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Recent advances in methods for single-cell analyses and barcoding strategies have led to
considerable progress in research. The development of multiplexed assays offers the
possibility to conduct parallel analyses of multiple factors and processes for
comprehensive characterization of cellular and molecular states in health and disease.
These technologies have expanded extremely rapidly in the past years and constantly
evolve and provide better specificity, precision and resolution. This review summarizes
recent progress in single-cell multiomics approaches, and focuses, in particular, on the
most innovative techniques that integrate genome, epigenome and transcriptome
profiling. It describes the methodologies, discusses their advantages and limitations,
and explains how they have been applied to studies on cell heterogeneity and
differentiation, and epigenetic reprogramming.
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1 INTRODUCTION

Complex tissues and organisms are formed by a heterogeneity of cells that divide, proliferate and
differentiate, and go through various physiological states during development and in adulthood (Mayr
et al., 2019). Although the fate of each cell is intrinsically determined, it is strongly influenced by cell-cell
interactions and by external factors. The processes taking place within each individual cell are a result of
complex interactions between chromatin, transcripts and proteins. Whether a coding or non-coding
transcript is expressed in a cell at each given time, but also which isoforms and splice variants become
synthesized, is regulated by a combination of genetic and epigenetic factors, including transcription
factors, chromatin remodelers, but also non-coding RNAs and transposable elements (Philpott et al.,
2020). To identify these activity-dependent regulatory processes, most approaches in the past used
transcriptomic and/or proteomic methods of analyses on whole tissues or cell suspensions. Although
useful, such bulk approaches are not ideal because they average information derived from thousands or
millions of cells, which masks cell-specific features or features typical of developmental processes such as
lineage choice (Hu et al., 2018).

The development of methods for single-cell analyses greatly helps to address this limitation. Single-cell
sequencing has recently been adopted by multiomic strategies, which bring together simultaneous
information about different molecular modalities and their relationship in individual cells. Multiomics
combines the assessment of cellular features pertaining to the genome (e.g., chromatin accessibility, copy-
number variations), the transcriptome, the proteome and,more recently, spatial patterns of gene expression.
Such a multiomic approach overcomes the drawback of correlative integration of unimodal datasets
obtained from separate experiments (Ma Anjun et al., 2020) and identifies key molecular features within
individual cells. In the past decade, single-cell sequencing technologies have been increasingly used to study
the cellular heterogeneity of tissues and organisms during development and in adulthood. Thus, multiomics
strategies and single-cell sequencing platforms are powerful methods that, together, can uncover functional
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cellular diversity at a large scale, through a more mechanistic
dissection of dynamic cell states (Strzelecka et al., 2018; Lee et al.,
2020).

While the first single-cell multiomics (sc-multiomics)
techniques were only published in 2014 (Han et al., 2014),
the methods have since then rapidly diversified, with new
approaches showing improvement in throughput, sequencing
depth, coverage, but also with potential for automation. In
this review, we cover recent advances in sc-multiomics
technologies and focus on methods that simultaneously
profile the genome, epigenome, and/or transcriptome in
single cells. We further discuss their current and potential
applications towards understanding gene regulation in
development and disease.

2 The Fundamentals of Single-Cell
Multiomics
All sc-multiomics techniques involve processing tissues to a
single cell suspension, isolating the individual cells, lysing the
cells in a manner that preserves the stability and integrity of
subcellular components (DNA, RNA, proteins) and, finally,
processing these molecules to obtain libraries for sequencing.

2.1 Single-Cell Isolation
Similarly to mono-omic single-cell techniques, all sc-multiomics
techniques must achieve the physical isolation of single cells into
discrete reaction compartments. This is necessary to enable the
retracing during sequencing data analysis of which cell gave rise
to which sequencing reads. Some techniques isolate single cells at
the start of their workflow and then subject individual cells to
further processing (Figure 1A, top). Other techniques partially
process the whole single-cell suspension in a first reaction by
subjecting it to DNA tagmentation or RNA reverse transcription,
often including a first barcoding event, and only subsequently
isolate individual cells into separate reactions before further
processing (Figure 1A, bottom).

The sc-multiomic techniques reviewed here can be catalogued
into three main categories on the basis of how they approach
single cell separation: well-based techniques, continuous-flow
microfluidics-based techniques and droplet-microfluidics-based
techniques (Figure 1B). Well-based techniques use multi-well
plates, in which each cell is distributed to one well containing a
unique molecular identifier that becomes attached to the
molecules of interest in each well. The distribution of cells to
individual wells is most frequently achieved by fluorescence-
activated cell sorting (FACS), by limiting dilution or by
manual cell picking. Other methods rely on microfluidics, a
fluid-handling technology using microscale devices that allows
fast and precise manipulation of small volumes of sample,
reducing reagent costs (Sackmann et al., 2014). Because they
are miniaturized, microfluidics methods considerably reduce
reaction volumes, requiring nanoliters, or even picoliters, of
reagents compared to microliters for microwell plates. On the
one hand, this minimizes reagent- and environment-borne
contaminants (Nishikawa et al., 2015). On the other hand, it
leads to a molecular crowding effect, whereby the template is

more concentrated in the reaction environment, thus minimizing
amplification bias, which ultimately increases the accuracy and
precision of the measurements (Ballantyne et al., 2006).

Two distinct microfluidics methodologies have been used for
single-cell omics analyses. First, continuous-flow microfluidics
uses chip valves to trap single cells in discrete reaction
chambers of nanoliter volume where each step of the workflow
occurs, allowing for automation of the entire process (Shim et al.,
2013; Philpott et al., 2020). Second, droplet-based microfluidics co-
encapsulates single cells with barcoded beads into microdroplets
(Macosko et al., 2015). Valve-based systems afford more versatility
for adding reagents, thus allowing more steps to be conducted on-
chip, including the reverse transcription and amplification
reactions, leading to a less labor-intensive workflow and
increased precision. However, droplet systems afford higher cell
capture efficiencies and an order of magnitude higher throughputs,
since droplets can be generated on-demand and on a large scale,
unlike chambers (Gao et al., 2019).

2.2 Processing of Intracellular Components
Depending on the molecular information each technique aims to
provide, techniques vary in which molecules they process and
which treatments they subject the subcellular components to
(Figure 2A). Some of the techniques that profile chromatin
accessibility extract the gDNA and treat it with a DNA
methyltransferase, which methylates cytosines in accessible GC
dinucleotides, thus marking accessible chromatin. Others subject
the gDNA to tagmentation by the Tn5 transposase, which
fragments chromatin at accessible sites, thus providing the
same type of information. Approaches that aim to profile
DNA methylation rely on bisulfite conversion of the gDNA.

Among the multiomics techniques that simultaneously profile
the genome and transcriptome of single cells, some methods
separate DNA and RNA immediately after cell lysis and before
any processing (Figure 2B, left). This can be done by taking
advantage of their physical properties (e.g., different densities
through centrifugation) or sequence characteristics, for instance
the presence of polyadenylated (polyA+) sequences in messenger
RNA and some non-coding RNAs. Other methods subject the
whole lysate containing DNA and RNA to reverse-transcription
and pre-amplification. Then, the reaction is split into two
aliquots, one used for gDNA processing and the other for
RNA library preparation (Figure 2B, right) (Dey et al., 2015;
Lee et al., 2020).

sc-multiomics techniques also vary in the populations of RNA
they profile. While most capture all polyA + RNA, some capture
only nuclear polyA + RNA (single-nucleus chromatin
accessibility and mRNA expression profiling, SNARE-seq
(Chen et al., 2019)) or polyA- RNA (simultaneous isolation
and sequencing of genomic DNA and total RNA, scSIDR-seq
(Han et al., 2018)). Further, depending on the strategy used to
prepare RNA libraries, techniques vary in their transcript
sequence coverage, and thus in their applicability. For
instance, techniques based on the Switching Mechanism At
the 5′-end of RNA Transcripts (Smart-seq) (Ramsköld et al.,
2012) RNA library preparation strategy, including single-cell
targeted mutational analysis and parallel RNA sequencing
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(TARGET-seq (Rodriguez-Meira et al., 2019)), simultaneous
chromatin accessibility and gene expression profiling (sc
(ATAC + RNA)-seq (Reyes et al., 2019a)), single-cell
chromatin accessibility and transcriptome sequencing (scCAT-
seq (Liu et al., 2019)), single-cell nucleosome, methylation and
transcription sequencing (scNMT-seq (Clark et al., 2018)) and
methods relying on theMultiple Annealing and dC-Tailing-based
Quantitative (MATQ-seq) (Sheng et al., 2017) library preparation
strategy, such as single-cell nucleosome occupancy, methylome
and RNA expression sequencing (scNOMeRe-seq (Wang et al.,

2021)), recover the whole transcript, allowing for applications
such as splice-variant analysis. In contrast, protocols such as
Droplet Based scRNA-Seq (Drop-seq) (Macosko et al., 2015) are
restricted to the 3′-end of the transcript (SNARE-seq) (Chen
et al., 2019) and do not capture the 5′-end of the transcript,
precluding the ability to gain information about transcription
start sites, splice variants and 5′ untranslated regions (Haque
et al., 2017). However, in cases where throughput needs to be high
and sensitivity is not crucial, costs can be decreased by using 3′
end approaches such as Drop-seq (Macosko et al., 2015).

FIGURE 1 | Individual cell isolation in sc-multiomics. Single-cell multiomics techniques differ in when and how, during their workflow, they isolate single cells into
individual reactions for further processing. (A) Different stages at which cells are isolated in sc-multiomics. While some sc-multiomics techniques 1) start from the single-
cell suspension by first isolating individual cells (using one of the approaches in (B) and only then subject cells individually to further processing, such as enzymatic
treatments (top), other techniques 2) subject the single-cell suspension to enzymatic treatment first and only then isolate single cells (bottom). (B) Different
technologies for isolating individual cells in sc-multiomics. Well-based methods rely on techniques such as fluorescence-activated cell sorting (FACS) to sort individual
cells into unique wells. Valve microfluidics methods treat single cells individually in unique reaction wells on microfluidic chips. Droplet microfluidics encapsulate individual
cells into unique barcoded droplets for further processing.
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2.3 Barcoding
Barcoding (or indexing) involves attaching a unique
oligonucleotide sequence to the molecules of interest from
1 cell, thereby generating a unique cellular identifier. Cell-
specific differential barcoding allows identifying each cell
individually and thus offers the possibility to pool cells with
different barcodes (Philpott et al., 2020) into one sample. This
permits to subsequently demultiplex the reads resulting from a
pooled library to its cells of origin following sequencing. Barcodes
can be added during tagmentation of the gDNA, reverse
transcription of the RNAs, amplification of both, or by
ligation. sc-multiomics methods reviewed here apply barcoding
at different steps in their workflow and some even apply
combinatorial indexing approaches, in which different rounds
of barcoding are employed in the same experiment (Figure 3).
Because of the need to uniquely compartmentalize individual
cells, most well-based methods have low throughput. However,
the use of combinatorial indexing strategies can increase the
throughput of well-based methods (sciCAR (Cao et al., 2018),
Paired-seq (Zhu et al., 2019)) by several orders of magnitude
(Vitak et al., 2017). Because populations of cells are indexed
together at each step, then pooled and redistributed in the
subsequent round, each cell passes through a unique
combination of wells (and barcodes), allowing the
compartmentalization of each cell to occur virtually, through
the unique combination of barcodes they receive at the end of the
barcoding rounds, rather than physically (Cusanovich et al.,
2015).

An ideal sc-multiomics method should have a simple
workflow and be highly sensitive and accurate while having
low background. It should minimize potential biases and avoid
confounding parameters, like for instance amplification bias. At
the same time, it should provide high efficiency such as high
library complexity for each measured factor e.g., DNA or RNA
sequence. sc-multiomics methods should also ideally be high
throughput, to allow for complex projects such as devising cell
atlases. The workflow of an efficient sc-multiomics technique
should involve as many reactions in bulk as possible to minimize
reagent costs, while maximizing throughput (Kebschull and
Zador, 2018).

3 MULTIOMICS CHARACTERIZATION OF
CHROMATIN STRUCTURE,
TRANSCRIPTOME AND EPIGENOME AT
SINGLE-CELL RESOLUTION

sc-multiomics approaches provide researchers with a powerful
and direct way to characterize the coordination between layers of
genomic regulation in individual cells. The ability to profile

FIGURE 2 | Processing of different molecular layers in sc-multiomics.
Single-cell multiomics techniques that simultaneously profile the genome and
transcriptome of cells differ in the way they process these molecules. (A)
Different types of processing of DNA and RNA employed in sc-
multiomics depending on the goal of the technique. sc-multiomics techniques
differ in the way they process DNA and/or RNA, depending on what the
approach aims to profile: DNA can be either treated with M. CviPI (a DNA
methyltransferase that methylates cytosine in accessible GC dinucleotides) or
with Tn5 (if the aim is to characterize chromatin status), or bisulfite converted (if
the aim is DNA methylation profiling), while RNA is subjected to RT and
amplification. (B) Simultaneous or parallel processing of DNA and RNA in sc-
multiomics. In sc-multiomics, once individual cells are lysed, either 1) DNA and
RNA can be first separated from each other using oligo-dT beads and then
processed in parallel (left), or 2) the lysed cell can be subjected to DNA

(Continued )

FIGURE 2 | tagmentation and RNA reverse transcription (RT) in one reaction,
followed by simultaneous pre-amplification of the DNA and cDNA, and then
splitting of amplicons into fractions for library preparations (right).
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relationships between different aspects of the epigenome in single
cells is particularly useful for the study of highly dynamic
epigenetic patterns, as occur during gamete and embryonic
development, and during cell differentiation events. Leveraging
the power of such approaches to study gamete maturation, Gu
et al. found that chromatin opening at promoters precedes de
novo gene body methylation before oocyte growth initiation (Gu
et al., 2019a). Applying similar approaches to study mouse
embryonic development, Guo et al. and Wang et al. found
allelic differences to occur in genome-wide methylation
patterns, but not in chromatin accessibility status in early
preimplantation embryos (Guo et al., 2017; Wang et al., 2021),
while Argelaguet et al. found regulatory elements associated with

each germ layer to be epigenetically primed or remodeled before
cell-fate decisions in gastrulating embryos (Argelaguet et al.,
2019). In line with these results, Clark et al. found coupling
between epigenetic layers to increase as cells commit to
downstream lineages across embryonic stem cell differentiation
(Clark et al., 2018). Using sc-multiomics approaches, several
groups have characterized the dynamics between chromatin
accessibility and gene expression in the same cell, in diverse
lineage commitment contexts: from hair follicle differentiation
(Chen et al., 2019) to neuronal differentiation of intermediate
progenitors in the cortex (Ma Sai et al., 2020) and
oligodendrocyte maturation (Xu et al., 2022). Leveraging the
power of such approaches, chromatin accessibility was found
to precede gene expression increases at lineage-specifying genes
during lineage-commitment (Ma Anjun et al., 2020; Xu et al.,
2022). Ma et al. showed this primed chromatin state can be used
as a quantitative measure and a predictor of cell fate. Thus, sc-
multiomics approaches find numerous applications in biological
studies, providing unprecedented insight into mechanisms of
gene regulation underlying cell identity and fate.

In this review, we focus, in particular, on the most recent
techniques that integrate genome, epigenome and transcriptome
profiling. All these techniques are discussed in detail in the
sections below and summarized in Table 1. One molecular
layer that is also tackled by single-cell multiomics techniques,
but which we do not cover in detail here is the cell proteome. The
most recently developed sc-multiomics methods that profile cell
proteins in addition to at least one other molecular layer are
summarized in Box 1.

3.1 Chromatin and Transcriptome
RNA sequencing has been a widely used application of next-
generation sequencing. While traditionally researchers have been
focused on quantifying gene expression, transcriptomic studies
also provide valuable insight into processes such as alternative
splicing events, or gene regulation by non-coding RNAs, such as
enhancer RNAs. The physical accessibility of chromatin to
regulatory factors, such as RNA polymerase or transcription
factors, determines the likelihood that each specific region in
the genome will get transcribed and expressed. Thus, the ability to
probe nucleosome packing is also crucial to understanding
transcriptional regulation.

Box 1 | Recent developments in single-cell multiomics proteome profiling.

Method Molecular
layers profiled

Proteins
profiled

Throughput References

inCITE-
seq

proteins
and RNA

intranuclear +++ Chung et al.,
2021

PHAGE-
ATAC

proteins and
chromatin

surface and
intracellular

+++ Fiskin et al.,
2021

TEA-seq proteins, RNA
and chromatin

surface +++ Swanson et al.,
2021

DOGMA-
seq

proteins, RNA
and chromatin

surface and
intracellular

+++ Mimitou et al.,
2021

Throughput: +++ > 2,000 cells. chromatin = chromatin accessibility.

FIGURE 3 | Use of barcoding at different steps in sc-multiomics.
Barcoding of DNA and RNA can be employed at different steps of the
processing of single cells, and different labels and techniques can be used at
one or more of these steps. A first barcode can be inserted in DNA during
tagmentation and in RNA during RT. Then, after pooling of samples and
redistribution into wells, one or more ligation-based barcoding is possible. A
third barcoding is possible during amplification.
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TABLE 1 | Summary of reviewed single-cell multiomics methods.

Method Molecular layers profiled Throughput
(low/medium/

high)

Special features (compared to
techniques from same category)

Format References

Epigenome Genome Transcriptome

Chromatin
accessibility

Chromatin
conformation

DNAme CNVs/ploidy/
microsatellites/mutation

poly(A)+ RNA

scCAT-seq x x + \ usable fragments well Liu et al. (2019)
Paired-seq x x +++ \ throughput well Zhu et al. (2019)
sc(ATAC +
RNA)-seq

x x + Z cost; simple workflow well Reyes et al. (2019a)

sci-CAR x x +++ \ acc. & RNA intersect coverage well Cao et al. (2018)
SNARE-seq x x +++ \ sensitivity droplet Chen et al. (2019)
ASTAR-seq x x ++ Z price-performance ratio microfluidics Xing et al. (2020)
SHARE-seq x x +++ \ throughput, performance well Ma Sai. et al. (2020)
ISSAAC-seq x x +++ \ throughput, performance (esp. ATAC) well/droplet Xu et al. (2022)
scDam&T-seq x x + protein-DNA interactions information well Rooijers et al. (2019)
scNOMe-seq x x + estimates nucleosome phasing well Pott, (2017)
scCOOL-seq x x x + \ acc. & DNAme intersect coverage well Guo et al. (2017)
iscCOOL-seq x x ++ \ accessibility coverage well Gu et al. (2019a)
scMethyl-HiC x x + \ mapping rate well Li et al. (2019)
sn-m3C-seq x x +++ \ DNAme coverage well Lee et al. (2019)
scNMT-seq x x x ++ \ throughput well Clark et al. (2018)
scNOMeRe-seq x x x + \ DNAme coverage well Wang et al. (2021)
scSIDR-seq x x + captures total RNA well Han et al. (2018)
TARGET-seq x x +++ Z cost; \ throughput well Rodriguez-Meira et al.

(2019)
RETrace x x + captures microsatellites well Wei and Zhang, (2020)
scTrio-seq2 x x x ++ \ DNAme coverage well Bian et al. (2018)

Throughput: + <500 cells, ++ <2000 cells, +++ >2000 cells. acc. = (chromatin) accessibility. scCAT-seq, single-cell chromatin accessibility and transcriptome sequencing), Paired-seq - parallel analysis of individual cells for RNA, expression
and DNA, accessibility by sequencing, sc(ATAC + RNA)-seq - simultaneous chromatin accessibility and gene expression profiling, sci-CAR, single-cell combinatorial indexing-based chromatin accessibility and RNA, SNARE-seq, single-
nucleus chromatin accessibility and mRNA, expression profiling; ASTAR-seq, assay for single-cell transcriptome and accessibility regions; SHARE-seq, simultaneous high-throughput ATAC, and RNA, expression with sequencing in single
cells; ISSAAC-seq, in situ SHERRY, after ATAC-seq, scDam&T-seq - single-cell DNA, adenine methyltransferase identification (DamID) and messenger RNA, sequencing, scNOMe-seq - single-cell nucleosome occupancy and methylome-
sequencing, scCOOL-seq, single-cell chromatin overall omic-scale landscape sequencing, iscCOOL-seq, improved single-cell chromatin overall omic-scale landscape sequencing; scMethyl-HiC, single-cell DNA, methylation and chromatin
conformation capture, sn-m3C-seq - single-nucleusmethyl-chromatin conformation capture sequencing, scNMT-seq, single-cell nucleosome,methylation and transcription sequencing, scNOMeRe-seq - single-cell nucleosome occupancy,
methylome and RNA, expression sequencing; scSIDR-seq, simultaneous isolation and sequencing of genomic DNA, and total RNA, TARGET-seq, single-cell targeted mutational analysis and parallel RNA, sequencing, RETrace -
simultaneous retrospective lineage tracing and methylation profiling of single cells, scTrio-seq - single-cell triple omics sequencing.
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The combined analysis of chromatin accessibility and
transcriptome in the same cell provides a direct link between
the state of chromatin at specific genomic regions and the level of
the corresponding transcripts. Furthermore, signals from
different gene regulatory processes are characterized by
different temporal dynamics. While transcription factor
binding is transient, transcriptional responses unfold across
minutes to hours, and changes in epigenetic marks reflected at
the level of chromatin accessibility can last for days and weeks
(Reyes et al., 2019; Ma Sai et al., 2020) Thus, techniques that allow
for simultaneous interrogation of chromatin accessibility and
gene expression facilitate the dissection of cell states across
different timescales (Reyes et al., 2019; Ma Anjun et al., 2020).
To identify regions of open chromatin, a recent approach is to use
the Tn5 transposase. This enzyme cleaves the DNA and inserts
sequencing adapters at accessible genomic sites (in-between
nucleosomes), allowing tagmentation and amplification of
accessible chromatin. These regions can be easily identified
after sequencing, using the inserted adapters.

The recently developed techniques for simultaneous profiling
of chromatin and transcriptome we review are summarized in
Table 1 and include:

(A) well-based low-throughput methods such as sc
(ATAC+RNA)seq (Reyes et al., 2019b), scCAT-seq (Liu
et al., 2019) and scDam&T-seq (Rooijers et al., 2019).

(B) ASTAR-seq (Xing et al., 2020), a continuous-flow
microfluidics approach of higher throughput,

(C) Paired-seq (Zhu et al., 2019), sci-CAR (Cao et al., 2018),
SNARE-seq (Chen et al., 2019), SHARE-seq (Ma Sai et al.,
2020) and ISSAAC-seq (Xu et al., 2022), which are high-
throughput methods that allow profiling of tens of
thousands, up to millions of single cells, rendering them
suitable for organismal-scale measurements.

3.1.1 Low-Throughput Methods
Reyes et al. described a simple and cost-efficient method for
assaying chromatin accessibility and the transcriptome of single
cells, referred to in our text as sc (ATAC + RNA)-seq (Reyes et al.,
2019b). In this approach, fixed cells are permeabilized and
tagmented in bulk to minimize time and costs associated with
this step. FACS-isolated single cells are then lysed, poly(A)+
RNAs are isolated using oligo-dT beads and reverse transcribed.
The resulting cDNA is amplified and RNA-seq libraries are
prepared using the Smart-seq2 protocol. Separately, the
tagmented gDNA is amplified using indexed PCR to prepare
ATAC-seq libraries. According to the authors, the sc (ATAC +
RNA)-seq chromatin accessibility data showed similar quality
and the transcriptomic data showed similar gene counts as
comparable datasets generated using unimodal single-cell
techniques. However, the RNA-seq data was found to be
enriched for intronic reads, suggesting some capture of
nuclear, nascent poly(A)+ RNAs. This can be disadvantageous
if the aim of the experimenter is capturing only poly(A)+ RNA
because the contaminant immature RNAs will lead to a decreased
amount of usable reads for the poly(A)+ RNAs. Using sc (ATAC

+ RNA)-seq Reyes et al. successfully showed clustering of three
different immune cell types and linked chromatin accessibility at
regulatory elements to expression of their target genes. However,
the clustering performance of this technique is lower when
compared to mono-omics scRNA-seq approaches, with the
resulting data quality limiting its applicability towards
unbiased discovery of marker genes, despite the high number
of genes detected (1,500–3,000 genes per cell). This could likely be
improved by either adopting an alternative clustering approach,
or by optimizing the separation of DNA from RNA, and by
DNase treatment of the RNA, which could decrease the
contamination of gDNA and nuclear RNAs (Reyes et al., 2019a).

scCAT-seq (Liu et al., 2019) is an efficient, low-throughput
technique which involves partial lysis of FACS-isolated single
cells and separation of the cytosolic RNAs from the DNA using
centrifugation. Smart-seq2 is thereafter used for RNA-seq library
preparation, and Tn5 is used to tagment the gDNA and profile
chromatin accessibility. Using scCAT-seq, the authors
successfully generated the first single-cell integrated map of
chromatin accessibility and transcriptome in human embryos
across preimplantation development. Using co-variability
between accessibility of regulatory elements and significant
gene expression changes, Liu et al. defined cell-specific
regulatory relationships and identified cell-specific master
transcription factors (TF). scCAT-seq accessibility data showed
a reduction of mitochondrial reads compared to bulk ATAC-seq.
In comparison to scATAC-seq, scCAT-seq provided more usable
fragments–fragments which map uniquely to the genome and are
not discarded by duplicate removal. However, in scCAT-seq, a
smaller fraction of the usable fragments fell into peak regions,
leading to a lower signal-to-noise ratio compared to scATAC-seq.
The RNA-seq coverage was comparable to Smart-seq scRNA-seq.
Finally, scCAT-seq is more expensive than sc (ATAC + RNA)-
seq, due to the large number of individual transposition reactions.

scDam&T-seq (Rooijers et al., 2019) was the first method to
simultaneously profile the transcriptome and protein-DNA
interactions in single cells. scDam&T-seq uses the DamID
approach in which cells are first transfected with a fusion
between a Dam methyltransferase and a target protein, leading
to accumulation of m6Amarks at accessible sites in the gDNA. As
such, protein-DNA interactions (usually indicative of accessible
chromatin regions) are measured across time. Under scDam&T-
seq, after lysis and reverse transcription (RT), individual cells are
isolated by FACS and subjected to DpnI restriction, digestion,
leading to fragmentation of the gDNA at m6A sites only and
resulting in fragments that were inaccessible to methylation.
Subsequently, cDNA and gDNA are barcoded and amplified
during library preparation. Rooijers et al. applied scDam&T-
seq to probe the nuclear organization of chromatin in mouse
embryonic stem cells (mESCs). The authors showed that genomic
regions within the nucleoplasm are more likely to be actively
transcribed in cells in which these chromatin sites are detached
from the nuclear lamina. scDam&T-seq minimizes loss of
material and technical bias by omitting nucleotide separation
and linear amplification. Compared to the triple-omics scNMT-
seq (Clark et al., 2018) (discussed in the following sections),
scDam&T-seq shows similar RNA-seq and chromatin
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accessibility data quality, but requires much lower sequencing
depth which also reduces the overall costs. One limitation of
the protocol is the need for transfection of the cells with the
Dam constructs, which may additionally present with
variabilities in efficiency depending on the cell types of
interest.

3.1.2 High-Throughput Methods
ASTAR-seq (Xing et al., 2020) uses the Fluidigm C1 microfluidic
platform to isolate and lyse cells, reverse transcribe, tagment, and
finally amplify the cDNA and gDNA. During amplification, the
cDNA is biotinylated, which allows for its subsequent separation
from gDNA using streptavidin beads. Libraries are prepared
separately for the gDNA and cDNA off the chip. Using
ASTAR-seq, Xing et al. arranged primary cells along the
erythroblast differentiation pseudotemporal trajectory and
identified genes and regulatory elements responsible for the
progression of differentiation. Compared to scCAT-seq,
ASTAR-seq captures the whole-cell transcriptome, shows
higher genomic alignment rates, and higher gene detection
rates at a comparable library complexity. Furthermore,
ASTAR-seq had the highest sensitivity in transcriptomic data
among all similar techniques with a very high rate of libraries
detecting more than 15% of genes andmappingmore than 75% to
exons. In addition, the chromatin accessibility data showed
significantly higher signal-to-noise ratio than unimodal
scATAC-seq libraries. However, ASTAR-seq requires the
Fluidigm microfluidic platform, which can limit the
customization to specific needs and increase costs depending
on the number of cells profiled.

Among the high-throughput methods, sci-CAR (Cao et al.,
2018) uses a well-based combinatorial indexing strategy with two
rounds of barcoding. The first barcoding occurs during reverse
transcription and tagmentation, after which the nuclei are sorted
by FACS and the lysate is split in two and indexed with different
primers for separate library preparation of cDNA and gDNA. Cao
et al. identified distinct cell types present in a whole-kidney
primary cell culture system and linked the chromatin
accessibility of distal cis-regulatory elements (CREs) to their
target gene expression changes by using sci-CAR. This
approach requires custom synthesis of an array of indexed
reagents, which increases throughput but can prove costly and
time intensive. In addition, as with other high-throughput
techniques, library complexity was not as high as for low-
throughput methodologies, especially with regards to
chromatin accessibility data.

Paired-seq (Zhu et al., 2019) is an ultra-high-throughput
well-based method that makes use of a limiting dilution
approach to obtain single cells in individual wells, and
applies a ligation-based combinatorial sequencing strategy
using five barcoding rounds. The first barcoding occurs
during the in situ RT and tagmentation, followed by three
rounds of split-and-pool barcoding ligations. A final round of
barcoding during DNA tailing is followed by additional
amplification. This multi-step barcoding approach
drastically increases the throughput of the technique.
Amplicons are then split, and each aliquot is digested by a

different enzyme leading to dedicated libraries for genome
and transcriptome sequencing. Zhu et al. showed that Paired-
seq could identify major cell types in the adult mouse cerebral
cortex, reconstruct the trajectory of cellular lineages within
the developing forebrain, and link distal CREs to potential
target genes. While allowing for very high throughput, the
lengthy barcoding process of Paired-seq leads to a low nuclear
recovery rate, potentially precluding its applicability to low-
input or rare samples, such as clinical specimens. Paired-seq
showed lower coverage than the corresponding mono-omics
techniques for both the transcriptome and chromatin
accessibility data.

SNARE-seq (Chen et al., 2019) is a droplet-based method
where cell nuclei are permeabilized and tagmented in bulk,
then individually encapsulated in microdroplets, using a
microfluidic device, for simultaneous barcoding of gDNA
fragments and mRNA from the same cell. The encapsulated
nuclei are then lysed, reverse transcribed, and amplified, after
which the amplicons are split into aliquots for separate library
preparation. Using SNARE-seq, Chen et al. identified major
and rare cell types in the mouse neonatal cerebral cortex. They
managed to capture finer distinctions between closely related
cellular states than by previously generated scRNA-seq, and
revealed linked gene expression and chromatin accessibility
dynamics during neurogenesis. SNARE-seq shows increased
sensitivity for accessible sites compared to sci-CAR, and
RNA-seq sensitivity similar to that of single-nucleus
droplet-based RNA-seq (snDrop-Seq (Lake et al., 2019))
(see Table 2). Comparable to sci-CAR and Paired-seq,
SNARE-seq only profiles the nuclear transcriptome, leading
to an enrichment for intronic regions in the
transcriptomic data.

SHARE-seq (Ma Anjun et al., 2020) is a high-throughput
method, which builds on Paired-seq, associated with low costs
and superior transcriptomic profiling performance. As with
Paired-seq, SHARE-seq relies on repeated rounds of
hybridization-based barcoding. In SHARE-seq, unlike for
Paired-seq, cells are fixed before being permeabilized, so
SHARE-seq relies on the split-pool ligation-based
transcriptome (SPLiT-seq) (Rosenberg et al., 2018) library
preparation strategy, which is compatible with fixed cells.
Following permeabilization, SHARE-seq subjects cells to
gDNA tagmentation and RT using biotin-tagged poly-dT
primers, which are performed in bulk. Single cells are then
isolated by limiting dilution, then subjected to three rounds of
hybridization barcoding. Finally, cDNA is separated from gDNA
fragments using streptavidin beads and each library is prepared
for sequencing. Using peak-gene associations revealed by
SHARE-seq, Ma et al. identified genomic regions of regulatory
chromatin, whose accessibility is established prior to the target
gene’s expression, reflecting a mechanism of lineage priming in
the context of hair follicle differentiation. SHARE-seq showed a
higher fraction of fragments occurring in peaks and a higher RNA
library complexity than sci-CAR, SNARE-seq and Paired-seq (see
Table 2).

ISSAAC-seq (Xu et al., 2022) is the most recent technique for
simultaneous profiling of chromatin accessibility and
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transcriptome in single cells that we review here. ISSAAC-seq is
the first sc-multiomics technique to apply the Sequencing
HEteRo RNA-DNA-hYbrid (SHERRY) (Di et al., 2020)
approach for transcriptomic library preparation. Thus, for
ISSAAC-seq, nuclei are first subjected in bulk to chromatin
tagmentation by Tn5 loaded with Nextera adapters, then to
RT with a primer containing a partial TruSeq adaptor, a UMI
and a poly-T sequence. Then, a Tn5 loaded with one side of the
Nextera sequence is added to the ISSAAC-seq reaction to
specifically tagment the DNA-RNA heteroduplexes resulted
from RT, according to the SHERRY approach, followed by
exonuclease I digestion and gap fill-in reaction. Next, nuclei
can be isolated either by FACS or by droplet microfluidics,
barcoded and pooled again. Fragments are pre-amplified and
the library is split into two aliquots, and amplified independently
for the two library types. Xu et al. applied ISSAAC-seq in the

mouse cerebral cortex to investigate the dynamics of chromatin
accessibility and gene expression during oligodendrocyte
maturation. ISSAAC-seq has a flexible workflow, which
facilitates its transferability to both high and low throughput
applications. It also shows better performance and sensitivity
than similar approaches, such as sciCAR-seq, SNARE-seq,
Paired-seq and SHARE-seq, with an exceptionally high
fraction of ATAC fragments occurring in peaks.

Linking open chromatin dynamics with gene expression
changes has proven one of the most popular goals in
multiomics. The quick implementation of these methods by
other research groups was facilitated by the fact that the
processing for bulk ATAC-seq can be readily adapted for
single-cells by experienced users. However, given the
numerous recent advances in single-cell parallel chromatin
and transcriptome profiling reviewed in this section (see

TABLE 2 | Performance in data quality and coverage achieved by the single-cell multiomics techniques reviewed.

Method Genome data Transcriptome data DNA methylome data

Coverage (#
of accessible

regions captured
per cell)

Mapping
rate

Gene detection
rate

Exon
mapping

rate

Mapping
rate

Coverage (#
of CpGs

captured per
cell)

Mapping
rate

scCAT-seq 210,000 uniquely mapped
fragments/cell

67% 8,725 (human) 54.9%

Paired-seq 2,114 unique reads/nucleus;
1,367 ATAC fragments in peaks

- 1,481 unique reads/nucleus;
726 UMIs (mouse)

- -

sc(ATAC +
RNA)-seq

1,000–10,000 unique fragments/
cell; 40–65% map to peaks

- 1,500–3,000 genes/cell
(human)

1.6% 61%

sci-CAR 1,456 unique reads; 915 ATAC
fragments in peaks

- 3,276 UMIs (mouse) - -

SNARE-seq 2,720/nucleus; 1,059 ATAC
fragments in peaks

91% 623 UMIs (mouse) 37% 94%

ASTAR-seq 142,886 library size; 27.9%
fragments in peaks

86% >15% (9,739) (human) >75% 73.8%

SHARE-seq 7,805 ATAC fragments in peaks;
65.5% fragments in peaks

- 9,290 UMIs (mouse) - -

ISSAAC-seq 58,000 unique reads in peaks;
37% fragments in peaks

>17,000 UMIs (mouse);
>4,000 genes (mouse)

35–60%

scDam&T-seq - - 2,282 genes (mouse) - -
scNOMe-seq 6.7 million GpCs/cell; 20,388

DHSs
52% 1.3 million CpGs/cell -

scCOOL-seq 2,800 NDRs/cell; 19.7 million
GCH; aggregate: 77.2%

22% 2.2 million WCGs
(10.1%); agg.: 67.4%

-

iscCOOL-seq Aggregate: 84.7% of GCH 62% Aggregate: >80% of
CpG sites

-

scMethyl-HiC 80,763 informative contacts per
nucleus (150 cells)

- 567,380 CpGs/
nucleus

-

sn-m3C-seq 500,000 contacts/cell (4,200
cells)

- 27.5% of mouse
genome

72%

scNMT-seq 15% of GpCs; 75% of promoters,
85% of gene bodies probed

- - - - 22.8% of mouse
genome

32%

scNOMeRe-
seq

31 million GCH; 15.5% per cell - 10,000–15,000 genes
(mouse)

- - 3.49 million
WCG (15.8%)

-

scSIDR-seq - >90% 5,690 genes (human) 87% -
TARGET-seq Detected all mutations in 98.4% of

cells
- 8,200 genes (human) - -

RETrace 1,217 microsatellites/cell - 146,000 CpGs/cell -
scTrio-seq - 8,106 genes (human) - - 16.4 million CpGs/cell -

Grey blocks =molecular layer not profiled by the technique. - =molecular layer is profiled by the technique, but data is not provided. Themethylation status of GCH, sites (GCA/GCT/GCC)
is used to analyze chromatin accessibility, while the methylation status of WCG, sites (ACG/TCG) is used to analyze the endogenous DNA, methylation.
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Table 1), experimenters are faced with an especially challenging
task when searching for the optimal technique of choice. Among
the low-throughput approaches, sc (ATAC + RNA)-seq is
associated with the lowest costs and simplest workflow. In
contrast, ASTAR-seq offers superior gene detection and
alignment rates, and a good price-performance ratio, but
requires access to a microfluidic platform. Among the high-
throughput approaches, Paired-seq has the highest throughput,
while SHARE-seq and ISSAAC-seq achieve superior
performance. As is the case for profiling of other molecular
layers, the lower-throughput approaches such as ASTAR-seq
and scCAT-seq detected roughly 10 times more genes and
100 times more accessible sites than sci-CAR, SNARE-seq and
Paired-seq (see Table 2). Exceptions are SHARE-seq and
ISSAAC-seq, which enable high throughput and very high
performance in the number of genes/accessible chromatin sites
identified, approaching the analytical power of low-throughput
techniques. All techniques reviewed in this section are limited to
profiling poly(A)+ RNAs, with all five high-throughput
techniques being restricted to only nuclear poly(A)+ RNA.
Among the others, scCAT-seq profiles only cytoplasmic
poly(A)+ RNAs, while ASTAR-seq profiles the whole-cell
poly(A)+ RNAs.

3.2 Chromatin and DNA Methylation
Sites in the genome that are accessible to DNA-cleaving enzymes
such as Tn5 or DNase I are considered to correspond to areas of
decondensed chromatin, which are functionally associated with
increased transcriptional activity and are referred to as DNase I
hypersensitive sites (DHS). The ability to simultaneously assess
chromatin structure and DNA methylation (DNAme) status in
single cells provides insight into the functional interaction
between these two distinct regulatory layers and their
contribution to shaping gene expression. Techniques that have
recently been developed focus on combining DNAme
characterization either with chromatin accessibility profiling
such as scCOOL-seq (Guo et al., 2017), its higher-throughput
derivative—iscCOOL-seq (Gu et al., 2019b) and scNOMe-seq
(Pott, 2017), or with profiling the large-scale 3D chromatin
conformation as is the case for scMethyl-HiC (Li et al., 2019)
and sn-m3C-seq (Lee et al., 2019). These techniques are
summarized in Table 1.

Common to scCOOL-seq, iscCOOL-seq, scNOMe-seq
(discussed in this section), scNOMeRe-seq (Wang et al., 2021)
and scNMT-seq (Clark et al., 2018) (discussed in the following
section) is the NOMe-seq strategy, where the M. CviPI enzyme is
utilized to methylate accessible GpC sites in the genome, creating
a footprint of nucleosome-free chromatin regions. All these
methods show high resolution of open chromatin profiling
within individual loci, and footprinting of transcription
factors. In addition, they control for fragment loss, making it
possible to distinguish between the undetected and the closed
chromatin states (especially important in single cells due to allelic
dropout) (Pott, 2017). However, this means there is no a priori
enrichment for accessible chromatin, in contrast to count-based
methods, such as ATAC-seq, and, therefore, significantly deeper
sequencing is required to achieve similar coverage (Pott, 2017). In

addition, not all DHSs captured by ATAC-seq and DNase-seq are
detectable using the NOMe-seq strategy-based techniques
because chromatin accessibility measurement relies on GpC
occurrence within DHSs (Pott, 2017).

scCOOL-seq (Guo et al., 2017) was the first technique to
profile chromatin accessibility and DNA methylation in single
cells. In addition, scCOOL-seq is also able to detect copy number
variations (CNVs) and cell ploidy. First, single cells are manually
picked, lysed and treated with M. CviPI, followed by protease
digestion to remove DNA-bound proteins. Next, gDNA is
bisulfite-converted and libraries are prepared using the post-
bisulfite adapter tagging (PBAT) protocol (Miura et al., 2012),
which includes adapter tagging and two rounds of random
primer extension. Guo et al. applied scCOOL-seq to study
allele-specific epigenetic reprogramming during mouse
preimplantation embryonic development. They found that, up
to the blastocyst stage, embryos showed differences in DNA
methylation patterns between alleles but not in accessibility
and that, at the two-cell stage, there was evidence of epigenetic
priming of pluripotency factors. Of note, scCOOL-seq showed
promising intersect coverage, identifying chromatin accessibility
and DNA methylation status for more than 70% of the
investigated promoters.

scNOMe-seq is an adaptation of the bulk NOMe-seq assay
(Kelly et al., 2012) for chromatin accessibility and DNA
methylation (Pott, 2017). In this technique, cells are lysed and
homogenized to release their nuclei, which are then incubated
with GpC methyltransferase in bulk. Then, individual nuclei are
isolated by FACS and lysed to release gDNA, which is bisulfite
converted and used for PBAT library preparation. scNOMe-seq
was used to measure chromatin accessibility at DHSs and TF
binding sites, and assess nucleosome phasing in GM12878 and
K562 cells. Although scNOME-seq clustered cells according to
cell type, a very low amount of all GpCs (2.9%) and CpGs (3.6%)
in the genome were covered in each cell, in comparison to single-
cell whole-genome bisulfite sequencing (scWGBS-seq
(Smallwood et al., 2014)), which provides up to 20% coverage
in each individual cell (Smallwood et al., 2014).

iscCOOL-seq (Gu et al., 2019b) is an improved version of
scCOOL-seq, developed by the same research group. scCOOL-
seq, scNOMe-seq, and scNMT-seq all rely on the PBAT library
preparation strategy (Guo et al., 2017) that includes two random
priming steps leading to a high amount of unmappable reads. In
contrast, iscCOOL-seq uses a simplified Tailing- and Ligation-
free (TAILS) library construction strategy including only one
random priming step, which offers an increased mapping
efficiency. Gu et al. used iscCOOL-seq in combination with
scRNA-seq to characterize mouse oocyte maturation and
found that the most dramatic changes in chromatin
accessibility occur during growth initiation, along with gene
expression alterations, and increased variability in DNA
methylation levels between individual oocytes. In addition,
highly expressed genes across oocyte growth showed
nucleosome-depleted regions (NDRs) at their transcription
end sites (TESs). iscCOOL-seq shows improved coverage
compared to the other techniques described so far in this
section (see Table 2).
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All of the methods described above focus on the local
chromatin and DNA properties of the genome. However, they
do not detect interactions between distal genomic regions which
can become proximally close through higher-order chromatin
structures, such as chromatin loops and topologically associating
domains (TADs) (Rowley and Corces, 2018). These higher-order
features recently emerged as important gene regulation
mechanisms, which allow for coordinated DNA methylation to
occur across large genomic distances (Rowley and Corces, 2018).
Thus, methods for simultaneous profiling of chromatin 3D
conformation and DNA methylation have the potential to
reveal novel layers of gene expression regulation. Chromatin
3D conformation detection techniques such as Hi-C have been
increasingly used in bulk cell systems to reveal long-range
regulatory interactions. Hi-C allows sequencing of fragments
that are brought in close physical proximity through
chromatin looping by crosslinking DNA-protein complexes,
followed by fragmentation, extraction, ligation, and digestion
of the genomic DNA with restriction enzymes (Li et al., 2019).
Applied to sc-multiomics, two methods recently emerged which
combine Hi-C and bisulfite conversion, providing concomitant
information about contacts between distant genomic loci and
their DNA methylation status in individual cells.

In scMethyl-HiC (Li et al., 2019), cells are crosslinked and
lysed, nuclei are permeabilized and subjected to restriction
digestion by DpnII. The resulting DNA fragments are
biotinylated and proximally ligated, with all steps conducted in
bulk. Subsequently, single nuclei are isolated by FACS and
subjected to bisulfite conversion, random priming, adapter
ligation, and library amplification. Using scMethyl-HiC, Li
et al. clustered mESCs cultured in different media and
characterized cluster-specific chromosome conformation and
coordinated DNA methylation at chromatin loop anchors. The
authors captured similar numbers of CpGs and of informative
contacts per nucleus using scMethyl-HiC as with mono-omics
single-cell methods, but scMethyl-HiC was limited by its low
throughput.

sn-m3C-seq (Lee et al., 2019) shares a similar workflow to
scMethyl-HiC, but instead of biotinylation of the digested DNA
fragments, it applies an improved single-nucleus methylcytosine
sequencing (snmC-seq2) library preparation strategy (Luo et al.,
2018). This maximizes mapping rates, increases throughput, and
improves library complexity by optimizing the sequence of the
primers and the nucleotide concentration used in the random-
primed DNA synthesis reactions. Lee et al. used sn-m3C-seq to
identify distinct cell-type specific 3D chromatin structures in the
human frontal cortex, which were associated with differential
DNA methylation signatures. In addition, they found that genes
were more likely to be active when a TAD boundary was present
at their promoters. Compared to scNMT-seq (discussed below),
sc-m3C-seq showed a two-fold higher read mapping rate, similar
library complexity, but lower bias for CpG islands, while the
chromatin conformation data quality was comparable to that of
single-cell unimodal datasets.

DNA methylation remains the most explored epigenetic mark
and single-cell techniques have adopted the commonly used
bisulfite treatment to identify methylated CpGs. However,

bisulfite conversion causes wide degradation of DNA
fragments, and other types of base modifications such as
hydroxymethylation remain elusive. The recent technological
advances reviewed in this section provide researchers the
possibility to combine whole-genome profiling of DNA
methylation in single cells with interrogation of chromatin
states. Among the methods discussed in this section,
iscCOOL-seq (for chromatin accessibility) and snm3C-seq (for
chromatin conformation) have the highest throughput.
Regarding chromatin accessibility data, iscCOOL-seq offers the
highest coverage of GpC sites in the genome at decreased
sequencing costs. sn-m3C-seq showed the deepest coverage of
DNA methylation data, while sc-Methyl-HiC showed the highest
genome mapping rates. Regarding chromatin conformation data,
sn-m3C-seq detected more informative contacts per cell than the
other reviewed methods.

3.3 Chromatin, DNA Methylation, and
Transcriptome
Open chromatin provides a dynamic platform through which
epigenetic factors can act in a cooperative fashion to regulate gene
expression in cells. Thus, the ability to understand how these
regulatory domains are established in single cells and contribute to
gene expression regulation would achieve a uniquely comprehensive
picture of the regulatory mechanisms of gene expression. scNMT-seq
(Clark et al., 2018) and scNOMeRE-seq (Wang et al., 2021) are two
powerful triple-omics approaches that profile chromatin accessibility,
DNA methylation, and the transcriptome simultaneously in single
cells (summarized in Table 1).

scNMT-seq (Clark et al., 2018) was the first method to
characterize the transcriptome together with chromatin
accessibility and DNA methylation in single cells. Under
scNMT-seq, following FACS, cell lysis and GpC
methyltransferase treatment, RNAs are separated using oligo-
dT beads and used for Smart-seq2, while the gDNA is bisulfite
converted and used for scBS-seq library preparation. By applying
scNMT-seq, Clark et al. constructed the first triple-omics atlas of
mouse gastrulation in which novel temporal lineage-specific
epigenetic patterns were revealed. Furthermore, the authors
found that the initial exit from pluripotency was associated
with establishment of a global repressive epigenetic landscape
and lineage-specific epigenetic patterns.

Wang et al. used scNOMeRe-seq (Wang et al., 2021) to build
the first single-cell triple-omics map of mouse preimplantation
development. The method uses manual cell picking to isolate
single cells, and combines two previously established techniques:
scNOMe-seq, for characterization of the chromatin and DNAme
landscapes, and MATQ-seq, for transcriptome profiling. Unlike
SmartSeq2 and other SMART-chemistry based methods, MATQ-
seq uses optimized primers which improve the efficiency of both
first- and second-strand synthesis. In addition, unique molecular
identifiers (UMIs) are used to pre-label each unique molecule and
help to address a potential bias introduced during amplification.
Notably, scNOMeRe-seq showed increased sensitivity for
detection of lowly expressed genes and even coverage through
genic regions.
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The ability to simultaneously profile three molecular layers at
single-cell resolution greatly improves the study of highly
complex molecular events and delivers novel insight into the
role of the epigenome in lineage commitment and epigenetic
reprogramming events during embryonic development.
Crucially, data quality is not compromised by expanding
single-cell techniques to conduct triple-omics studies. Thus,
scNMT-seq and scNOMeRe-seq both show comparable or
even superior coverage of chromatin accessibility and
methylome data compared to the dual-omics techniques from
the previous section, but lower alignment rates (see Table 2).
scNOMeRe-seq also showed increased sensitivity for lowly
expressed genes when compared to mono-omics scRNA-seq
datasets. While scNMT-seq provides higher throughput,
scNOMeRe-seq excelled in higher methylome coverage. While
providing additional information, these techniques are naturally
associated with a lengthier workflow and higher sequencing costs
when compared to the other reviewed methods.

4 INTEGRATED PROFILING OF GENETIC
VARIATION AND GENE EXPRESSION OR
DNA METHYLATION IN SINGLE CELLS
Genomic heterogeneity is generally associated with cancerous
cells but genetic mosaicism also occurs under physiological
conditions in healthy tissues, including immune cells (Han
et al., 2018) and neurons (Rohrback et al., 2018), with mostly
unexplored functional consequences. In this section, we discuss
methods that characterize genetic variation and their potential
effects on the transcriptome or DNA methylome of individual
cells (summarized in Table 1).

scSIDR-seq (Han et al., 2018) is a low-throughput approach
for whole-genome and total transcriptome profiling, which
accurately captures CNVs and single-nucleotide
polymorphisms (SNPs). In scSIDR-seq, cells are initially
bound to anti-EpCAM antibody-conjugated magnetic beads
and individually isolated in wells by limiting dilution.
Thereafter, cells are subjected to hypotonic lysis, which
preserves the integrity of the nuclear lamina and releases total
RNA (cytoplasmic and nuclear) into solution. Using a magnet,
the bead-bound gDNA is retained in the pellet and processed
separately from the supernatant containing total RNA. scSIDR-
seq was employed by the authors to distinguish cells from
different tumor cell lines using their CNV and gene expression
profiles. Furthermore, the authors found strong global
correlations between CNVs of genomic regions and the
expression of nearby genes. Altogether, scSIDR-seq efficiently
recovers DNA and RNA, shows high alignment rates (>90%), and
can be adapted for the study of non-poly(A)+ long RNAs.
However, the reliance of scSIDR-seq on cell-specific surface
antibodies for capturing the cell lysate may require
optimization if analysis of other cell types is desired.

TARGET-seq (Rodriguez-Meira et al., 2019) is a high-
throughput technique for targeted, biallelic, mutational
analysis and gene expression quantification in single cells. In
TARGET-seq, cells are isolated by FACS and the cell lysis step

includes a mild protease treatment, followed by protease
inactivation, designed to improve the release of gDNA.
Following RT, gDNA and cDNA are simultaneously pre-
amplified using target-specific primers for known mutational
hotspots, after which the amplicons are split for parallel
library preparation. Rodriguez-Meira et al. developed an
optimized cDNA library preparation protocol (Smart-seq+
(Rodriguez-Meira et al., 2019)) used for TARGET-seq, which
minimizes allelic dropout rates and maximizes gene detection.
The authors used TARGET-seq to analyze hematopoietic stem
and progenitor cells (HSPCs) from the bone marrow of neoplasm
patients and healthy controls. Using TARGET-seq, they resolved
complex genetic subclones and found aberrant gene expression in
non-mutant HSPCs, revealing likely tumor microenvironment
effects on wild-type cells. TARGET-seq exhibits high sensitivity
for detection of multiple mutations in the same cell, low library
bias, is automated to a high degree, and does not require whole-
genome amplification, resulting in reduced sequencing costs.
However, it is only suitable for targeted mutational analysis,
therefore it cannot be applied for the discovery of novel
mutations, and its high throughput could only be reached for
3′-biased poly (A+) transcriptome libraries.

RETrace (Wei and Zhang, 2020) is a low-throughput approach
that simultaneously captures microsatellite profiles and DNA
methylation patterns, allowing single-cell retrospective lineage
tracing, phylogenetic fate mapping, and cell type identification.
To conduct RETrace, following isolation by FACS and lysis of
cells, the DNA is fragmented by MspI and MseI restriction
digestion. Next, the DNA is A-tailed, circularized, and split
into two aliquots for methylation and microsatellite analysis:
Mspl-resulting fragments are amplified by methylation PCR,
while Msel-resulting fragments are PCR amplified and
enriched for target microsatellite regions using hybridization
probes. By applying RETrace, Wei and Zhang constructed an
ex vivo retrospective lineage tree for HCT116 colorectal
carcinoma cells with improved accuracy and with fewer cell
divisions being required for detection of changes between cells.
However, RETrace uses single-cell reduced-representation
bisulfite sequencing (scRRBS (Guo et al., 2015)) and
hybridization probe microsatellite capture (Gonzalez and
Zardoya, 2013), resulting in relatively low genome coverage
and precluding discovery of novel microsatellite loci. In
addition, while RETrace enables retrospective lineage mapping
in tissues exhibiting microsatellite unstable cells (e g., tumors), it
would require significant adjustment for wider applicability to
cells in healthy tissue, which exhibit much lower mutation rates.

scTrio-seq2 (Bian et al., 2018) was developed by building on
the previously published scTrio-seq (Hou et al., 2016). scTrio-
seq2 improved scTrio-seq by replacing scRRBS with scWGBS
(Smallwood et al., 2014) and improving detection efficiencies.
scTrio-seq2 relies on manual cell picking followed by magnetic
bead-based separation of the nuclei from the cytosolic RNA and
independent scRNA-seq and scWGBS library preparation. Bian
et al. used scTrio-seq2 to reconstruct genetic lineages and
concomitantly trace genomic and epigenomic effects on gene
expression levels. They additionally revealed that, in colorectal
cancer tumors, hypomethylated chromosomes also exhibit
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CNVs, and that transposable elements have aberrant DNA
methylation compared to physiological development. scTrio-
seq2 achieved comparable performance to mono-omics
scRNA-seq and scBS-seq.

In this section, we reviewed sc-multiomics techniques that,
instead of profiling chromatin status, analyze how genome
variation, gene expression, and DNAme regulate each other.
These genetic mutations are then correlated with
transcriptomic data (scSIDR-seq, TARGET-seq), DNA
methylome data (RETrace), or both (scTrio-seq2) to infer
relationships between genetic and epigenomic or
transcriptomic heterogeneity. This knowledge can then be
applied toward the reconstruction of lineage trees, or the study
of tumor microenvironment cell heterogeneity. Among the
techniques discussed in this section, TARGET-seq offered the
highest throughput, scSIDR-seq showed the highest alignment
rates, while TARGET-seq and scTrio-seq2 showed the highest
detection rates in their gene expression data. scTrio-seq2 also
showed by far the highest DNA methylome data coverage among
all the techniques reviewed (see Table 1 and Table 2).

5 SINGLE-CELL MULTIOMICS DATA
ANALYSIS

While multiomics techniques with single-cell resolution can
provide unique insight into cell-specific molecular processes,
such data requires complex integration, raising important
challenges for its computational analysis. The recent expansion
of sc-multiomics techniques gave rise to the development of
numerous pipelines designed for analysis of resulting datasets,
which rely on different approaches.

Pipelines such as Seurat3 (Stuart et al., 2019) use correlation
analysis between single-cell mono-omics data across cells. A
second computational approach for sc-multiomics data
analysis relies on one type of data to cluster subpopulations
and integrates the other types of data onto the pre-specified
clusters (Lee et al., 2020). For example, the sci-CAR developers
used the RNA-seq data to cluster cells into subpopulations and
then identified sites of open chromatin that were unique to each
cluster (Cao et al., 2018). Lastly, Linked Inference of Genomic
Experimental Relationships (LIGER (Welch et al., 2019)) and
Multiomics Factor Analysis (MOFA (Argelaguet et al., 2018)) rely
on the integrative analysis of all the modalities to generate the
overall single-cell map, using matrix factorization approaches
(Lee et al., 2020).

Several issues that concern sc-multiomics data analysis
remain: the generation of massive amounts of data, which
require intensive computational power and lengthy
processing times; limited and non-standardized analytical
functionalities of integrative tools, which complicate the
interpretation and reproduction of results; and the current
lack of robust benchmarking pipelines and integrative
computational methods (Ma sai et al., 2020). Machine
learning computational frameworks have already been
applied towards classifying cells based on multiomics data
integration (Autoencoder (Zhang et al., 2018), Amaretto

(Champion et al., 2018)), identifying signature genes across
developmental stages (EmPredictor (Liang et al., 2020)) and
improving imputation (DeepImpute (Arisdakessian et al.,
2019)) in single-cell RNA-seq data. Advancement in deep
neural-network algorithms may also benefit sc-multiomics in
the future by improving cell-subtype clustering, dropout
imputation, and multiomics integration (Azad and Vafaee,
2019). Despite the multitude of novel tools available,
biological discovery through integration of single-cell multi-
layer data remains computationally challenging.

6 DISCUSSION

sc-multiomics provides a multi-molecular readout that has
already proven its potential for powerful and comprehensive
dissection of the complex molecular mechanisms regulating
gene expression for a more accurate depiction of individual
cell states. sc-multiomics is particularly well-suited for
applications that involve rare cell types, as it maximizes the
information that can be obtained from each individual cell.
Such approaches benefit from immense potential applications
in a wide range of research fields, from developmental biology to
cancer biology and precision medicine. sc-multiomics is,
however, still a very young field, and the techniques that we
have reviewed here are at the forefront of the most recent
technical developments. Thus, many have so far been
restricted to proof-of-concept applications, in contexts where
the magnitude of the expected effects is considerably higher than
for other biological systems in which more subtle differences are
to be expected.

Important challenges in sc-multiomics that remain to be
addressed include data sparsity and noise, gene or allelic
dropout, high sequencing-associated costs, and low recovery
efficiency from individual cells. The high costs associated with
sequencing create a constant trade-off between throughput level
and the richness of information afforded. This leads to a limited
coverage per individual cell, creating data sparsity at several levels.
For example, each molecular layer is profiled only at a fraction of
the sites in the whole genome, and two molecular layers profiled
together will not show concurrence at all sites within a cell; in
addition, not all cells will have both layers profiled successfully.
This presents an important challenge as the full potential of
multiomics is only achieved when two or more epigenetic
features of a genomic location can be intersected using data
from the same cell. However, this will likely improve as
sequencing costs will continue to decrease in the future.

Of note, most of the techniques for transcriptomic profiling
reviewed here rely on oligo-dT capture of RNAs, which does not
allow for capture of other non-poly (A+) RNAs with potential
regulatory roles, such as short or long non-coding RNAs. However,
future techniques may capitalize on recent developments such as
Smart-seq-total (Isakova et al., 2020), where all RNA species within
the cell are polyadenylated before oligo-dT capture. Such
improvements may eventually allow the capture of total RNA to
become the norm in sc-multiomics. In addition, the recently
developed CELLO-seq (Berrens et al., 2020) allows long-read
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RNA-sequencing in single cells and may also soon be adopted by
multiomics techniques. This would enrich the information we can
extract from distinct levels of transcriptome organization by
characterizing novel transcript isoforms at single-cell resolution.
Another issue shared by most techniques is the abundance of
sequenced reads from non-target regions, such as mitochondrial
DNAs or ribosomal RNAs. The targeted depletion of undesired
regions from the final libraries is a promising approach to improve
the final sequencing results. Approaches such as loading Cas9 with
guides against target regions have successfully been employed to
deplete mitochondrial DNA fragments and ribosomal RNAs from
libraries and may be a promising solution for sc-multiomics (Gu
et al., 2016; Montefiori et al., 2017).

One aspect of sc-multiomics that is less developed is the
profiling of DNA-associated proteins, including genome-wide
mapping of histone modifications and transcription factor
binding sites. Factors including lengthy processing and
optimization associated with antibody-based techniques, as
well as their dependence on high-quality commercially
available antibodies, have mostly precluded the
compatibility of techniques such as single-cell ChIP-seq
(itChIP-seq) (Ai et al., 2019) with, for example,
simultaneous transcriptome profiling. Two exceptions to
this are scDam&T-seq (Rooijers et al., 2019) and single-cell
calling cards (Moudgil et al., 2020), novel assays that allow
simultaneous assessment of DNA-binding proteins and the
transcriptome in single cells. However, both methods require
genetic manipulation of the model cell or organism, precluding
their application in clinical samples, for example. Only very
recently have the first single-cell multiomics techniques for
simultaneous profiling of histone modifications and
transcriptome without genetic manipulation emerged. These
techniques, Paired-Tag (Zhu et al., 2021) and CoTECH (Xiong
et al., 2021), both apply combinatorial barcoding of cells to
achieve high throughput and both rely on the use of the pA-
Tn5 protein fusion for in situ antibody-targeted tethering of
Tn5 to histone modification loci, similar to the mono-omic
single cell technique CUT&Tag (Kaya-Okur et al., 2019).
While so far these approaches have only been used to
profile one individual histone mark at a time, the recent
development of single-cell multiCUT&Tag (Gopalan et al.,

2021) should allow the simultaneous profiling of multiple
histone modifications and transcriptome in single cells in
the near future. Despite such recent developments, so far, a
single-cell multiomic technique that allows parallel
interrogation of transcription factor binding sites and RNA
is, to our knowledge, still lacking.

Finally, the power of sc-multiomics is expandable to other cell
features, such as functional parameters, as in Patch-seq (Cadwell
et al., 2016; Hu et al., 2018) which achieves single-neuron RNA-
seq together with whole-cell electrophysiological patch-clamp
recordings, and morphological characterization.

Still in its infancy, sc-multiomics presents many opportunities
for optimization and advancement. Given the speed of
technological innovation in biomedical research, sc-multiomics
will surely continue to improve and become more widely adopted
within the research community.
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