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Abstract: Magnetic photocatalyst BiVO4/Mn-Zn ferrite (Mn1−xZnxFe2O4)/reduced graphene oxide
(RGO) was synthesized by a simple calcination and reduction method. The magnetic photocatalyst
held high visible light-absorption ability with low band gap energy and wide absorption wavelength
range. Electrochemical impedance spectroscopies illustrated good electrical conductivity which
indicated low charge-transfer resistance due to incorporation of Mn1−xZnxFe2O4 and RGO. The test
of photocatalytic activity showed that the degradation ratio of rhodamine B (RhB) reached 96.0%
under visible light irradiation after only 1.5 h reaction. The photocatalytic mechanism for the
prepared photocatalyst was explained in detail. Here, the incorporation of RGO enhanced the specific
surface area compared with BiVO4/Mn1−xZnxFe2O4.The larger specific surface area provided more
active surface sites, more free space to improve the mobility of photo-induced electrons, and further
facilitated the effective migration of charge carriers, leading to the remarkable improvement of
photocatalytic performance. Meanwhile, RGO was the effective acceptor as well as transporter of
photo-generated electron hole pairs. •O2

− was the most active species in the photocatalytic reaction.
BiVO4/Mn1−xZnxFe2O4/RGO had quite a wide application in organic contaminants removal or
environmental pollution control.

Keywords: BiVO4; RGO; Mn–Zn ferrite; magnetic photocatalyst; magnetic performance;
photocatalytic mechanism

1. Introduction

In the recent decade, composite semiconductor materials are considered extraordinarily attractive
in the field of solar energy and pollution control engineering. Many kinds of photocatalytic composite
materials with superior optical properties and high photo-induced activity have been synthesized and
studied [1,2]. However, the utilization efficiency of visible light for some photocatalysts is very low,
owing to their large intrinsic band gap energy, which impels scientists to explore new photocatalytic
compounds with high visible light-driven photocatalytic activity. Bismuth-based composites with
n-type junctions exhibited excellent photocatalytic activity and high stability [3]. Among them,
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monoclinic crystal BiVO4, due to its relatively lower band gap energy has been of much interest in
the photocatalysis field. Nevertheless, single component BiVO4 has poor absorption ability for visible
light, leading to low quantum efficiency.

Meanwhile, the difficulty in separation and recovery for bismuth-contained photocatalysts
greatly restricts their industrial application. Therefore, magnetic composite photocatalysts are vitally
important in photocatalysis materials science, due to their simple recovery via an external magnet
after reaction. Magnetic compounds, such as Fe3O4 and ZnFe2O4, have been extensively studied,
due to their interesting properties, including photoactivity and stability. There are synthesis strategies
and property studies for magnetic composite catalysts [4–8]. However, the recovery rate and the
photocatalytic activity of these composites do not meet the need of industrial applications yet.
Comparing magnetization and stability, Mn1−xZnxFe2O4 is superior to Fe3O4 and ZnFe2O4.

Reduced graphene oxide (RGO) possessing several good properties (e.g., electrical conductivity,
optical transparency and carrier mobility) has been paid considerable attention [9–11]. Single layer
graphene sheet is composed of sp2-hybridized carbon atoms in the two-dimension honeycomb lattice,
which donates high mobility for electron carriers. The distinctive structure of RGO determines that
its band gap energy is zero [12,13]. There are reports on the preparation method for RGO-composed
catalysts and their activity [14–16]. It is reasonable to mingle RGO with BiVO4, which is aimed
at enhancement of the migration rate of photo-produced electrons and holes of BiVO4. Previous
investigation showed that BiVO4–RGO composite possessed photocatalytic performance and redox
ability [17]. Unexpectedly, a larger visible light photocatalytic activity could not be observed in
BiVO4–RGO system under visible light irradiation [18,19].

Here, fabrication of BiVO4/Mn1−xZnxFe2O4/RGO was a continuation of our research about
the syntheses and application of BiVO4/Mn1−xZnxFe2O4 [20]. The RhB degradation reaction
using BiVO4/Mn1−xZnxFe2O4 as photocatalyst was slow (take 3 h). The incorporation of RGO
could boost the photocatalytic reaction kinetics. Here, the photocatalytic activity and mechanism
are deeply investigated with RhB degradation and the radical capturing experiments using
BiVO4/Mn1−xZnxFe2O4/RGO as photocatalyst.

2. Experimental Procedures

2.1. Preparation of BiVO4/Mn1−xZnxFe2O4/RGO

BiVO4/Mn1−xZnxFe2O4 was prepared according to our previous report [20]. Graphene oxide
(GO) was fabricated with improving Hummars method [21].

GO (36.0 mg) and 1.2 g BiVO4/Mn1−xZnxFe2O4 were dispersed in deionized water with
ultrasonication and stirring for 2 h. GO was reduced into RGO with NH3 H2O–N2H4 H2O solution
(1.0 mL–3.0 mL), then filtered and washed four times with deionized water and ethanol before placing
at 80 ◦C for 2 h. BiVO4/Mn1−xZnxFe2O4/RGO was obtained after drying at 60 ◦C for 24 h.

2.2. Materials Characterization

The phase and structure of samples were determined by X-ray Diffractometer (Shimadzu,
XRD-6000, Kyoto, Japan), Fourier transform infrared spectroscopy (FTIR, Perkin-Elmersystem 2000,
Akron, OH, USA), and INVIA Raman microprobe (Renishaw Instruments, Wotton-under-Edge,
UK). The light absorption, magnetization, and surface performances of samples were examined
by ultraviolet–visible diffuse reflectance spectrophotometer (UV–vis DRS, TU1901, Beijing, China),
vibrating sample magnetometer (VSM 7410, LakeShore, Carson, CA, USA), Brunauer–Emmett–Teller
(BET, ASAP-2020, Micromeritics, Norcross, GA, USA). The electrochemical workstation (PGSTAT30)
was employed to measure electrochemical impedance spectroscopy (EIS) of the as-prepared samples.
The test parameters of EIS were the following, K3[Fe(CN)6]/K4[Fe(CN)6] (1:1)—KCl electrolyte solution
was employed. The work electrode content contained the as-produced catalyst, acetylene black, and
polytetrafluoroethylene (mass ratio, 85.0:10:5), the counter electrode was platinum foils, and the
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reference electrode was the saturated calomel electrode (SCE), setting AC voltage amplitude of 5 mV
and a frequency range of 1 × 105–1 × 10−2 Hz.

2.3. Photocatalytic Activity, Stability, and Corresponding Mechanism

The photocatalytic activity of BiVO4/Mn1−xZnxFe2O4/RGO was investigated by the rhodamine
B (RhB) degradation under visible light irradiation [22]. Ninety milligrams of composite photocatalyst
(named fresh photocatalyst) was put into 5.0 mg/L RhB solution (100.0 mL). The solution was placed
for 0.5 h with stirring in the dark to reach the adsorption–desorption equilibrium. A 500 W Xe lamp
was used as the visible light source, equipped with ultraviolet (UV) light cut-off filter (λ ≥ 400 nm).
At given irradiation time intervals, a series of the reaction solution was sampled and the absorption
spectrum was measured.

The stability for the photocatalyst were assessed by cycling tests. After each cycle, the
photocatalyst was separated and recovered by means of an external magnet. The recovered catalyst
was respectively washed with ethanol and deionized water, then dried at the end of each cycle.

The photocatalytic mechanism of BiVO4/Mn1−xZnxFe2O4/RGO was explored by holes-radical
trapping experiments with p-benzoquinone (BZQ,) (•O2

− radical scavenger), Na2-EDTA (hole
scavenger), and tert-butanol (t-BuOH) (•OH radical scavenger) in photocatalytic reaction.

3. Results and Discussion

3.1. Optimal Synthesis Condition

The Mn1−xZnxFe2O4, prepared in advance, had a strong magnetization. In order to completely
form BiVO4 precursor and reduce the impurity, Mn1−xZnxFe2O4 was put into the precursor instead of
Bi(NO3)3 solution, in other words, BiVO4 precursor was already formed before magnetic substance
was added. Mn1−xZnxFe2O4/BiVO4 was assembled via calcination at only 450 ◦C. This temperature
was lower than that of Mn1−xZnxFe2O4 formation (1200 ◦C), as well as BiVO4 formation (500 ◦C).
Therefore, the calcination approach was indeed low-cost and economical.

GO was dispersed in BiVO4/Mn1−xZnxFe2O4 with deionized water under room temperature,
RGO was produced by NH3 H2O + N2H4 H2O reduction of GO without heating. This in situ synthesis
method was simple and with low-energy consumption.

3.2. Structure and Phase Identification

The XRD spectra of the obtained samples were shown in Figure 1. The characteristic spectra
(Figure 1b–d) of monoclinic crystal BiVO4 was well indexed with the standard card (JCPDS card
No: 14-0688) [17], corresponding to the diffraction phases of (110), (011), (121), (040), (200), (002), (211),
(150), (132), and (042). The diffraction pattern in Figure 1a of Mn1−xZnxFe2O4 was fully matched
with the standard card (JCPDS card No: 74-2400), agreeing with the result of the literature report [20].
The diffraction peaks of Mn1−xZnxFe2O4 patterns were hardly observed in Figure 1c,d. Not only
was the amount (15.0%) of the magnetic matrix low, but also, the diffraction patterns location of
Mn1−xZnxFe2O4 overlapped with the domain diffraction patterns of BiVO4. The diffraction peak
of GO (Figure 1e) was observed at 10.8◦ (crystal plane (001)) [23]. However, the peak (Figure 1d)
disappeared after GO was mostly reduced to RGO under the reduction of NH3 H2O and N2H4

H2O [24]. Moreover, the amount (3%, w/w) of RGO was not enough to be detected in X-ray diffraction.
In short, it was deduced that the prepared samples totally exhibited good crystallinity.

The peak–intensity ratio (ID/IG) of D band (~1364.0 cm−1, originating from disorder-activated
Raman mode) and G band (~1598.0 cm−1, corresponding to sp2 hybridized carbon) in RGO was
usually used to assess the reduction extent. Figure 2 showed the Raman spectra of the above-obtained
samples. It was seen that G-band of RGO was shifted from 1598.0 cm−1 to 1589.0 cm−1, while the
D-band shorted from 1364.0 cm−1 to 1352 cm−1 after the thermal reduction finished. The ID/IG ratio
of GO was 1.10, and that of BiVO4/Mn1−xZnxFe2O4/RGO decreased to 0.84. The relative low ID/IG
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ratio of RGO implied high reduction efficiency in BiVO4/Mn1−xZnxFe2O4/RGO [17]. Typical Raman
bands of BiVO4 were located at 120.0, 210.0, 324.0, 366.0, and 826.0 cm–1 in Figure 2. The two bands
at 324.0 cm−1 and 366.0 cm−1 changed into one wide band in BiVO4/Mn1−xZnxFe2O4, as well as
in BiVO4/Mn1−xZnxFe2O4/RGO. The result was also consistent with the results of the previous
report [25].Nanomaterials 2018, 8, x FOR PEER REVIEW  4 of 13 
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To investigate the valence state and the surface property of BiVO4/Mn1−xZnxFe2O4/RGO, XPS
spectrum characterization was employed. As displayed in Figure 3a, the spectrum intensity of
C 1s in BiVO4/Mn1−xZnxFe2O4/RGO was larger than that in BiVO4/Mn1−xZnxFe2O4, namely,
the introduction of RGO brought the intensity increase of C 1s. The spectrum intensity of
oxygen-containing functional groups in Figure 3b was larger than that in Figure 3c, meaning
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the decrease of GO and the increase of RGO in BiVO4/Mn1−xZnxFe2O4/RGO sample. This
feature confirmed the efficient reduction of GO and the valence states for various elements in
BiVO4/Mn1−xZnxFe2O4/RGO.

Figure 4 was the transmission electron microscopy (TEM) images of the as-synthesized
BiVO4/Mn1−xZnxFe2O4/RGO. In detail, there were the black core of Mn1−xZnxFe2O4 and the gray
shell of BiVO4, and RGO sheets had good interfacial contact with BiVO4/Mn1−xZnxFe2O4 spherical
particle. In other words, there was an overlap between BiVO4/Mn1−xZnxFe2O4 and RGO. At the same
time, energy dispersive spectroscopy (EDS) of the composite revealed the presence of Fe, Bi, V, O, and C
elements in Mn1−xZnxFe2O4, BiVO4, and RGO, which was in good agreement with XPS investigation.
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Specific surface area of the as-obtained compounds was determined with the adsorption
instrument, and the result was shown in Figure 5. The adsorption–desorption isotherms in
Figure 5 were the typical isotherm III, agreeing with the reference report [26]. The discrete curve of
BiVO4/Mn1−xZnxFe2O4/RGO was in p/p0 range of 0.45–0.55, and the pore diameter distribution was
mainly 2–10 nm, and the most probable distribution was located in 4 nm. It was deduced that the
introduction of RGO caused the mesopore increase and the macropore decrease. Thus, there was the
uniform surface structure in the ternary composite. Calculating with the data in Figure 6, the specific
surface area of BiVO4/Mn1−xZnxFe2O4/RGO was 8.84 m2/g, and that of BiVO4/Mn1−xZnxFe2O4

was only 2.22 m2/g. The incorporation of RGO enhanced the specific surface area compared
with BiVO4/Mn1−xZnxFe2O4. The larger specific surface area provided more active surface sites,
more free space to improve the mobility of photo-induced electrons, and further facilitated the effective
migration of charge carriers, leading to the remarkable improvement of photocatalytic performance [27].
The surface structure characterization could demonstrate, in advance, the photocatalytic activity of
BiVO4/Mn1−xZnxFe2O4/RGO to some extent.
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3.3. Magnetic Performance and Optical Properties

The magnetic hysteresis loops of the samples were displayed in Figure 6. The saturation
magnetization (Ms) of Mn1−xZnxFe2O4 and BiVO4/Mn1−xZnxFe2O4/RGO were 84.03 and 8.21 emu
g−1, respectively. Ms of the compounds was lower than that of the pure Mn1−xZnxFe2O4, owing to
the amount decrease of the magnetic substance quantity in per unit composite. It was obvious
that the prepared composite BiVO4/Mn1−xZnxFe2O4/RGO had a soft-magnetic feature like pure
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Mn1−xZnxFe2O4, which further confirmed than the synthesized composite must be comprised of
Mn1−xZnxFe2O4 component [20,26].

It was worth noting that Ms was no attenuation after BiVO4/Mn1−xZnxFe2O4/RGO was
employed after five rounds of recycling, indicating the stable magnetism of the as-prepared composite
photocatalyst. More importantly, the compound exhibited outstanding paramagnetism because both
coercivity (Hc) and remnant magnetization (Mr) were near to zero. Obviously, the excellent magnetic
property ensured the high recovery ratio of BiVO4/Mn1−xZnxFe2O4/RGO using an external magnet
after reaction.

The light absorption ability of the as-prepared samples was investigated with UV–vis DRS, and
the diffuse reflectance spectra were recorded in Figure 7. It was seen from Figure 8a that the maximum
absorption wavelength (λmax) of pure BiVO4 was about 500 nm. The further insights revealed the
absorbance (at λmax = 500 nm) of the compounds was higher than that of BiVO4. The band gap energy
(Eg) was estimated from (Ahv)1/2 ~hv plots [5] (Figure 7b). Eg of BiVO4, BiVO4/Mn1−xZnxFe2O4, and
BiVO4/Mn1−xZnxFe2O4/RGO were approximately 2.36 eV, 2.36 eV, and 2.27 eV, respectively. The
introduction of Mn1−xZnxFe2O4 did not extend the absorbance light range of BiVO4 [20]. However,
the introduction of RGO could be conducive to lessen Eg, leading to the enhancement of visible light
absorbance for BiVO4/Mn1−xZnxFe2O4. It is true that the great light absorption was closely related to
good photocatalytic activity of catalysts [26].
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3.4. Electrochemical Performance

Electrochemical impedance spectroscopy (EIS) was an effective approach to evaluate electron
transfer ability in the interface between solid phase electrodes and electrolyte solution [28]. The typical
impedance spectra of the samples were displayed with Nyquist plots. The semicircle diameter
in Figure 8 became small when RGO inserted in the work electrode contained the compound.
This change implied the resistance decrease and the conductivity increase in the test interface.
The charge-transfer resistance (Rct) of the samples was gained by fitting the data from Figure 8. Rct of
BiVO4, BiVO4/Mn1−xZnxFe2O4, and BiVO4/Mn1−xZnxFe2O4/RGO were 351.0 Ω cm2, 206.0 Ω cm2,
and 103.0 Ω cm2, respectively. It was clear that Rct of the ternary composite was the lowest.

The good electron accepting and transporting properties of RGO could contribute to the
prevention of charge recombination. It was reasonable that the introduction of RGO was beneficial
to the efficient charge separation and transportation in the compound interface. The electrochemical
behavior brought high conductivity of the comprising electrode. As a result, the enhancement of
conductivity promoted the improvement of photocatalytic activity for BiVO4/Mn1−xZnxFe2O4/RGO.

3.5. Photocatalytic Activity, Stability, and Corresponding Mechanism

The photocatalytic activity was probed with photodegradation of RhB dye, and the result
was shown in Figure 9. It was found from Figure 9 that the degradation ratio of RhB with
BiVO4/Mn1−xZnxFe2O4/RGO under visible light irradiation reached to 96.0% after only 1.5 h
reaction. It is worth noting that the self-degradation of RhB was very weak in the comparative test. It took
about 3 h to get the same degradation ratio (96.0%) with pure BiVO4 as well as BiVO4/Mn1−xZnxFe2O4

under identical conditions. Significantly, BiVO4/Mn1−xZnxFe2O4/RGO exhibited more excellent
photocatalytic activity than that of BiVO4/Mn1−xZnxFe2O4. Moreover, the activity of
BiVO4/Mn1−xZnxFe2O4/RGO was greatly superior to that of SrFe12O19/BiVO4, as well as
BiVO4/RGO, in the literature [19,22]. The high photocatalytic property of the as-produced compound
BiVO4/Mn1−xZnxFe2O4/RGO was explained as follows: the graphene owned two-dimensional π–π
conjugate structure was not only a good electron acceptor, but also a good electronic vector. RGO excited
electrons in BiVO4/Mn1−xZnxFe2O4 and prompted the transferring of the conduction band in
itself [29]. It was more interesting that the photocatalytic activity of BiVO4/Mn1−xZnxFe2O4/RGO
was obviously better than that of Mn1−xZnxFe2O4/β-Bi2O3 in previous our group’s report [20].
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The stability was a key property in the industrial application of catalytic materials. Each recycling
experiment was operated in triplicate, and average values and standard deviations were also shown
in Figure 10. The degradation ratio of RhB in the fifth recycling was still 85.0% after 1.5 h of reaction
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under the same test parameters. The photocatalytic activity was only reduced a little within five
recycles. The result revealed good stability of BiVO4/Mn1−xZnxFe2O4/RGO.
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Figure 11 was FTIR spectra of the compounds. The peaks at 473.7 cm−1 and 412.4 cm−1 in
Figure 11a,b were assigned to Zn–O and Fe–O vibrations in Mn1−xZnxFe2O4. Characteristic patterns
of V–O symmetric and asymmetric stretching vibrations spectra in BiVO4 were present at 734.3 cm−1

and 823.4 cm−1. The abovementioned peak location and intensity of Mn1−xZnxFe2O4 and BiVO4

were not varied, demonstrating a high stability of BiVO4/Mn1−xZnxFe2O4 during the photocatalytic
reaction. The peak at 1625.9 cm−1 in Figure 11 belonged to C=C stretch of aromatic group in RGO.
The peak at 1629.5 cm−1 in Figure 11b was weaker than that in Figure 11a, due to a little loss of RGO
quantity after the fifth cycle. The absorption peaks located at around 1400.0 cm−1 and 1065.0 cm−1

illustrated the functional group of RGO [30]. By comparing pattern (a) and (b) in Figure 11, the typical
peaks were detected in the spectra of the fresh, as well as the recovered compound. Thereby, it was
concluded that the structure of BiVO4/Mn1−xZnxFe2O4/RGO was stable in the process of RhB
photocatalytic degradation.
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The photocatalytic mechanism of BiVO4/Mn1−xZnxFe2O4/RGO was probed with radical
scavengers [31]. t-BuOH (•OH scavenger), EDTA-Na2 (h+ scavenger), and BZQ (•O2

− scavenger)
were employed to ascertain the dominant radical species in the photocatalytic degradation of RhB
with the as-synthesized compound. Degradation ratios of RhB under these scavengers were given in
Figure 12. The photodegradation ratio of RhB was 72.0% and 65.0% only when 5.0 mM t-BuOH and
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1.0 mM EDTA-Na2 were added into the reaction system. Namely, h+ or •OH scavenger brought about
the decrease of degradation ratios. Thus, the photocatalytic activity of the compound greatly decreased.
The inactivation of the photocatalytic test was evidently proven when 1 mM BZQ was added in
the same reaction system. The above results demonstrated that the most active species was •O2

−,
though •OH and h+ also contributed to the photocatalytic activity of BiVO4/Mn1−xZnxFe2O4/RGO.

Figure 13 described the electron–hole pairs forming process under the light irradiation.
The potentials of conduction band (CB) and valence band (VB) of BiVO4 were 0.46 eV and 2.86 eV,
respectively (referring to hydrogen electrode, NHE). The electrons in VB were excited to CB under
visible light irradiation, forming driven-electrons (e−) and holes (h+). The VB potential of BiVO4

was close to Eθ of •OH/H2O, and the CB potential was larger than Eθ of O2/•O2
−. This meant that

electrons were able to directly reduce O2 molecules into superoxide O2
−. Besides, RhB molecules were

directly oxidized by the holes on VB of BiVO4. In addition, there were much more active adsorption
centers and photocatalytic reaction sites in RGO with a large surface area. These active centers and
sites were beneficial to the improvement of the photocatalytic activity. As a good electron accepter and
electronic vector, RGO facilitates the transmission of photo-produced electrons, which was conducive
to the separation of photo-produced electrons and holes, and further promoted the formation of •O2

−.
It was ensured that •O2

− played the main role for the RhB photodegradation, though •OH and h+

had a collaborative oxidation role in the photocatalytic reaction of BiVO4/Mn1−xZnxFe2O4/RGO.
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In fact, since our group found that the magnetic composite ZnFe2O4/SrFe12O19 had a highly
photocatalytic activity in 2013 [27], we firmly thought that the stable magnetic field from SrFe12O19

itself could promote the separation of photo-generated electrons and holes, and furthermore,
that the photocatalyst could produce more photo-generated electrons and holes under identical
light irradiation. Thus, the photoelectric transformation efficiency would be boosted. Our group the
studied BiVO4/SrFe12O19, Bi2O3/SrFe12O19, and BiOCl/SrFe12O19 [22,32,33] magnetic heterojunction
to confirm previous speculation. However, these studies about its photoelectron transfer mechanism
were not enough. In future work, our group will continue to attempt to confirm our speculation via
experimental and theoretical calculations. Of course, this work was carried out in order to compare
with SrFe12O19 functions.

4. Conclusions

Magnetic photocatalyst BiVO4/Mn1−xZnxFe2O4/RGO was synthesized with the simple and
economical roasting-reduction approach. The photocatalyst exhibited excellent photocatalytic activity
and stability. The degradation ratio of RhB reached 96.0% under visible light irradiation after only 1.5 h
reaction with the photocatalyst. The degradation ratio of RhB was still maintained at 85.0% after five
cycles of photocatalytic reaction. Here, the incorporation of RGO enhanced the specific surface area
compared with BiVO4/Mn1−xZnxFe2O4.The larger specific surface area provided more active surface
sites, more free space to improve the mobility of photo-induced electrons, and further facilitated
the effective migration of charge carriers, leading to the remarkable improvement of photocatalytic
performance. RGO was the effective acceptor as well as transporter of photo-generated electron–hole
pairs. •O2

− was the most active species in this photocatalytic reaction. We hope this photocatalyst has
a wide application in organic contaminants removal or environmental pollution control in practical.
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