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Abstract: Bicuspid aortic valve (BAV) patients have an increased incidence of developing aortic
dilation. Despite its importance, the pathogenesis of aortopathy in BAV is still largely undetermined.
Nowadays, intense focus falls both on BAV morphology and progression of valvular dysfunction and
on the development of aortic dilation. However, less is known about the relationship between aortic
valve morphology and aortic dilation. A better understanding of the molecular pathways involved in
the homeostasis of the aortic wall, including the extracellular matrix, the plasticity of the vascular
smooth cells, TGFβ signaling, and epigenetic dysregulation, is key to enlighten the mechanisms
underpinning BAV-aortopathy development and progression. To date, there are two main theories on
this subject, i.e., the genetic and the hemodynamic theory, with an ongoing debate over the pathogenesis
of BAV-aortopathy. Furthermore, the lack of early detection biomarkers leads to challenges in the
management of patients affected by BAV-aortopathy. Here, we critically review the current knowledge
on the driving mechanisms of BAV-aortopathy together with the current clinical management and
lack of available biomarkers allowing for early detection and better treatment optimization.

Keywords: bicuspid aortic valve; aortopathy; molecular pathways; hemodynamics; clinical
management; microRNAs

1. Introduction

Bicuspid aortic valve (BAV) is a congenital and highly heterogeneous disorder characterised by
aortic valve malformations associated with aortopathy, other congenital heart defects, and genetic
syndromes [1,2]. High intervention rates due to aortic valve and ascending aortic complications are
observed in more than 35% of individuals born with BAV [3,4]. Despite it being the most prevalent
congenital heart defect, affecting over 1% of the population [5], there are gaps in our current knowledge
of different aspects of this pathology, which indeed is significantly more complex than “just” a disorder
of valvulogenesis [6]. This review focuses specifically on the association between BAV and the
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development of aortic dilation, which is the key feature of bicuspid aortopathy [7]. The dilation can
involve the ascending aorta and/or the aortic root or aortic arch [8], and BAV patients are at risk of
developing thoracic aortic aneurysm (TAA) at least 10–15 years earlier than patients with a tricuspid
aortic valve (TAV) [9,10]. The aim of this review is to discuss genetic and hemodynamic factors leading
to or associated with BAV aortopathy and considering potential biomarkers in the light of current
BAV patients’ management. There is a need to predict disease onset and elucidate its progression,
thus potentially guiding the choice of optimal treatment strategies and timing [4,11,12]. Such a
need is reflected by the importance of better stratifying patients, identifying peripheral biomarkers
of aneurysm susceptibility, and better understanding the potential interplay between genetic and
hemodynamic factors involved in the process of dilation.

Please refer to Table 1 for a list of abbreviations used throughout the article.

Table 1. List of abbreviations.

Abbreviation Full Name

AAo Ascending aorta
ACE Angiotensin-converting enzyme
BAV Bicuspid aortic valve
ECM Extracellular matrix
GWA Genome wide association
LLC Large latent complex
LTBP Latent transforming growth factor beta binding protein

miRNA microRNA
MMP Matrix metalloproteinase
TAA Thoracic aortic aneurysm
TAV Tricuspid aortic valve
TGF Transforming growth factor

TIMP Tissue inhibitor matrix metalloproteinase
SLC Small latent complex
SMC Smooth muscle cells
WSS Wall shear stress

2. Tissue Biology

2.1. Distinct Genetic Aetiologies or Common Embryological Origin?

Linkage analyses of BAV pedigrees showed significant genetic associations, such as those located
on chromosomes 5q15–21, 9q22.33 (TGFBR1), 3p22 (TGFBR2), 9q34–35 (NOTCH1), 10q23.3 (ACTA2),
13q33–qter, 15q25–q26.1, 17q24 (KCNJ2), and 18q, but there is not a single-gene model to explain BAV
inheritance yet [13]. According to several genetic and familial clustering studies, BAV is inherited in an
autosomal dominant pattern, with increasing prevalence among first-degree relatives (9%) and almost
three times higher prevalence in families with more than one affected individual [4,14]. Non-valvular
complications, such as TAA, are found in 10% of family members [1]. In the general population,
regardless of valve morphology, 20% of the individuals with no genetic syndrome (e.g., Marfan, Ehlers
Danlos, Loeys-Dietz) have a family history of thoracic aortic disease [15]. Although ascending aorta
(AAo) dilation is heritable with a higher prevalence between BAV family members, it is also heritable
between TAV family members, suggesting that BAV-aortopathy and valve defect may have separate
genetic aetiologies. In support of the latter, an echocardiography study of 209 families enriched for
BAV showed significant heritability of increasing aortic diameters, with BAV acting as an independent
predictor [16]. This sets the question whether TAA is an associated, secondary, phenomenon of BAV,
or whether BAV and its associated aortopathy have an oligogenic inheritance pattern, where at least
two co-segregated genetic mutations are required for the development of the disease [4].
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Familial TAAs are clinically characterized as syndromic or non-syndromic, where abnormalities
in syndromic TAA go beyond the cardiovascular system [7]. Whether syndromic or non-syndromic,
the association between BAV and aneurysms could be based on cell embryologic patterning [17,18].
Genetic mutations link to BAV (i.e., Nkx2.5, Alk2, eNOS, GATA5, NOTCH, Fgf8, Rock1,2, and Pax3),
either in mice or human, can be subdivided in either second heart field- or neural crest cell-related.
Both neural crest cells and second heart field cells contribute to semilunar valve formation [19].
Also, neural crest cell- and second heart field cell-derived SMCs populate the media of the AAo
with differential distribution [20]. This suggests a common embryological pattern between BAV
and its associated aortopathy. In a try to map the anatomical boundaries of second heart field cells,
experiments on Nkx2-5 lineage tracing showed that second heart field cell-derived SMCs meet neural
crest cell-derived-SMCs at the base of the aorta [21], and this should be further examined to better
understand the associated pathologies.

Because of the evidence of a common origin between the aortic valve and the ascending aorta, it
is reasonable, in fact, that genes responsible for BAV are also involved in BAV-aortopathy. Considering
that the aortic root, AAo, and aortic arch derive from neural crest cells, whereas the descending aorta
derives from paraxial mesoderm, a study tested the hypothesis that defective differentiation of neural
crest cells-derived vascular smooth muscle cells (SMC) but not of paraxial mesoderm cells-derived
SMCs contribute to BAV-aortopathy. In this study, induced pluripotent stem cells were generated from
patients’ white blood cells and reprogrammed into neural or paraxial stem cells and then into SMCs.
This study suggested that SMCs derived from neural crest cells in BAV-TAA subjects had impaired
contractile function, decreased transforming growth factor (TGF)-β signalling, and increased mTOR
signalling, unlike those derived from paraxial mesoderm cells [22].

There are two important genes that have been discussed to cause BAV. Mutations of the NOTCH1
gene have been shown to cause abnormal migration of neural crest cells, and several studies have
indicated its role in BAV disease [23–26]. Similar to NOTCH1, GATA5 is known to play a role in aortic
valve development and has been discussed to cause BAV [24]. Considering the shared embryological
origin of the aortic valve and AAo and in light of the fact that both these genes are associated with
outflow tract formation as well as valve development, it may be suggested that they are also, to some
extent, implicated in the development of aortopathy in BAV patients [27]. In fact, non-synonymous
variants of NOTCH1 and GATA5 have been associated with the coexistence of BAV and BAV-aortopathy
in sporadic cases. One study observed that GATA5-depleted mice with BAV had also a decrease in
NOTCH1 signalling pathway [28]. However, the molecular mechanisms by which those variants result
in BAV and BAV-TAA are still unknown [29]. Further studies are needed to explore these mechanisms
and to clarify whether BAV and its associated aortopathy arise from distinct genetic events or are
instead potentially linked.

Finally, the role of eNOS during cardiovascular development was investigated through an
eNOS knockout mouse model, showing association with BAV [30]. Polymorphisms in eNOS,
angiotensin-converting enzyme (ACE), and matrix metalloproteinase (MMP)-2 and -9 genes have also
been associated with increased risk of aneurysm development in BAV patients by examining tissue
samples of different segments of the aorta, suggesting the importance of considering the histological
features of the whole AAo and the genetic risk profile of the patient [31].

2.2. Histological Abnormalities

Many studies support the presence of medial degeneration in BAV disease, characterized by: SMC
loss, in the absence of inflammation; altered collagen content; elastic fiber fragmentation; accumulation
of mucopolysaccharide ground substance within cell-depleted areas of the AAo media [32–34]. Indeed,
medial degeneration (Figure 1) is considered the underling abnormality in AAo aneurysm and
dissection, regardless of aetiology [32]. Considering the process of aneurysm formation in general,
aortic media remodelling is characterised by altered extracellular matrix (ECM) proteins (e.g., collagen,
elastin, fibrillin) production and deposition. In the context of BAV, a study of cultured BAV-SMCs
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obtained from aneurysmal tissue showed SMC loss in the absence of inflammation and intracellular
accumulation of fibrillin, fibronectin, and tenascin, suggesting that a defect in cellular transport affects
their secretion [35]. Another study on patients with BAV-TAA confirmed protein accumulation and
smooth muscle cell loss and also observed elastic fiber fragmentation and decreased collagen I and III
mostly in the convexity of the aorta rather than in the concavity [36]. However, it should be noted that
histological research on BAV compared to TAV aortic vessel wall does not always support the increase
in medial degeneration [34,37–39].

Ascending aortic aneurysms also exhibit elevated MMP expression. A significant increase in the
MMP-2/tissue inhibitor matrix metalloproteinase (TIMP)-2 ratio has been associated with increased
likelihood of BAV aneurysm formation [5,40]. Furthermore, in contrast to TAV, BAV aneurysms have
been characterised by a lack of inflammation, preservation of elastin content, and increased MMP-2,
implying that the pattern of MMP expression and the degree of inflammation differ between BAV and
TAV scenarios, while the variations in the molecular mechanisms underlying different types of TAA
need further investigation [40].

With regard to histological differences in TAA between BAV and TAV, Philippi et al. discussed
that whilst TAV-TAA has a random, multidirectional collagen and elastin organisation, BAV-TAA has a
highly aligned unidirectional and parallel fiber architecture, indicating that the aorta in BAV patients
remodels following a unique mechanism. In addition, BAV-non-aneurysmal patients were identified to
exhibit the same fiber orientation as in BAV-aortopathy patients, suggesting that such microarchitecture
is a feature of BAV disease [9]. The highly aligned oriented fibers can also-at least in part-explain
the relationship between BAV and increased AAo stiffness [41,42]. The same study suggests that
progressive aortic dilation in BAV but not TAV patients might be associated with decreased fiber
alignment as a secondary remodelling mechanism, and this could be ascribed to local changes in wall
shear stress (WSS) [43–45].

As mentioned, SMCs play an important role in aortic aneurysm development, considering their
involvement in inflammation and aortic wall homeostasis. Loss of SMC-TGFβR1 activates pathways,
e.g., TGFβR2, ERK, and AngII/AT1R signals, which disrupt aortic wall homeostasis thus leading to
aneurysm formation [46]. Furthermore, different molecular alterations in SMCs have been linked
with aortic aneurysm formation, e.g., Smad4 or TGF-β receptor type II deficiency and subsequent
increase in Cathepsin S and MMP-12, which are proteases essential for elastin degradation (Figure 1).
Given the role of Smad4 as a central mediator of the canonical TFG-β signalling pathway, it has
also been discussed that Smad4-deficient SMCs directly initiate aortic wall inflammation through
the production of chemokines to recruit macrophages [47]. Studies have tried to unravel the role of
SMCs specifically in BAV-aortopathy. Inability of differentiation in neural crest cells-derived SMCs
was related to decreased expression of MYH11, caused by decreased TGF-β signalling based on the
phosphorylation of SMAD2, thus indicating that decreased contractile function in these cells may
contribute to the development of AAo dilation in BAV [22]. Differences in the responsiveness of
SMCs to NOTCH and proosteogenic induction were identified between BAV and TAV with associated
aortopathies. Osteogenic induction caused elevated RUNX2 expression in BAV patients, enhancing
calcification in BAV-derived SMCs. In addition, NOTCH activation was identified to significantly
increase ACTA2 expression specifically in BAV patients, leading to increased osteogenic differentiation
in SMCs [48]. Finally, decreased expression of Bcl-2, a mediator of apoptosis, has been identified in
BAV aortas and may be involved in SMC apoptosis [49].

In summary, despite current gaps in the knowledge of mechanisms of matrix degeneration in
BAV-aortopathy, it has been suggested that SMCs in the BAV aorta exhibit an inherent defect that can
lead to changes in vessel wall mechanical properties, thus contributing to aneurysm formation.
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Figure 1. Mechanisms involved in cystic medial necrosis, eventually leading to aortopathy in BAV
patients. The role of TGF-β as a mediator of ECM degradation is depicted (top left). Deficiency in
fibrillin-1 leads to an excess of free and active TGF-β due to a decrease in microfibrils and a failure
in matrix sequestration of the large latent complex (top left). Also, reduced microfibrils lead to
decreased formation of elastic fibers. Then, TGF-β binds to its SMC membrane receptor, initiating
the SMAD/TGF-β canonical pathway. Deficiency in either TGFBR1/2 or SMAD4 can also lead to
aneurysm formation, along with dysregulation in the MMP/ TIMP ratio. Elastic fiber fragmentation
due to MMPs takes place, as well as decrease in SMC differentiation ability and connection to elastin
(bottom left). Collagen accumulation and eventually SMC loss and collagen degradation by MMPs
can then occur (bottom left). All these mechanisms, in the absence of inflammation (top right), lead to
aortopathy in BAV patients. (LAP = latency-associated peptide; P = phosphorylation).

2.3. The Role of TGF-β

The TGF-β superfamily plays an important role in vascular remodelling and it has been the
subject of extended research [50]. Dimers of mature TGF-β, as part of the small latent complex (SLC),
are covalently bound to the latent TGF-β-binding protein (LTBP), resulting in the large latent complex
(LLC) which then in turn binds to the ECM [51]. Fibrillin-1 is known to interact with LTBP-1 to control
TFG-β activity [51,52]. A deficiency of fibrillin has been associated with BAV disease [53]. Studies
comparing BAV and TAV AAo specimens identified a decrease in fibrillin-1 in BAV patients, which
may contribute to explaining aortic root dilation and AAo dissection in these patients [54,55]. In two
studies of BAV, TAV, and Marfan patients, both Marfan and BAV showed a differential distribution
and decreased fibrillin-1 expression in the aorta, as well as significant decrease in differentiated SMC
markers, suggesting a maturation defect of the aortic wall [38,39,56]. Whilst it has been suggested that
deficient fibrillin-1 in BAV may lead to vascular matrix remodelling and dilatation [54], this hypothesis
should be further assessed in vitro, taking into account the role of TGF-β.
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Dysregulation of TGF-β, perhaps due to a faulty interaction between the SLC and the ECM, and
its downstream pathways appeared to be involved in aneurysm formation [4,53]. With regards to
LTBPs, these comprise a family of four ECM proteins, all having similar structure to fibrillin and,
as such, possibly exerting a similar function [53], although this has not been fully demonstrated yet.
One study that started to assess their function showed that LTBP4 is highly expressed in aortic ECM
and interacts with matrix molecules, such as fibronectin [57,58]. Indeed, Paloschi et al. discussed an
association between impaired splicing of fibronectin and increased likelihood of TAA formation in
patients with BAV [59]. In addition, according to a gene expression profiling study, LTBP3 and LTBP4
were found to be highly specific for dilation in BAV rather than TAV patients [60]. The role of LTBPs
and the molecules they interact with should thus be further explored in BAV-aortopathy, considering
these promising initial observations.

A recent study, based on secretome analysis carried out in specimens from mildly dilated AAo
with stenotic TAV or BAV and from donor normal aortas, revealed that 21 out of 38 identified
dysregulated proteins were participating in TGF-β activation, emphasizing the role of TGF-β in
BAV-TAA development. Decreased expression of TGFβR1 mRNA in the curvatures of BAV AAo and
its positive correlation with aortic diameter suggest that TGFβR1 downregulation could be a very
early event in BAV-aortopathy [61]. In addition, an altered imbalance between the TGFβR1 and the
TGFβR2 subunits in BAV AAo was linked to the activation of non-canonical TGFβ-mediated signalling
pathways, leading to ECM degradation and aneurysm [61,62].

Finally, a recent clinical study [63] comparing cases of TAV, BAV with dilated aorta, and BAV with
non-dilated aorta indicated, by measuring a more comprehensive index of pathogenetically relevant
gene expression changes, that it is not just TGF-β1 alone to play a role in this context. The ratio
of circulating TGF-β1 to soluble endoglin was, in fact, found to be significantly different between
TAV and BAV patients. Furthermore, this ratio was independently associated with increased MMP-2
gene expression and decreased SOD3 gene expression solely in BAV non-dilated patients, and, in this
subgroup, it significantly correlated with faster aortic growth rate in the postoperative follow-up. The
observed decrease in soluble endoglin in BAV non-dilated patients was also discussed as potentially
being pathogenetically associated with decreased MMP-14 and endoglin gene expression in the aorta.
This work can set the base for further studies.

3. Hemodynamics

3.1. Two Theories on the Pathogenesis of BAV–Aortopathy

An on-going debate exists on whether the pathogenesis of BAV–aortopathy is related to genetics
or hemodynamics. A widely accepted theory (“genetic theory”) states that the brittleness of the aortic
wall is a result of a developmental abnormality of both the aortic valve and the aortic wall. This theory
is supported by the fact that BAV is a heritable defect and involves gene mutations (such as in GATA5,
NOTCH1 and ACTA2 genes). A second theory (“hemodynamic theory”) refers to the abnormal WSS
acting on the aortic wall as the process underpinning aortic dilation [64]. As it will be discussed in
this section, this theory is supported by the fact that the eccentric turbulent flow through the bicuspid
valve has been associated with abnormal mechanical stresses in certain regions of the aortic wall, in
turn causing stress overload and wall fragility [11].

3.2. The Role of Hemodynamics

The turbulent flow jet passing through the BAV into the aortic root has been recognized to
contribute to an abnormal biomechanical environment, including helical flow alterations that propagate
eccentrically inside the proximal AAo [4]. Evidence shows that increased blood flow helicity leads to
increased WSS [65], as exemplified in Figure 2. It has also been proven that the bigger the angle of
the misdirected flow through the conjoined cusp opening, the higher the degree of flow eccentricity,
with subsequent increased growth rate and severity of AAo dilation [66]. However, a study using
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convex and concave aorta biopsy samples showed different histopathological features between jet
and non-jet samples [67]. This difference was similarly observed in BAV and TAV, with BAV being
more significantly associated; however, this needs further assessment. In support of the hemodynamic
theory, different BAV morphologies have been associated with specific dilation patterns of the AAo [68].
Some studies observed differential distributions of WSS according to different valve morphotypes,
resulting in specific orientation of eccentric flow jets and suggesting possible flow-induced vascular
remodelling [69–71]. Specifically, the most common BAV morphotype (i.e., right coronary cusp-left
coronary cusp raphe) was associated with right-anteriorly directed helical systolic flow jet with
peripheral skewing towards the AAo convexity, with these patients exhibiting also larger aortic root,
asymmetric mid-AAo dilation, and more severe AAo wall degeneration [72,73]. On the other hand,
the second commonest BAV morphotype (i.e., right coronary cusp-non-coronary cusp raphe) was
associated with left-posteriorly directed eccentric flow jet spreading towards the proximal aortic
arch, with patients exhibiting isolated AAo dilation, no aortic root dilation, and increased aortic arch
diameter [72]. Another study confirmed that patients with right-non-coronary morphotype were more
likely to present with AAo dilation, whereas patients with right-left morphotype were more likely to
have aortic root dilation and, when accounting for age, they were more likely to present with aortic
stenosis as well [74]. However, there are also studies reporting a weak or independent association
between the BAV morphotype and the shape of the aneurysm [75–77]. These clinical studies were
carried out on large cohorts of patients and, despite their statistical power, no association was found
between morphotype and patterns of dilatation, indicating the need for further assessment of this
relationship and providing evidence in support of genetic mechanisms underlying BAV-aortopathy.

Complementary to the clinical studies, experimental and computational work can also generate
provocative insights into key parameters related to BAV hemodynamics. This includes systematically
testing morphotype-dependent alterations and exploring whether abnormal hemodynamic parameters
(such as helical flow, flow angle, or WSS) arise from the underlying abnormal valve anatomy or from
the dilated aorta. One study employed particle image velocimetry to test tissue BAVs derived from
porcine TAVs subjected to physiologic pulsatile flow in an experimental setup (pulse duplicator setting)
and identified an element of morphotype-dependency as to which site of the aorta is affected by
shear stress overloads [78]. A simulation-based study also confirmed that different BAV morphotypes
affect aortic hemodynamics differently, whilst all being abnormal with respect to TAV and leading to
increased WSS on the proximal AAo, and indicated BAV with left-right-coronary cusp morphotype as
having the most significant abnormality [79].

The impact of altered hemodynamics on aortic wall abnormalities is also reflected in the
asymmetric spatial distribution of histological and biomolecular changes in BAV aortas, in contrast
to their uniform distribution in patients with Marfan syndrome [64]. According to observations
by Guzzardi et al., based on 4-dimensional (4D) flow cardiac magnetic resonance (CMR) imaging
data and histological analyses, increased WSS was associated with decreased elastin content and
increased distance between the elastin fibers, as well as to a higher concentration of mediators of
ECM dysregulation (i.e., MMPs and TGF-β) [80,81]. Regions of the dilated AAo wall with elevated
WSS had significantly increased TGF-β1 concentrations [80,82]. These regions also had increased
MMP-1, MMP-2, MMP-3, and higher MMP-2 to TIMP-1 activity, factors that have been associated
with increased elastic fiber fragmentation [33,80]. Further studies using 4D CMR confirmed that flow
asymmetry and helicity are elevated in BAV, contributing to WSS increase, and that increased WSS
and medial derangement (e.g., reduced collagen and increased SMCs apoptosis) are associated with
greater aortic convexity even before severe dilation is observed [5,65,73,83]. In another study based on
4D CMR, it has been hypothesised that BAV-aortopathy might be initiated by flow abnormalities and
entail a sort of protective mechanism to maintain normal WSS levels in the face on the increased WSS
consequent to the abnormal flow [84].
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Figure 2. Representation of the wall shear stress (WSS) distribution (A, posterior view of the aorta) and
flow velocity (B, front view of the ascending aorta) in a healthy volunteer and a BAV patient with right
coronary cusp-left coronary cusp raphe, obtained from 4D flow cardiac magnetic resonance (CMR)
imaging. This is a visual indication of increased WSS at the aneurysm location and abnormal flow
jet in the presence of BAV. Furthermore, the flow in the BAV patient seems to go along the anterior
right curvature of the AAo and then fold inferiorly along the inner curvature, rather than accessing the
transverse aortic arch, as also reported in the literature [85]. Data collected at the Clinical Research and
Imaging Centre (CRiC), University of Bristol; not previously published.

Experimental work also contributes to generate data in support of the effect of stresses resulting
from BAV hemodynamics on aortic medial degradation. Interesting experiments have been designed
by first generating values for WSS typical of both TAV and BAV hemodynamic scenarios with
computational modelling, and then testing normal porcine aortic tissue in a bioreactor when subjected
to such stresses and measuring relevant changes, such as MMP-2 and MMP-9 expressions, MMP-2
activity, or fibrillin-1 content. The results, however, were not conclusive [86,87], but the methodology
is certainly compelling to investigate possible cause-and-effect relationships between tissue properties
and hemodynamics.

In summary, evidence exists in support of both genetic and hemodynamic theories. Clinical
studies indicated that the progression of AAo dilation in BAV patients continues after aortic valve
replacement leading to aortic dissection or rupture [64,88,89], which would suggest an underlying
genetic driving mechanism. Other arguments in favour of the genetic theory are the enlargement of the
aorta even in the absence of valvular dysfunction (i.e., stenosis and/or regurgitation) [4,5,64] as well
as the fact that overall higher aortic size in BAV patients after matching for TAV patients with similar
degrees of valvular disease was identified to be independent of hemodynamic alterations [64,90].
However, it should also be considered that even a functionally normal bicuspid valve is, in fact,
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morphologically stenotic because of the conjoined leaflets. Such valve configuration can lead to a
transvalvular turbulent flow jet and abnormal haemodynamics, and jet eccentricity results in more
severe flow alterations in the AAo when it occurs through a stenotic bicuspid orifice instead of a
tricuspid aortic valve of comparable gradient and valve area. Furthermore, when considering cystic
medial degeneration in the AAo wall of BAV patients, if, on the one hand, this phenomenon could
support the genetic theory, similar changes have been identified in AAo dilation or dissection regardless
of aetiology, indicating a non-specific character of cystic medial degeneration [35,91]. At present,
continued research in the field and new findings from clinical, experimental, and modelling studies
rather suggest an interplay between the two theories. What remains to be unravelled is which of the
two can be considered as the ‘initiator’ of aortopathy, which of the two has potentially a predominant
contribution, and how the interplay between the two may vary in different scenarios.

4. Environmental Impact

4.1. Environment and Risk Factors

Variable penetrance and phenotypic expression in BAV could be the result not only of genetic
variations, but also of the interplay between genetic, epigenetic, and environmental modifiers,
eventually leading to aortopathy. Epidemiological studies have been carried out to explore predictors
of TAA in BAV patients, and their findings suggest that older age, diabetes, hypercholesterolaemia,
aortic regurgitation, and smoking increase the risk of TAA [2,92]. The interplay between genetic and
environmental factors has also been studied in mice [93]. It should be noted that the incorporation of
multiple mutations or gene–environment interactions is required to replicate the complexity of human
BAV disease [1], whereas animal models with single gene mutations may not be representative to
investigate the influence of environmental hazards on complications and outcomes of the BAV disease.

4.2. Epigenetic Mechanisms

The impact and interplay of environmental risk factors can also be mediated through epigenetics,
and indeed studies have been performed to explore the epigenetic signature of BAV-aortopathy.

As described in a recent study, both BAV and AAo dissection are characterized by a non-CpG
hypomethylation signature that partially explains the increased cellular proliferation, although they
present different DNA methylation landscapes [94]. Another study, comparing gene methylation
and expression from AAo aneurysm tissue samples between BAV and TAV patients, identified
hypomethylation of ACTA2, hypermethylation of GATA4, and significant hypermethylation and
decreased expression of protein tyrosine phosphatase non-receptor type 22 in BAV individuals [95].
These studies suggest that altered gene methylation is involved in the pathogenesis of aneurysm
formation in BAV patients. However, further investigation is needed to understand the relationships
between DNA methylation and differential gene expression and whether they imply causality or are
by-products of the aneurysm in the case of BAV.

The knowledge of epigenetic modifications related to TGF-β pathways in TAA could help clarify
its pathogenesis. According to Kurtovic et al., a diverging alternative splicing fingerprint of the
TGF-β pathways is linked to BAV-TAA, causing differential downstream effects. This might be the
result of chromatin epigenetic modification, leading to BAV-aortopathy phenotypic modification [58].
In addition, induced histone methylation and acetylation of the SMAD2 promoter in SMCs in
BAV-dilated aortas was linked with SMAD2 overexpression, suggesting TGF-β/SMAD pathway
dysregulation due to epigenetics [96]. The modification of histone H3 marker in the SMAD2 promoter
is an epigenetic mechanism behind SMAD2 overexpression, as demonstrated in all types of TAA,
including BAV-TAA.

New insight into epigenetic reprogramming could lead to a better understanding of the onset
and progression of TAA in BAV patients, thus contributing to the potential identification of novel
biomarkers and/or therapeutic strategies.
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5. The Role of MicroRNAs

MicroRNAs (miRNAs, or miRs) are small noncoding RNA regulatory molecules that regulate the
expression of a plethora of mRNAs “targets”, to which they can bind, interacting with their 3′-UTR
(canonical mechanism), the aminoacid coding sequence (CDS), or the 5′-UTR. The canonical mechanism
consists in the miRNA seed sequence targeting one or more (semi)complementary regions of the mRNA
3′-UTR and results in expressional repression at the mRNA and/or protein level. Importantly, miRNAs
can also be released by the parent cell via different shuttles, including extracellular vesicles (exosomes,
microvescicles) and lipoproteins that protect their miRNA cargos from degradation. Such extracellular
miRNAs can be taken up by a series of recipient cells in neighbouring and distant tissues, contributing
to cell-to-cell communication. Moreover, by conferring resilience to miRNAs, the shuttles incidentally
increase our possibilities to develop miRNAs as extracellular biomarkers.

This section briefly revisits the pathways so far described to affect AV morphology, BAV,
and/or TAA. A number of miRNAs have been functionally implicated in processes that conduct
to BAV aortopathy and/or have been found to be regulated by fluctuations in shear stress, which-as
discussed-could contribute to TAA in BAV. Therefore, miRNAs could represent both therapeutic
targets for intervention and circulating biomarkers that could help predict and monitor the evolution
of BAV-TAA. In this setting, miRNAs regulating calcification, elastin degradation, and changes in
extracellular matrix are of potential relevance. Similarly, miRNAs regulating “classic pathways”
already implicated with BAV and TAA also deserve attention.

5.1. MicroRNAs Involved in BAV Disease and Valve Morphology

The expression and possible role of miRNAs in the calcification of stenotic BAVs has been explored
in vitro using intraoperative samples in an effort to identify potentially deregulated miRNAs, as
well as calcification-related factors that either regulate or are regulated by those miRNAs [97,98].
The role of the noncanonical Wnt signaling pathway [99], as well as the role of TGF-β1 in the
stimulation of aortic valvular interstitial cells, leading to morphological changes consistent with
myofibroblastic transformation, BMP-2 signaling, and calcification, seem to be of particular interest in
relation to AV stenosis and aneurysm [100–102]. Since osteoblasts are involved in ECM production
and mineralisation, miRNAs able to regulate osteogenesis and chondrogenesis, such as miR-29, 210,
125b, 26a, 196a, 2861, and others, are of potential relevance, even if their role in BAV is still under
investigation [103–110]. Moreover, miRNAs, such as miR-29, 181a, and 195, have been shown to
regulate ECM composition, acting on collagens, MMPs, and TIMPs [111–113]. Interestingly, miR-29b
has already been shown to promote aortic valve interstitial cell calcification by inhibiting TGF-β3
through the activation of wnt3/β-catenin and to induce elastin downregulation, contributing to
inorganic phosphorus-induced osteoblastic differentiation in vascular SMCs [114]. Moreover, a
reduction of miR-195 in BAV was suggested to promote calcification of valve interstitial cells via
SMAD7 targeting, and the mechanosensitive miR-181b regulates AV endothelial matrix degradation by
targeting TIMP3 [115,116]. Other miRs reported to be deregulated in AV calcification and potentially
mediating the calcification process are miR-204 and miR-449c [117,118].

5.2. MicroRNAs Involved in Aortopathy

Although more than 20% of TAAs are inherited as single-gene disorder, the majority are
sporadic cases and known to be driven by the unbalanced production of extracellular proteases and
inhibitors [119,120]. The upstream signalling events are still widely unknown; however, a potential
leading cause could be altered miRNA expression, leading to gene expression impairment [120,121].
Also, it is worth mentioning that variants in miRNA genes can have a profound effect on miRNA
expression and function and can thus contribute to disease [122].

Interestingly, the aetiology of descending thoracic and abdominal aortic aneurysm disease is
mainly atherosclerotic, whilst proximal thoracic aortic aneurysm disease has been associated with
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proteoglycan accumulation, elastic fiber fragmentation, and focal or diffuse SMC degradation and
loss [123]. In vitro studies using aortic samples of TAV or BAV as well as in vivo studies indicated
the role of miRNAs in several pathways implicated in TAA pathogenesis, such as the focal adhesion
pathway [121,124,125], ECM homeostasis [111,126–128], TGF-β pathway [124,129,130], and SMCs
plasticity and survival [131,132].

The aforementioned miR-29, 181a, and 195 that regulate elastin and ECM could indeed be also
relevant for the aneurysmal process and hence TAA [111–113]. Moreover, because of the fact that
calcification is associated with ECM modifications, studies have been performed to appreciate the
role of miRNAs with regard to elastin and ECM degradation [112,133], as well as their role on SMCs
phenotypic modification, by studying Dicer-dependent miRNAs role on SMC growth, differentiation,
and function in vivo [134–136].

5.3. MicroRNAs Regulated by Changes in Shear Stress

Vascular physiology is maintained through alterations in shear stress that potentially lead to
miR-regulated differential gene expression in endothelial cells. MiRNAs induced by laminar shear
stress, like miR-126, 27b, and 143/145 were identified as leading to protection from atherosclerosis,
whilst miRNAs induced by low oscillatory shear stress (like miR-181b) were identified as leading to
pathological vascular phenotypes [116,137–139], potentially triggering cardiovascular diseases.

5.4. MicroRNAs as Potential Therapeutic Targets and Biomarkers in BAV Aortopathy

Although most studies focus on the effect of miRNAs on either BAV morphology or aortic
dilation, there are only a few that identified a relationship between both aortic valve morphology and
dilation [140]. BAV patients were identified as having distinct regional miRNAs signatures in dilated
aortas, indicating the differential expression of miRNAs in BAV convexity versus concavity [130].
Moreover, miRNAs were identified to influence the balance between MMP and TIMP as an early
hallmark of BAV-aortopathy. Therefore, the upregulation of these miRNAs could exhibit a potential
for therapeutic targeting [128]. The concept of miRNA-therapeutics essentially refers to either using
“antagomiRs” or other inhibitory strategies to reduce the expression and/or activities of specific
pathogenic miRNAs, or using “microRNA mimics” or other approaches to enhance the expression of a
therapeutic miRNA and increase its level [141]. Compared to traditional drugs, the first generation of
miRNA-therapeutics is designed to affect all the genes that are regulated by the target miRNA, thus
potentially having a profound physiological impact. The potential role of miRNA therapeutics in the
context of BAV-TAA, however, is yet to be explored.

In addition to their potential as therapeutic targets, those miRNAs that have been found to
be functionally involved in BAV disease and morphology [142] should be further screened in BAV
aortopathy (and controls) tissue and plasma/serum samples (including their extracellular vesicles
components) to gain evidence of their potential as diagnostic and prognostic biomarkers.

Whilst most studies focus on analysing the expression of miRNAs in aortic tissue segments,
either in patients or in animal models, few studies were carried out screening plasma of BAV-TAA
patients [140,143]. Unlike tissue-specific miRNAs, circulating miRNAs can provide a complementary
insight to that obtained from the complex analysis of multiple tissues [140]. They are also protected
from endogenous ribonuclease-induced degradation and can be easily accessed by minimally invasive
means [140,144]. Tissue or circulating miRNAs, involved in BAV morphology, aortopathy in general,
or regulated by changes in shear stress, should all be specifically explored in vitro and in vivo to
assess whether they play a specific role in BAV aortopathy. This could lead to the identification of
new biomarkers.
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6. Managing BAV Aortopathy

6.1. Clinical Management

Despite major advances in the diagnosis, genetic screening, and ability to manipulate disease
processes by pharmacological means, TAA disease can still only be managed by a combination of
radiological surveillance and surgery. Presently, targets of progressive BAV disease or BAV-aortopathy
are not well established, and their detection and management are still ongoing [11,145]. There is also
limited understanding of the duration and long-term response to pharmacological treatments, due to
the gaps in the knowledge surrounding disease pathogenesis and its underling mechanisms [11,64].
Based on the decision-making algorithm for BAV management in North America and Europe,
the recommended drugs are antihypertensive agents, including β-blockers, ACE inhibitors, and
angiotensin receptor blockers [146], and recent guidelines for managing AAo aneurysm in non-Marfan
patients also recommend β-blockers; however, there is a lack of systematic evaluation of these
agents [8,145] and in vivo studies in BAV patients [147]. Although the pharmacological treatment is
debatable, it is hypothesised that blood pressure control can decrease the rate of change of central
arterial pressure, leading to decreased stresses acting on the more vulnerable aneurysmal segment
of the aorta, thus preventing further aortic remodelling and dilation. In theory, a reduction of aortic
WSS could be an advantage of the β-adrenergic blockers, whereas the angiotensin-receptor blockers,
such as Losartan, have been indicated to decrease the rate of aortic growth in patients with Marfan
syndrome, but these findings should be investigated in BAV-TAA too [145,146,148]. According to
McGee et al., there is no significant hemodynamic change due to medication in BAV patients [147];
however, further investigation in larger cohorts is necessary. Interestingly, the use of statins has been
associated with decreased risk of clinically significant aneurysm in the abdominal aorta, which could
be explained by the fact that distal aortic aneurysms are usually atherosclerotic in aetiology, and a large
retrospective study reported lower odds of TAA in BAV patients taking statins preoperatively [149,150].
Nevertheless, the role of statins in this context should be explored further and prospectively before
claiming a clinical benefit.

On the basis of a large survey, operative approaches and management of BAV aortopathy are
quite variable and do not always follow guideline recommendations [151]. According to the guidelines
(i.e., European Society of Cardiology/ESC, American Heart Association/AHA, American College of
Cardiology/ACC), aortic root or AAo repair/replacement is recommended in the presence of an aortic
diameter ≥ 5.5 cm in asymptomatic BAV patients, for an aortic diameter ≥ 5.0 cm in BAV patients with
an additional risk for dissection, e.g., family history, or in patients at low surgical risk, and for aortic
diameter ≥ 4.5 cm, in BAV patients undergoing aortic valve replacement due to severe stenosis or
regurgitation [152–154]. Furthermore, according to the ACC and AHA guidelines, first-degree relatives
of BAV patients with aortic dissection should be imaged for valvular and extravalvular complications,
in order for affected individuals to receive interventions to reduce the traditional cardiovascular risk
factors. Also, every newly diagnosed BAV patient is recommended to undergo a comprehensive clinical
evaluation, whereas genetic tests are offered when features of single-gene disorders or syndromes
are present [155]. Since BAV and syndromic TAA disease can co-exist, patients and their first-degree
relatives who present with aortic dissection get offered genetic aortopathy screening.
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6.2. Genetic Tools

The low incidence of BAV in the general population creates an obstacle for performing
genome-wide association (GWA) studies. For this reason, a study analysing single nucleotide
polymorphisms relevant to BAV was performed, reducing the multiple-testing penalty to control
for random associations [156]. However, in order to sort through the genetic complexity of
BAV–aortopathy, large patient cohorts are needed and should take into account ethnic diversity,
different types of BAV, aneurysm location, and risk factors. Especially in the case of BAV, where
>80% cases are sporadic, case-control association methods such as GWA studies need to be performed,
requiring large samples sizes [1,157]. One recent study in a big cohort of patients (n = 466 BAV,
n = 4660 controls) identified two protein-altering and regulatory genetic variants near GATA4 [158].
Considering the existing expression and genomic data in the context of GWA studies, as well as
taking advantage of system-based approaches to rank the candidate genes and screen for mutations
by sequencing or copy number analysis, it is possible to achieve the identification of biologically
relevant genes and pathways associated with BAV-aortopathy [156]. Causative genetic variants can
be identified through family-based studies, by sequencing the entire exomes or genomes of multiple
family members [159,160], whereas de novo variants, which tend to be more deleterious than inherited
variations, need to be validated by performing mutation analyses [161]. At present, there are only
limited reported cases of de novo variants in individuals with BAV. An example is a family with a
severely affected child who received a unique variant from the mother, leading to a gain of the PXDNL
locus on chromosome 8, whereas that particular de novo gain was also identified in the maternal uncle
with known BAV [162]. The knowledge of a specific mutation in a family can enforce clinicians to
screen family members and search for more clinical features.

The discovery of new genes involved in BAV-aortopathy will lead to more targeted clinical
decisions, diagnostic tests, and therapies. Since BAV–TAA displays incomplete penetrance, the
associated genetic variants may also be present in unaffected individuals, indicating the need for
candidate gene prioritization [163,164]. However, mutations in the same gene can lead to AAo
dissection varying from recognizable genetic syndromes to sporadic diseases [165–168]. Furthermore,
it is often a burden of genetic variants along with environmental factors that lead BAV patients to
develop aortopathy, rather than a single variant [4,169], and, consequently, prioritizing candidate genes
is more challenging. Despite the limitations of BAV animal models, targeted gene deletions in mice,
zebrafish, and cultured aortic valve interstitial cells provided insight into candidate gene involvement
in aortic valve development and other associated conditions [28,170,171]. High-throughput assays can
be used to screen candidate genes [172]. However, there is a need for improved genetic models in order
to investigate therapeutic targets. Also, “knock-in” experiments, introducing human mutations
into homologous mouse or zebrafish genes, may result in models of human BAV phenotypes
more promising than the current models with null mutations [173,174]. In the specific context of
BAV-aortopathy, candidate genes should be investigated further, including their biological functions
and the different pathways involved. Whilst these methods are beginning to be used successfully,
e.g., in inherited cardiomyopathies [175–177], they could also be used to enlighten BAV-aortopathy
pathogenesis and progression, as well as potential therapeutic solutions.

7. Discussion

It is known that TAAs are associated with connective tissue diseases, BAV disease, and familial
thoracic aneurysm syndrome [12]. They depict the most lethal site for aortic dilation, since they might
be asymptomatic for many years and manifest as an acute rupture or dissection [123]. Considering the
incidence of BAV patients who develop dilation compared to TAV patients and the lack of up-to-date
knowledge in this field [5], it is important to enlighten the pathogenesis of BAV-aortopathy by
stratifying the different causes and the management and research strategies, rather than discussing
BAV morphology and TAA separately.



J. Cardiovasc. Dev. Dis. 2018, 5, 21 14 of 26

Despite its clinical importance, the pathogenesis of BAV-aortopathy is widely undetermined.
It is thought to involve genetic heterogeneity, ECM remodelling, abnormal signalling pathways, and
aberrant neural crest cell migration, and there is evidence suggesting a distinct aetiology for BAV-TAA
and the valve defect alone [33,128,178]. Nevertheless, there is also growing evidence supporting
the hemodynamic derangement as a triggering and sustaining factor in BAV-TAA pathogenesis.
However, it is important to emphasize that the roles of genetics and hemodynamics in BAV-TAA
pathogenesis are not mutually exclusive [128] but, on the contrary, likely coexist [80], as shown in
Figure 3. Indeed, BAV-TAA could be the result of a complex interaction between certain gene mutations
with their modifying loci, hemodynamic alterations due to aberrant leaflets, and stochastic factors [179].
The disturbed balance of this interplay is likely to have an impact on disease expression and the
phenotypic heterogeneity observed in BAV-TAA [4].

Population screening tools to follow TAA progression and efficient treatments to prevent the
need of surgical intervention are still lacking [12,143]. Prosthetic replacement, strengthening of
the aorta, and endovascular repair account for >70% of AAo procedures performed in Europe
and North America and are recommended when aneurysms have reached the size or symptom
thresholds for intervention [180–182]. There is an elevated need of effective pharmacological treatment
to counterbalance and arrest aneurysmal progression and the associated increased risk of rupture [180].
The improvement of clinical decision-making and personalised care can be supported by the
demonstration of cause-and-effects relationships between BAV hemodynamics and aortic wall
remodelling, potentially also by using computer-based predictive models. Such models may help to
predict disease onset and progression, thus potentially guiding the optimal treatment strategy [11].

Fluid dynamics has stimulated the interest of both clinicians and researchers. The assessment
of aortic flow can provide disease biomarkers, particularly in BAV disease, where there is a link
between hemodynamic derangement and aneurysm development. Recently, 4D CMR sequencing
has allowed for macroscopic visualization and 3D quantification of thoracic aorta hemodynamics,
helical flow, WSS, flow jet eccentricity, as well as the exploration of novel flow characteristics. In
addition, the visualization of 3D flow features can contribute to better surgical assessment and, possibly,
treatment [183].

Improving our understanding of the driving mechanisms of aortopathy development and
progression (i.e., molecular pathways, epigenetic factors, genetic susceptibilities, and hemodynamic
influences), as well as the exploration of more effective screening and therapeutic tools, are not only
essential to fill the gaps mentioned above, but could also lead to identifying novel disease biomarkers
and possibly also novel therapeutic targets [12].

How do we translate all these discoveries into clinically meaningful tools for BAV patients with
aortopathy and for their families? One approach is to develop genetic tests that identify patients
with BAV who are at high risk for TAA, who could then be enrolled into clinical trials to assess novel
prevention strategies or drug therapies on the basis of their individualized genetic risk profiles [1]. The
latter may influence surgical decisions [184]. For example, young patients with TAA with normally
functioning or mildly dysfunctional BAVs frequently receive valve-sparing aortic grafts, but we do not
know which of them may require future valve replacements or more distal aortic repair [185,186]. We
should also consider the advantages offered by circulating miRNAs in order to identify biomarkers for
the early diagnosis of BAV-TAA [128,187,188].
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Figure 3. Schematic summary of the multiscale nature of the problem of BAV aortopathy and the
interplay of different dimensions. The blue arrows indicate the known or possible interplay between
genetics, hemodynamic alterations, and other factors underlying BAV aortopathy. These represent
stimulating areas of current and future research.
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8. Conclusions

Whilst advances in medical imaging render our insight into aortic hemodynamics much
more refined by generating not just exquisite qualitative data but also quantitative hemodynamic
measurements, the link between hemodynamic derangements due to different valve morphotypes
and the underlying tissue biology remains to be fully demonstrated. As reminded by important
research efforts in the field [189], an association does not imply causality, nevertheless merging
multimodality imaging with genotyping tools is an avenue of research that can lead to shedding light
on the pathological, phenotypic, and ultimately functional aspects of this problem.
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