternative, biological molecules can be entrapped within the silica glass to 

generate a biologically active material with enhanced stability while providing magnetic properties for 

easy manipulation and control under a magnetic field. Preparation of silica coated iron oxide NPs with 

an average diameter of 5 – 7 nm has been described in the literature [96]. The size of the magnetic 

nanocomposite after the deposition of the silica was ~ 53 nm.  

 

Figure 1. (a) An external magnetic field orients the aluminum-capped Mag-MOON, 

causing its fluorescent excitation and observed emission to blink on and off as it rotates; 

(b) Scheme of an assay for the measurement of relative concentration of biotin molecules. 

The biotin is labeled with two types of fluorescent dyes (reproduced with permission from 

reference [95]) 

 

 
 

3. Magnetic Activation of Redox Processes in Bioanalytical Sensors 

 

In bioelectronic devices, such as biosensors and biofuel cells, the electrical contact between 

enzymes and the electrodes is essential [103-114]. The main challenge in achieving good electrical 

contact stays in the lack of direct communication between the redox (Reduction-Oxidation reaction) 

center of the biomolecule and the electrode surface. Solutions such as attachment of redox-relay 

groups to the enzyme, the use of diffusional electron mediators, or the immobilization in a redox 

polymer matrix have poor efficiency. Problems include the inappropriate orientation of enzyme in 

respect to the electrode, and conformational modifications of the protein structure. The conjugation of 

NPs with enzymes in hybrid devices holds promise for the development of novel and improved 

biosensing platforms and ensures electrical ‘wiring’ between the enzyme and the electrode. Redox-

active units are used in a series of electrocatalytical and bioelectrocatalytical processes. Magnetic 

particles have been functionalized with redox units and subsequently used in reactions relevant for 

such processes. Examples of redox-active units that have been used to functionalize magnetic nano or 

micro particles include microperoxidase-11, pyrroloquinoline quinone, 2,3-dichloro-1,4-
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naphthoquinone, N-ferrocenylmethyl)aminohexanoic acid, or N-methyl-N”-(dodecanoic acid)-4,4’-

bipyridinium [115,116]. When redox units-functionalized magnetic particles are attracted to the 

electrode surface with the help of a magnet placed underneath the electrode, the electrical contact 

between the redox units on the particles and the electrode is activated and the electrochemical response 

of the sensor is switched “ON”. In turn, when the magnet is placed on top of the electrode, the NPs are 

removed from the electrode surface, and the electrochemical response is switched “OFF” [117]. 

Redox relay units such as bipyridinium or ferrocene are also part of this set-up, and can serve as 

mediators for electron transfer between redox enzyme and the electrode [115]. This approach has been 

used for enzymes such as glucose oxidase (GOx) and nitrate reductase [118]. Under a magnetic field, 

ferrocene oxidizes to ferrocenyl cations. In turn, the ferrocenyl cations have an oxidizing effect on the 

redox center of the GOx. Removing the magnetic particles from the electrode also removes the 

electrical contact between the ferrocene and the electrode, inhibiting glucose oxidation. In the case of 

nitrate oxidase [115], bipyridinium was used as a reducing agent in the reduction process of nitrate to 

nitrite. When the bipyridinium functionalized magnetic NPs interacted with the electrode under an 

electrical field (E = - 0.7V), the nitrate-nitrite transformation was favored only when a magnet was 

positioned in the system in such a way that the NPs were attracted to the electrode. In the same time, 

the removal of the magnetic particles led to the electrocatalyzed reactions being switched off. Lactate 

dehydrogenase (LDH) was also used in a similar approach that included pyrroloquinoline quinone as a 

relay mediator for the activation/deactivation of the NADH-NAD+ transformation [119-121]. Selective 

dual biosensors were also designed with LDH and GOx and magnetic particles functionalized with 

monolayers of PQQ-NAD+ and ferrocene [122]. These were tested in both oxidation of glucose and 

inhibition of lactate oxidation when no electrical field was applied. When a small electrical field was 

applied (potential range: -0.13 < E < 0.13 V), the oxidation of lactate was enabled, while the oxidation 

of glucose was inhibited, since the potential range used does not favor the oxidation of ferrocene units. 

 

4. Biofunctionalization of Magnetic Nanoparticles 

 

Immobilization of enzymes, antibodies, oligonucleotides, and other biologically active compounds 

onto magnetic NP platforms is a key element in using these structures for biosensing purposes. 

Fabricating biofunctionalized magnetic materials containing a high amount of the biological element 

with high activity and stability is essential for the design of robust sensors that take advantage of the 

magnetic capabilities. Various routes for the fabrication of biofunctionalized magnetic NPs include 

traditional methods such as covalent binding, adsoprtion, specific affinity interactions, and entrapment 

in porous surface layers. In the following sections we describe representative procedures utilized for 

this purpose and provide selected examples reported in the literature. 

 

4.1. Biofunctionalized Magnetic Nanoparticles Via Covalent Binding 

 

The primary functionalization of iron oxide NPs with organic functionalities is the first step in the 

covalent binding of biomolecules to their surfaces. The drawbacks of this method stay in the 

restrictions derived from the biomolecule conformation being imposed by their orientation on the 

support upon binding. Functionalization of magnetic NPs with carboxyl, amino or hydroxyl groups 
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prior to the covalent binding is traditionally used [6,39,123-138]. Hong et al. [139] functionalized 

magnetic nanogels through a carbodiimide activation procedure. In this case, polyacrylamide (PAM) 

coated Fe3O4 NPs and Hoffman degradation was used to obtain amino-functionalized magnetic 

nanogels with a 25 nm diameter. Subsequently, α-chymotrypsin was covalently attached to the 

nanogel’s surface. The enzymatic activity was largely retained and the reaction temperature and usable 

pH range were wider after the covalent binding as compared to the free enzyme. In the case of the 

covalent binding, the enzymatic activity was not dramatically affected by varying the pH between 5.8 

and 8.9, while for the free enzyme, the enzymatic activity decreased to less than 50% at pH values 

between 8 and 8.9. The temperature was varied between 35 and 85 ºC and the optimum temperature 

for the both free and covalently bound enzyme was determined to be at 35 ºC, while above this 

temperature, a decrease in activity was observed in both cases. However, after 60 ºC, the free enzyme 

lost all its activity, while the covalently bound enzyme still retained 60% of its activity. The enzymatic 

activity was retained after storage at 4 ºC for 36 days. The magnetic composite was reusable, with 

96.8% of the biological activity being maintained after 12 usage cycles. On the other hand, the affinity 

between the enzyme and the substrate was lower than that of the free enzyme. An explanation related 

to sterric effects of diffusion barriers of the substrate to the enzymatic active sites was proposed. More 

recently [140], the same authors used a hydrophilic polymer with free carboxyl groups to covalently 

immobilize α-chymotrypsin to the surface of magnetic iron oxide NPs, followed by in-situ 

polymerization with 1-ethyl-3-(3-dimethylaminepropyl) carbodiimide (EDC) used as a coupling agent. 

The enzyme retained 80% of its activity at 65 ºC, 90% at 25 ºC and the full enzymatic activity at 4 ºC. 

The same long term storage stability and reusability as in the case of the amino functionalized 

nanogels were observed. Other enzymes covalently immobilized on the surface of magnetic NPs 

include GOx [138] and peroxidase [141,142], as well as cholesterol oxidase, lipase [143], trypsin and 

chymotrypsin [131,136,137,144-150]. Kuroiwa et al. [151] immobilized chitosanase on amylose-

coated Fe3O4 NPs. The amylose provided hydroxyl groups on the NPs surface, which were then 

coupled with the amino groups of chitosanase via covalent binding. Fe3O4-chitosan NPs, exposing free 

amino groups on their surface were used to bind alcohol dehydrogenase via GA coupling, with about 

48% retention of enzymatic activity [151]. The authors demonstrated the recovery of the enzyme by 

magnetic separation.  

 

4.2. Biofunctionalized Magnetic Nanoparticles via Surface Adsorption 

 

Core-shell NPs functionalized with polymers were investigated as supports for biomolecule 

immobilization. Mahmood et al. [152] immobilized lipase on magnetic NPs coated with a oleic acid-

Pluronic® (L-64) block copolymer. In this work, the copolymer was used to improve stability (i.e. 

reduce agglomeration). Up to 90% enzymatic activity of lipase was retained for seven cycles. This 

extended usability was attributed to hydrophobic interactions between the preatreated NPs and the 

copolymer. Shamim et al. [153] synthesized core-shell iron oxide NPs coated with poly-(N-

isopropylacrylamide) (PNIPAM) and used them to adsorb bovine serum albumin (BSA) on their 

surface. Thiodiglycolic and 4-vinylaniline were used as surfactants. The core-shell NPs were 

thermosensitive. Above 32 ºC, the structure of the poly-(NIPAM) changes from hydrophilic to 

hydrophobic. Due to this effect, at temperatures above 32 ºC, the magnetic NPs shrink, and are able to 
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adsorb a larger amount of bovin serum albumin (BSA). Lowering the temperature below  

32 ºC resulted in desorption of the protein. It has been shown that the protein adsorption takes place a 

larger extent through hydrogen bonding, and less through hydrophobic interactions. Peng et al. [154] 

fabricated Fe3O4 magnetic NPs with 10 nm in diameter through a chemical precipitation method and 

further used them for physical adsorption of BSA and lysozyme (LSZ) with partial retention of 

enzymatic activity. Desorption of both BSA and LSZ was also investigated at the isoelectric points of 

the enzymes. Kausik et al. [155] used Fe3O4 NPs prepared via a co-precipitation method to design a 

glucose sensor. The NPs dispersed in chitosan formed a film onto an indium-tin oxide (ITO) glass. 

Dispersion in chitosan helped preventing aggregation, while the NPs facilitated communication with 

the electrode surface. This biosensor had a rapid response time (5 s), good linearity (10 – 400 mg dL-1), 

good reproducibility, and high affinity towards glucose. The sensitivity was of 9.3 µA/(mg·dL·cm2) 

and the sensor was stable for up to eight weeks at 4 ºC. 
 

4.3.Entrapment of biomoleules in magnetic composites  

 

Biomolecules can be entrapped within the different polymeric or silica shells used to form hybrid 

magnetic composites. For example, spherical silica coated Fe3O4 NPs have allowed stable entrapment 

of horseradish peroxidase (HRP), simultaneously with the formation of the silica layer [96]. This 

method resulted in biomagnetic catalysts characterized by a long-term stability with temperature up to 

85 ºC and pH change, as compared to the free enzyme. However, the entrapped enzyme could lose 

activity due to conformational changes in the silica matrix and also suffers from possible diffusion 

limitations of the substrate through the silica pores. The same methodology allowed immobilization of 

an antibody for the development of an immunoassay, for the quantitative determination of gentamicin 

with a detection limit of 160 ng/mL. More complex systems with entrapped enzymes combining 

different types of materials were also reported. Such an example is the use of iron oxide NPs with 

crosslinked enzyme molecules, which were then encapsulated into large pores of mesoporous silica to 

form a “hierarchically ordered, mesocellular” structure [145]. These nanocomposites were 

magnetically separable, highly loaded with enzyme, stable under harsh shaking conditions, resistant to 

different treatment procedures, and reusable.  

 

4.4. Site specific bioimmobilization onto magnetic nanoparticles 

 

Site specific immobilization onto magnetic particles is an attractive strategy for attaching 

biomolecules because it provides a favorable orientation for biorecognition events while avoiding 

conformational changes, and offering magnetic control of the entire assembly. As opposed to other 

methods, this strategy involving attachment at a specific pre-determined position eliminate the 

diffusion barriers or chemical bond formation that could affect the biological activity and, therefore, a 

lower detection limit and a fast response time could be expected for sensors fabricated based on this 

method. Johnson et al. [156] developed a method for immobilization of affinity-tagged dehalogenase 

on iron/iron oxide core-shell NPs through a biomimetic approach. The authors used cloned 

dehalogenase (DhlA) fusion proteins, with an affinity for either silica or iron oxide surfaces [157,158]. 

Three different DhLA recombinant enzymes were expressed and immobilized on the NPs surface. The 
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enzymes were able to specifically bind to either iron oxide or silica. The DhLA enzymes tagged with 

iron oxide or silica affinity peptides showed a higher rate of adsorption onto the magnetic NPs when 

compared to the His-tagged protein. In another example, pre-activated iron oxide beads carrying Ni- 

iminodiacetic acid (IDA) complexes were used to immobilize a genetically-modified 

acetylcholinesterase (AChE), having engineered an hexa(histidine) tag. The 6His-AChE-Ni-NTA-NPs 

system was deposited onto the surface of a screen-printed electrode surface with a small magnet placed 

underneath the electrode. This biosensor was used for the detection of two organophosphorous 

pesticides, via AChE inhibition [159]. The main advantage of this method for inhibition assays is the 

very high sensitivity with detection limits of 10-11 M for chlorpyriphos-oxon and the easy reusability of 

the same electrode. The system could be easily adapted for integration into an autonomously operated 

magnetoswitchable device for monitoring AChE inhibiting activities. 

 

5. Applications of Biomagnetic Materials in Sensing Technology 

 

5.1. Enzyme Sensors 

 

Enzymatic sensors based on various magnetic platforms, mainly iron oxides were designed with the 

advantages of offering high enzyme loading and control of the localization of the sensitive material 

through the use of a magnet allowing for the enzymatic reactions to occur in the close proximity of the 

transducer surface [159-163].  

 

Figure 2. Schematic diagram of a magnetic microflow system based on GOx 

functionalized biomagnetic particles with electrochemical detection for the detection of 

glucose (adapted from reference [161] with permission from the American Chemical 

Society). 

 
 

The transducing component is easily renewable and reusable. This is due to the ability to control the 

charging/discharging of its surface by application of a magnetic field, providing reusability of the same 

electrode for several analyses. Examples include sensors based on tyrosinase for the detection of 

phenol [162], yeast (YADH/NAD+) [164] for the detection of ethanol, GOx for glucose [163], and 

AChE for organophosphorus pesticides [151]. Enzyme-immobilized magnetic beads can be 

incorporated in a flow injection analysis (FIA) system as described by Kauffmann et al. [161]. Figure 
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2 shows the schematic diagram of a FIA assay for detection of glucose using glucose oxidase modified 

magnetic microparticles. Functionalized magnetic particles were injected into the FIA system and 

retained near the detector using a pair of two small permanent magnets. An amperometric system for 

the detection of glucose with glucose oxidase immobilized onto the magnetic particles was developed 

based on this principle. The porous biomagnetic particles were ferromagnetic spinnel type iron oxide 

(-Fe2O3) with the GOx immobilized after silanization with aminopropyltrietoxysilane followed by 

covalent binding using GA.  

 

5.2. Immunosensors 

 

Magnetic particles functionalized with specific antibodies (Ab) have been used for the design of 

immunomagnetic sensors through the immobilization of the Ab-NPs assembly on the surface of an 

electrochemical transducer [3,165-167]. For these types of immunosensors, the immunomagnetic 

complex is magnetically attached to the surface of the screen printed electrode. The utilization of Ab-

coated magnetic particles is efficient in overcoming the need of regeneration of the sensing surface and 

makes possible integration into automatic systems, difficult to achieve otherwise due to the obstacles 

in renewing the sensing surface. The immunocomplex is usually quantified through the use of enzyme 

labels, with the electrochemical detection of the enzyme reaction product after the complex is exposed 

to the enzymatic substrate, or through a fluorescent label followed by fluorescence detection. An 

example of amperometric immunosensing assay obtained by immobilizing the antibody onto a solid 

carbon paste electrode using core-shell magnetic NPs is shown in Figure 3 [167]. 

Different analytes were detected using this method, such as: rabbit IgG [168-170], non-pathogenic 

E. coli O157 [171], polychlorinated biphenyls (PCBs), the herbicide 2,4-D, atrazine [171-175] 

pesticides and bacterial pathogens [176,177]. For example, streptavidin activated magnetic microbeads 

were used for the immobilization of an antibody for atrazine, a small pesticide molecule, allowing for 

the determination of its concentration in biological samples, with a detection limit of 0.027 nmol L-1 

[173]. In another work, immunomagnetic separation coupled with differential pulse voltammetry 

allowed detection of Arochlor 1248 PCB mixture with a detection limit of 0.4 ng/mL using screen-

printed three electrode strips [178]. Other immunosensors with renewable electrode surface were 

reported for the detection of pathogens such as Salmonella Typhimurium [176,177]. Another 

interesting application of immunomagnetic NPs was for selectively concentrating traces of pathogenic 

bacteria (Staphyloccocus saprophyticus and Staphyloccocus aureus) via IgGs attached onto the 

particles surface [179]. It was found that these IgG-NPs conjugates can bind selectively to the cell 

membrane. Detection limits of as low as 3 × 105 cfu/mL were achieved in aqueous solutions. Other 

specific examples of monodispersed bio-functional magnetic NPs for protein separation and pathogen 

detection were discussed recently by Gu et al. [180]. 
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Figure 3. Preparation of the immunosensor and its application in IgG determination: (1) 

magnetic bio-nanoparticles containing anti-IgG were attached on the surface of carbon 

paste electrode in the presence of magnetic field; (2) incubation of the immunosensor with 

IgG solutions allowed formation of the anti-IgG/IgG complex on the electrode; (3) 

incubation of the immunosensor in HRP-labeled anti-IgG solutions allowed formation of 

anti-IgG/IgG/anti-IgG-HRP complex on the electrode; (4) hydroquinone and H2O2 were 

added and electrode-bound IgG was determined by amperometric measurements at an 

potential of - 300mV (vs. SCE) (reproduced with permission from reference [167]). 

 
 

5.3. DNA sensors 

 

DNA sensors with single-stranded (ss) oligodeoxynucleotides immobilized on electrode surfaces 

[181-183] via magnetic beads were also fabricated [184-190]. A three layer magnetic NPs structure 

with a gold surface, silica core and magnetic inner layer was functionalized with DNA and used for 

quantifying hybridization events [189]. It was found that upon hybridization with complementary 

oligonucleotides, this structure forms aggregates in the same way as Au NPs. In another work, 

surfactant-modified oligonucleotides were incorporated into the particle organic shell to create a DNA 

functionalized surface [188]. For example, monodisperse MnFe2O4 magnetic NPs were 

biofunctionalized with DNA using a combination of alkylphosphonate and ethoxylated fatty alcohols. 

This method is based on the affinity of alkylphosphonate for metal oxide surfaces. DNA amplification 

with magnetic primers in combination with electrochemical detection and enzyme labelling was used 

to develop a genomagnetic assay for detection of food pathogens such as Salmonella spp [190]. The 

electrode consisted of a graphite epoxy composite and streptavidin modified magnetic beads with 

immobilized DNA. Loaiza et al. [191] reported a sensitive method for isolation and detection of DNA 
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from bacterial cells using disposable magnetic DNA sensors. Screen-printed gold electrodes with a 4 

mm in diameter working electrode surface were used as amperometric transducers in this example.  

 

Figure 4. Schematic representation of the enzyme amplification protocol: (1) probe-

modified magnetic beads washing step; (2) hybridization with the target lacZ gene probe; 

(3) hybrid-modified magnetic beads separation and non-complementary oligonucleotide 

extraction; (4) enzymatic labelling with streptavidin-HRP; (5) hybrid-modified magnetic 

beads deposition on the TTF-Au/SPEs; (6) amperometric detection of the mediated 

reduction of H2O2 with TTF (reproduced, with permission, from reference [191]) 

 
 

Figure 4 shows a schematic of the protocol used for enzyme amplification. The magnetic particles 

were functionalized with streptavidin. A 25-mer capture probe was subsequently attached, followed by 

the hybridization process. In the next step, streptavidin-peroxidase was attached and the functionalized 

magnetic particles were attached to the surface of the electrode through a magnet. The sensor was used 

for the detection of asymmetric DPCR amplified products obtained from E. coli bacterial cultures, with 

high speed, specificity and sensitivity. Another advantage of this method was elimination of false 

positive results, a drawback of conventional PCR analysis. 

 

6. Conclusions 

 

In this review, we have summarized the most recent developments in the field of biofunctionalized 

magnetic particles and their applications in bioanalytical sensors. Research in this field has focused 

mainly on the challenges of creating hybrid composite materials containing biomolecules, magnetic 

NPs and other inorganic components, and on the development of strategies that can be used to 

integrate these materials in functional sensing devices. Research in this direction involves scientific 

aspects of the preparation, structure and properties of magnetic systems and their functionalization 
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with biological materials. This approach is unique in that it combines the high selectivity and 

specificity of biological processes with the high surface area and magnetic properties of magnetic 

particles. These properties have been used to provide control and orientation of the biomolecular 

recognition elements onto transducer surfaces as well as to enhance the response time, selectivity, 

sensitivity and stability of the sensor. These hybrid systems are the foundation of new generations of 

materials that could be used in the construction of biosensors, bioreactors, biofuel cells and in other 

biotechnological applications. The success of these research efforts is still dependent of the 

transferability of these materials into real life applications. The rapid developments in the field 

allowing successful fabrication and testing of various sensors designs based on biomagnetic assemblies 

illustrate the potential of this approach for further applications. 
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