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Direct asymmetric N-propargylation of indoles and
carbazoles catalyzed by lithium SPINOL phosphate
Yingcheng Wang1, Sheng Wang1, Wenyu Shan1 & Zhihui Shao1*

Catalytic asymmetric functionalization of the N–H groups of indoles and carbazoles con-

stitutes an important but less developed class of reactions. Herein, we describe a pro-

pargylation protocol involving the use of a lithium SPINOL phosphate as the chiral catalyst

and our recently developed C-alkynyl N,O-acetals as propargylating reagents. The direct

asymmetric N-propargylation of indoles and carbazoles provides hitherto inaccessible N-

functionalized products. Notably, the efficiency of the system allows reactions to be run at a

very low catalyst loading (as low as 0.1 mol%). Mechanistic information about the titled

reaction is also disclosed. This study represents an advance in the direct asymmetric func-

tionalization of the N–H bonds of indoles and carbazoles, and additionally expands on the

application of chiral alkali metal salts of chiral phosphoric acids in asymmetric catalysis.
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The synthesis of enantioenriched indoles is of wide interest,
owing to their prevalence in natural products and phar-
maceuticals, and agrochemicals. Therefore, extensive

efforts have been devoted to developing catalytic asymmetric
methods for the functionalization of indoles1,2. Great progress
has been made in the catalytic asymmetric C-alkylation, especially
at the C3 position, due to the innate nucleophilicity of C3 of the
indole ring. In contrast, the catalytic asymmetric functionaliza-
tion of the N–H of indole, particularly in an intermolecular
manner, has remained underdeveloped3–16, owing to the miti-
gated nucleophilicity of this position. To avoid the regioselectivity
issue, several indirect strategies have also been elegantly
designed17–21. To date, efficient strategies for the asymmetric N-
functionalization of indoles are still rather limited and most
reported intermolecular reactions relied on N-allylation. Very
recently, the catalytic asymmetric N-benzylation has been ele-
gantly developed to afford chiral N-benzylic indoles22–27.
Nevertheless, despite these elegant achievements, there is still no
report for the direct catalytic asymmetric functionalization of the
N–H of indole through a propargylation strategy.

Catalytic asymmetric propargylation has been recognized as an
important class of reactions28 in organic chemistry, because they
create a propargylic chiral center and introduce a synthetically
versatile and biologically important alkyne functional group in
one step29. Although great efforts have been devoted in this area,
the potential of catalytic asymmetric propargylations has not been
fully exploited and the scope of applicable nucleophiles and
electrophiles is still rather limited. The direct catalytic asymmetric
N-propargylation of indoles and carbazoles as nucleophiles has
not yet been achieved. In addition, there are only limited types of
chiral catalyst systems for the asymmetric propargylation to date.

The direct catalytic asymmetric N-propargylations using 1H-
indole derivatives as nucleophiles have proven far more chal-
lenging than allied reactions such as allylations and have not been
successful. Indeed, You and colleagues30,31 studied the reaction of
2,3-dimethyl indole with propargylic acetates using a chiral
copper–pybox complex as the catalyst, but only obtained the C-
propargylated product (Fig. 1). Thus, the challenges in the
development of the direct catalytic asymmetric N-propargylation
of indoles and carbazoles as the nucleophiles are to find a suitable
propargylating reagent and an efficient catalyst system.

We recently introduced C-alkynyl N-Boc- and N-Cbz-
protected N,O-acetals as a class of coupling partners for asym-
metric catalytic transformations; to date, these transformations
have been limited to the formation of C–C bonds with the use of
carbon-based nucleophiles (Fig. 2a)32–35. However, the corre-
sponding asymmetric reaction of C-alkynyl N,O-acetals through
carbon–heteroatom bond formation has remained an unmet task.
Given the lack of direct methods available for the catalytic
asymmetric N-propargylation of indoles and carbazoles, we chose
to explore the possibility that 1H-indoles and carbazoles36 might
serve as the first effective heteroatom-based nucleophiles to react
with C-alkynyl N,O-acetals (Fig. 2b). Such reaction would pro-
vide straightforward access to chiral alkynylated acyclic N,N-
aminals of indoles and carbazoles. Recent studies have shown that
acyclic N,N-aminal indoles I–III have significant antibiotic
properties (Fig. 2c)37–40. Thus, there is a need for organocatalytic

methods that enable the enantioselective synthesis of acyclic N,N-
aminals of indoles or carbazoles, biologically important yet
synthetically challenging molecules bearing an acyclic N,N-sub-
stituted α-chiral carbon center on the N1-position of indoles or
carbazoles. Meanwhile, incorporating alkynes into N,N-aminals is
made interesting, owing to the versatile transformations of the
alkyne group and the ubiquitous occurrence as a key structural
motif in natural products and pharmaceuticals. However, the
direct catalytic asymmetric synthesis of N,N-aminals through a
propargylation method has not been reported.

On the other hand, chiral alkali and alkaline earth metal-
derived salts of chiral phosphoric acids have recently emerged as
a class of effective catalysts in various asymmetric transforma-
tions41–60. However, this class of chiral catalysts have not been
successfully employed in the catalytic asymmetric functionaliza-
tion of the N–H of indoles or carbazoles. Meanwhile, the direct
catalytic asymmetric propargylation reaction catalyzed by chiral
alkali or alkaline earth-derived salts of chiral phosphoric acids has
remained elusive.

Besides these, there are several other challenges for the catalytic
enantioselective C–N bond formation between indoles and car-
bazoles, and C-alkynyl N,O-acetals. C-alkynyl N,N-aminals have
been reported to react with EtOH to form the corresponding C-
alkynyl N,O-acetals61. Thus, unlike the products generated by C-
based nucleophiles, for the products produced by N-centered
nucleophiles, there is a risk of a direct conversion of newly
formed C-alkynyl N,N-aminal products back to the C-alkynyl N,
O-acetals (starting materials). In addition, C-alkynyl N,N-aminals
reacting with EtOH would also lead to product racemization.
Second, due to the low intrinsic nucleophilicity of the N–H motif
of indoles and carbazoles, together with low reactivity of C-
alkynyl N-Boc or N-Cbz N,O-acetals, high reaction temperature
might be needed for the N-propargylation, which cause difficul-
ties in selective control. Moreover, the C3 position of the indole
could compete with the nitrogen atom as the nucleophile, as
exemplified by You and colleagues30 in the catalytic asymmetric
indole C-propargylation reaction. Finally, chiral alkali and alka-
line earth salts of chiral phosphoric acids have been shown to
efficiently catalyze the addition of alcohols to imines, to form the
corresponding N,O-acetals (see Fig. 2b)57. In contrast, can this
class of catalysts catalyze the elimination of alcohols from N,O-
acetals to generate the corresponding C-alkynyl N-Boc or N-Cbz
imines? Unlike C-aryl N-Boc- or N-Cbz-protected imines, C-
alkynyl N-Boc- or N-Cbz-protected imines cannot be prepared by
existing methods. Such imines have also proven more difficult to
be generated by the traditional methods. Amidosulfones62–67,
which are widely used imine precursors, are not suitable for this
purpose. This process must overcome the potential 1,4-addition
onto the alkynyl imines68.

Herein, we report the development of highly enantioselective
direct catalytic asymmetric N-propargylation of indoles and
carbazoles. Mechanistic investigations are also disclosed.

Results
Reaction development. We first explored the N-propargylation
of carbazole 2a with our C-alkynyl N,O-acetal 1a (Table 1).
Chiral bifunctional Brønsted base catalysts such as BB1 and BB2,
which have been shown to be efficient in the asymmetric reaction
of C-alkynyl N,O-acetals with carbon-based nucleophiles32, failed
to promote the reaction, while chiral phosphoric acids33 pro-
moted the model reaction between C-alkynyl N,O-acetal 1a and
carbazole 2a but with very poor enantioselectivity (Table 1,
entries 1 and 2). These results highlight the challenges of devel-
oping the proposed catalytic asymmetric N-propargylation. These
results prompted us to identify an alternative organocatalyst that
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Fig. 1 Cu-catalyzed asymmetric propargylation of 2,3-dimethyl indole.
C-propargylated product was exclusively obtained.
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must be capable of both catalyzing the EtOH elimination from N,
O-acetals to generate challenging N-Cbz-protected C-alkynyl
imines and promoting the subsequent N-propargylation reaction,
as well as imposing effective stereocontrol. After extensive
investigations, we found that chiral alkali and alkaline earth
metal-derived salts of chiral phosphoric acids were promising
chiral catalysts for the tandem process combining the in situ
generation of C-alkynyl N-Cbz imines and N-propargylation.
Among them, a lithium SPINOL phosphate, Li[P2], catalyzed the
EtOH elimination from N,O-acetal 1a for in situ generation of
difficult accessible C-alkynyl N-Cbz imines and the subsequent
asymmetric N-propargylic alkylation with 93% enantiomeric
excess (ee) (Table 1, entry 3).

Mechanistic investigations. To get an understanding of the N-
propargylation, we monitored the reaction of racemic 1a with 2a
under the standard conditions by determining ee for both the
generated product 3a and the recovered substrate 1a over time
(Fig. 3a). It was found that after a reaction time of 6 h, 1a was
recovered with 49% ee. With the reaction time further increasing,
ee of the recovered 1a began to decrease. Meanwhile, ee of the

product 3a was decreased relatively slowly (for details, see Sup-
plementary Table 2).

To investigate whether the enantioriched 1a arised from the
reaction of racemic 1a with EtOH under the chiral catalysis of Li
[P2], we performed the reaction between racemic 1a and EtOH in
the presence of (R)-Li[P2]. The recovered 1a was still racemic and
no chiral induction was observed (Fig. 3b), thus excluding such
possibility. This result combined with the experiment shown in
Fig. 3a implied there might be a kinetic resolution during the
process between racemic 1a and 2a in the presence of Li[P2]. To
further confirm this issue, we conducted kinetic studies. The
(+)-1a (97% ee) and (−)-1a (97% ee) were reacted with 2a in the
presence of (R)-Li[P2] as the catalyst, respectively. We found that
both enantiomers of 1a delivered the same enantiomer of the
product, (R)-3a, regardless of the original configuration of the C-
alkynyl N,O-acetal, and the reaction with (+)-1a was faster than
that of (−)-1a (Fig. 4. For details, see Supplementary Table 3),
thus verifying that there was a moderate degree of kinetic
resolution of 1a during the reaction with 2a.

To understand why the recovered 1a and the product 3a
decreased gradually with the reaction time further increasing and
to gain further insight into the N-propargylation, we made some
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control experiments. The experiment shown in Fig. 3c (for details,
see Supplementary Tables 4 and 5) explained a possible reason for
the decrease of enantioselectivity of the recovered 1a over the
time. The crossover experiment shown in Fig. 3d (for details, see
Supplementary Table 6) indicated that the chiral catalyst was

discriminating the two enantiomers of the C-alkynyl N,N-aminal
and (R)-3a was converted into the corresponding C-alkynyl N-
Cbz imine more faster than (S)-3a in the presence of Li[P2] (there
was a kinetic resolution of 3a during this process). These results
combined with the control experiments in Fig. 3e (for details, see

Table 1 Optimization of the reaction conditionsa.

Entry Catalyst T [oC] Yield [%]b ee [%]c

1 PA1 washed with HCl 70 68 −5
2 PA2 washed with HCl 70 66 7
3 Li[P2] 90 70 93
4 Na[P2] 90 70 19
5 K[P2] 90 68 22
6 Mg[P2]2 90 71 74
7 Ca[P2]2 90 67 2
8 Li[P3] 90 21 70
9 Li[P4] 90 72 39
10 Li[P5] 90 69 24
11 Li[P6] 90 38 16
12 Li[P7] 90 69 21
13 Li[P8] 90 64 15
14 Li[P9] 90 58 10
15 Li[P10] 90 71 0
16 Li[P11] 90 43 −11
17 Li[P1] 90 76 −48
18 Mg[P3]2 90 74 5
19 Mg[P4]2 90 71 3
20 Mg[P5]2 90 68 4

aReaction conditions: 1a (0.08mmol), 2a (0.05mmol), toluene (1 mL)
bYield of isolated product
cDetermined by HPLC analysis on a chiral stationary phase
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Supplementary Table 7) and Fig. 3f (for details, see Supplemen-
tary Table 8) explained a possible reason for the decrease of ee of
the product 3a over the time. The experiment in Fig. 3f also
suggested that the alkynylated N,N-aminal can react with EtOH
to form the corresponding N,O-acetal. Pleasingly, the racemiza-
tion of the product 3a was found to be effectively suppressed by
increasing the amount of the C-alkynyl N,O-acetal substrate 1a to
1.6 eq. (for details, see Supplementary Table 9).

Next, we studied the relationship between the ee of the catalyst
Li[P2] and that of the product 3a69, and a linear effect was
observed (for details, see Supplementary Table 10). On the basis
of the above observations, we proposed a possible reaction
mechanism shown in Fig. 3g.

Substrates scope. With the optimized chiral catalyst and suitable
propargylic alkylating reagent in hand, we investigated the scope
of the direct catalytic asymmetric N-propargylation of carbazoles.
Various C-alkynyl N-Cbz N,O-acetals 1 were reacted with car-
bazoles 2 to afford the desired N-propargylated products (3a–3h)
in high enantioselectivities with good yields (Fig. 5). Moreover,
this system was also applicable for the enantioselective N-
propargylation of indoles (Fig. 6). The reaction displayed broad
substrate scope of both C-alkynyl N,O-acetals and substituted

indoles. The corresponding N-propargylic indoles 5a–z were
obtained in good yields with high to excellent enantioselectivities
(up to 99% ee) in all the cases examined (26 examples). Notably,
in contrast to the work by You and colleagues30, our propargy-
lation reactions occurred at the N1-position exclusively and no
competing C3-propargylaed product was observed. On the other
hand, impressively, the reaction at high temperature (110 °C) can
still provide excellent enantioselectivity (5s). Examples with high
stereocontrol at such a high temperature are scarce in asymmetric
catalysis by chiral alkali and alkaline earth-derived salts of chiral
phosphoric acids.

Product configuration determination and transformations.
The absolute configuration of the N-propargylation products was
determined by converting 5k into 6 (Fig. 7a), and the structure of
6 was unambiguously confirmed through X-ray crystal analysis.
Reduction of 5a with LiAlH4 afforded 7, which is formally
derived from the N-selective and 1,2-selective addition of α,β-
unsaturated imine (Fig. 7b). When 5a was reduced with Pd/C
under H2 atmosphere, the primary alkyl-substituted product 8
was obtained in quantitative yield.

Low catalyst-loading experiments. Promoted by the unusual
stereocontrol of Li[P2], we examined the N-propargylation
reaction with low catalyst loading (Table 2). We found that
when the catalyst loading was decreased from 5 to 0.5 mol%, the
yield and enantioselectivity were not affected (Table 2, entry 3 vs.
entries 1 and 2). Further decreasing the catalyst loading to 0.2 mol
% has only a slight impact on the enantioselectivity (Table 2,
entry 4). Even 0.1 mol% catalyst loading can still provide high
enantioselectivity and yield (Table 2, entry 5). This is the lowest
catalyst loading that has been achieved so far for the asymmetric
catalysis by chiral alkali and alkaline earth-derived salts of chiral
phosphoric acids70.

N-benzylation of indoles. Finally, we explored the direct catalytic
asymmetric N-benzylation of indoles with C-aryl N-Boc N,O-
acetals in the presence of (R)-Li[P2]. Interestingly, the reaction
did not occur. These results indicate the reactivity difference
between C-alkynyl N-Boc N,O-acetals and C-aryl N-Boc N,O-
acetals. Considering that C-aryl N-Boc imines can be prepared,
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[P2]. b Run with (R)-Li[P1].
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we turned our attention to the use of C-aryl N-Boc imines pre-
formed. By utilizing a complementary catalytic mode, hydrogen
bonding enantiocontrol, we developed an enantioselective N-
benzylation of indoles using a chiral phosphoric acid PA1 as the
catalyst (Fig. 8).

Discussion
In summary, we have developed an organocatalytic strategy for
the direct asymmetric N-functionalization of indoles and carba-
zoles through a propargylation. Specifically, we have successfully
realized the direct catalytic asymmetric intermolecular N-
propargylation of indoles and carbazoles, providing hitherto
inaccessible acyclic N,N-aminals of indoles and carbazoles in

good yields with high enantiocontrol, despite many potential
challenges of this reaction. This C–N formation process is
enabled by the use of our newly developed C-alkynyl N,O-acetals
as the alkylating reagent and a lithium SPINOL phosphate as the
chiral catalyst. The product racemization has been suppressed
effectively. A chiral lithium SPINOL phosphate catalyst promotes
the activation of N,O-acetals for the in situ formation of chal-
lenging accessible C-alkynyl N-Boc or N-Cbz imines, although
this class of catalysts were previously employed for the addition of
alcohols to imines to form N,O-acetals. Notably, the efficiency of
the system allows reactions to be run at a very low catalyst
loading of 0.1 mol%. The present protocol represents a significant
advance in the asymmetric functionalization of the N–H of
indoles and carbazoles, and in the catalytic asymmetric pro-
pargylation, as well as opens an application of chiral alkali and
alkaline earth-derived salts of chiral phosphoric acids in the
asymmetric catalysis and synthesis.

Methods
General procedure for the N-propargylation of carbazoles 2. To a solution of 1
(0.08 mmol) and 2 (0.05mmol) in toluene (1.0mL) was added the catalyst (R)-Li
[P2] (1.8 mg, 5 mol %) at 90 °C. After stirring for 12 h, the mixture was directly
purified by silica gel chromatography (ethyl acetate/petroleum ether= 1/30 to 1/20)
to afford the products 3.

General procedure for the N-propargylation of indoles 4. To a solution of 1’
(0.05 mmol) and 4 (0.08 mmol) in toluene (1.0 mL) was added the catalyst (R)-Li
[P2] (1.8 mg, 5 mol%) at the designated temperature. After stirring for 18 h, the
mixture was directly purified by silica gel chromatography (ethyl acetate/petroleum
ether= 1/100 to 1/50) to afford the products 5.

MeOH, rt
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Fig. 7 Product configuration determination and transformations. a Product configuration determination by X-ray diffraction analysis. b Reduction of the
alkynyl group into the alkenyl and alkyl groups.

Table 2 Reaction with low catalyst loading.

Entry X Yield [%] ee [%]

1 5 78 99
2 1 78 99
3 0.5 76 99
4 0.2 76 97
5 0.1 72 92
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N
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10c, 36 h
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2a

Fig. 8 N-Benzylation of indoles. Reaction conditions: 9 (0.05mmol), 2a
(0.06mmol), (R)-PA1 (5 mol%), c-hexane (1.0 mL), rt.
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Data availability
The authors declare that the data supporting the findings of this study are available
within the article and the Supplementary Information, as well as from the authors upon
reasonable request. The X-ray crystallographic coordinate for structure 6 reported in this
study has been deposited at the Cambridge Crystallographic Data Centre (CCDC), under
CCDC 1881884. These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
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