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The genome of the cat flea, an ectoparasite of major veterinary importance and the first representative of the 

Siphonaptera, is highly unusual among arthropod genomes in showing a variable size and a very large number of 

gene duplications (Driscoll et al., 2020). The cat flea is the target of several classes of insecticides, justifying the 

description of its CYPome, the complement of P450s that are an important family of detoxification enzymes. 103 

P450 genes were annotated on the nine chromosomes, with an additional 12 genes on small, extrachromosomal 

scaffolds. Only 34 genes were found as single sequences, with 47 duplicated two to four-fold. This included 

duplication of genes that are mostly single copy P450 genes in other arthropods. Large clusters of mitochondrial 

clan P450s were observed, resulting in a CYP12 bloom within this clan to 34 genes, a number of mitochondrial 

P450s not seen in other animals so far. The variable geometry of the cat flea CYPome poses a challenge to the 

study of P450 function in this species, and raises the question of the underlying causes of single copy control 

versus multicopy licence of P450 genes. 
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. Introduction 

The cat flea Ctenocephalides felis (Siphonaptera, Pulicidae) is a world-

ide obligate ectoparasite of cats and dogs as well as wildlife ( Rust and

ryden, 1997 ; Rust, 2016 ). It is a carrier of a number of pathogens,

rom Rickettsia to Bartonella , and intermediate host of parasites such as

apeworms. As blood feeder, the cat flea is also responsible for allergic

ermatitis. A well known, related member of the Order Siphonaptera

s the Oriental rat flea, vector of the bubonic plague bacterium Yersinia

estis . The medical and veterinary importance of fleas, and the cat flea in

articular, has made the protection of household pets a major industry.

ith few viable alternatives ( Rust, 2020 ), reliance on chemical control

s predominant, both oral administration and topical ( “spot-on ”) treat-

ent of the flea host with a number of active ingredients from several

lasses. Challenges in the toxicology of flea control chemicals are pri-

arily the prevention of toxicity to the hosts (cat or dog) and to their

wners (particularly children). Selective toxicity is mainly achieved by

aximizing the differential sensitivity of the insecticidal target in the

ea with that in the vertebrates, when the target is in the nervous system

 Gassel et al., 2014 ). Even for highly selective agents whose insecticidal

arget is absent from vertebrates (such as the insect growth regulators

ethoprene or lufenuron), potential toxic side effects need to be avoided

 Gaens et al., 2019 ). Efficacy at recommended doses therefore depends

n a delicate balance between bioavailability of the insecticide and its

etabolic inactivation. Efficacy can be compromised by resistance, a
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ajor problem facing chemical control of arthropods ( Feyereisen et al.,

015 ; Nauen et al., 2022 ). Relatively few (28) cases of resistance have

een reported for the cat flea ( Mota-Sanchez and Wise, 2021 ). Target

ite resistance ( kdr and Rdl ) predominate, but metabolic resistance has

lso been inferred in some cases. For instance, synergism by PBO re-

uced malathion resistance ( Bossard et al., 1998 ), an indirect sign of

ytochrome P450 involvement. No metabolic resistance to isoxazolines

uch as fluralaner has been reported to date. The metabolism of flea con-

rol agents is therefore an important aspect to understand their efficacy

nd to manage resistance. Yet xenobiotic metabolism in fleas is rela-

ively understudied, but certainly relies on classical processes such as

hase I, the introduction of functional groups and phase II, conjugation.

The cat flea genome ( Driscoll et al., 2020 ) now makes it possible to

nalyze in detail the cytochrome P450 genes in this species that encode

he principal phase I enzymes of oxidative metabolism. Here, the full

omplement of P450 genes (the CYPome) of the cat flea is described,

o serve as basis for future research on toxicology of this important

est. A second goal of this study relates to the evolution of the P450

ene family. It is one of the very large families of genes in eukaryotic

enomes ( Nelson, 2018 ). The enzymes they encode are mostly charac-

erized by their monooxygenase function, activating molecular oxygen

o insert one atom in a substrate while reducing the other to water.

his general scheme translates into a great variety of chemical reactions

uch beyond simple hydroxylation ( Guengerich and Munro, 2013 ).

owever, the nature of the substrate, from hormone to pesticide or
ebruary 2022 
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Figure 1. Duplicated P450 genes in the cat flea. Sequences that are > 95% iden- 

tical were considered to be duplicates. 
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nvironmental toxicant, brings P450 enzymes in multiple pathways sub-

ect to widely different evolutionary constraints and selection regimes.

YPome composition is generally characterized by many genes in few

YP families, and few genes in many CYP families ( Sezutsu et al., 2013 ;

ermauw et al., 2020 ). A close look at a genome characterized by a

igh proportion of gene duplicates ( “genome in flux ”) ( Driscoll et al.,

020 ) might reveal if this pattern of duplication is random or restricted

o some P450 subfamilies or genes. Furthermore, the CYPome of the cat

ea may inform on the relationship between host use and detoxification

nzyme complements ( Rane et al., 2019 ). Here, the P450 genes of the

at flea are presented. Reflecting the whole genome, the CYPome com-

rises many gene duplicates. Furthermore, the cat flea CYPome shows

 great expansion of the mitochondrial clan P450s that has not been

bserved previously in animals. 

. Materials and Methods 

.1. Annotation of P450 genes 

The cat flea Ctenocephalides felis genome (QVAO01, GCA_

03426905.1) was searched by blast with representative P450 se-

uences from Diptera and Coleoptera ( Dermauw et al., 2020 ), and

atched when appropriate with RefSeq models (Annotation Release

00). This resulted in 171 annotations of genes, pseudogenes, loose

xons and gene fragments (Supplementary Table 1). Although 40 gene

odels from RefSeq appeared to be correct, there were 10 fusions of

wo genes into one gene model, and 2 fusions of three. There were

lso 2 genes split into two halves, and 17 RefSeq gene models that

orresponded to partial pseudogenes (see Supplementary Table 1).

he high frequency of frameshifts caused by single nucleotide indels

as an additional annotation problem, and evidence from transcripts

as not abundant enough to reliably correct all these frameshifts. It

as therefore difficult to decide whether these frameshifts were errors

rom PacBio sequencing (only 25x coverage), or a biological reality of

his peculiar genome, with many duplications resulting in some genes

eing in the process of pseudogenization. The CYPome presented here

ncludes 23 (near) full length sequences with at least one frameshift, of

hich six were designated with the P (pseudogene) suffix because of

acking transcript evidence, three as a result of short genomic gaps, and

ne as a result of a premature stop codon (Supplementary Table 1). 

.2. Naming P450 sequences and P450 phylogeny 

Full length sequences were given names following the official P450

omenclature. While this was straightforward for 34 unique sequences

epresented by a single gene, the remaining 81 sequences consisted of

wo, three or four duplicates of an additional 34 unique sequences.

hese sequences were on average 98.3 ± 1.5% identical and all were

 95% identical. Driscoll et al. (2020) considered genes with > 90% iden-

ity as duplicates, so the criteria used in this study were more stringent.

uch duplicate sequences were given a,b,c,d suffixes after the gene num-

er. 

Sequences were aligned by MAFFT ( Katoh et al., 2019 ) and maxi-

um likelihood phylogeny constructed by iq-Tree ( Minh et al., 2020 ).

he trees were drawn by FigTree ( http://tree.bio.ed.ac.uk/ ). 

. Results 

.1. P450 sequences 

The cat flea genome is characterized as “plastic ” with rampant gene

uplication ( Driscoll et al., 2020 ). This was abundantly apparent in this

nnotation of the CYPome, the first one from the order Siphonaptera.

15 P450 genes were annotated, from a set of 68 unique CYP sequences,

f which only half were present as single copy genes. For the remain-

er, 25 were duplicated once, 5 present in 3 copies and 4 present in 4
2 
opies ( Table 1 and Figure 1 ). 103 of the 115 genes were distributed

n the “big 9 scaffolds ” which represent the nine core chromosomes.

ostly tandem duplications, with evidence for segmental duplications

overing several genes were observed (Supplementary Table 1). Twelve

dditional P450 genes were distributed on seven smaller scaffolds. The

recise nature of these smaller scaffolds which map to homologous re-

ions on the assembled chromosomes is unclear. All 12 P450 genes (and

any gene fragments) on these small scaffolds were duplicates of genes

ound on the assembled chromosomes. As the genome sequence was

btained from pooled females, and as no two cat fleas have the same

enome size ( Driscoll et al., 2020 ), these smaller scaffolds may repre-

ent copy number variation (CNV), or optional genome complements. 

.2. Distribution into CYP families 

The P450 sequences were distributed in the four major insect CYP

lans ( Dermauw et al., 2020 ) and 22 families (including 2 new families

n the CYP3 clan). Notably, the cat flea CYPome had a particularly large

umber of mitochondrial clan P450 with 34 sequences and just 13 CYP4

lan P450s. The pattern of P450 gene duplications in the cat flea is con-

istent with that observed at the whole genome level. The proportion of

uplicated single copy genes at the genome level (38%) ( Driscoll et al.,

020 ) is the same as that observed for the CYPome (47 / 115). At the

enome level, these gene duplications represent CNV resulting from un-

qual crossing over rather than artefacts from misassembled allelic vari-

nts. This is also shown for the CYPome where 55 truncated genes and

oose exons were annotated. However, the distribution of these gene

ragments among CYP clans was uneven, with a disproportionately high

umber of gene fragments for the two smaller CYP clans (CYP2 and

YP4 clans), and fewer for the larger clans with higher number of full

ength duplicates (CYP3 and MITO clans). 

Arthropod CYPomes generally consist of many families with few

enes, and few families with many genes. The many families with few

enes often fall into conserved orthologous groups. In Holometabola

 Dermauw et al., 2020 ), these consist of just a dozen P450 genes, includ-

ng those involved in ecdysteroid metabolism. These genes are all con-

erved in the cat flea, but several are duplicated: in the mitochondrial

lan, CYP314A1 and CYP315A1 are both tandemly duplicated (with also

 CYP315A1 pseudogene), while CYP302A1 has one chromosomal copy

nd one extrachromosomal copy ( Figure 2 ). In the CYP4 clan, both types

f CYP4G genes ( Feyereisen, 2020 ) are duplicated, so that the only sin-

le copy, conserved orthologs are in CYP2 clan, CYP18A1, CYP306A1,

YP303A1, CYP15A1, CYP307A1 and B1, and a CYP305, as well as the

itochondrial clan CYP49A1 and 301A1. 

On the other hand, the few (sub)families with many genes are also

epresented, such as the CYP9FH, CYP6WN and CYP6WN which show

otable blooms. The mitochondrial clan CYP12 family has 25 members

n the cat flea, many more than e.g. Anopheles gambiae with just four

http://tree.bio.ed.ac.uk/
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Table 1 

CYP numbers by clan in the cat flea. Total CYP genes is the number of genes on chromosomes and on the small 

scaffolds. This total consists of unique sequences represented either by single genes or by duplicated genes, where 

duplicates are > 95% identical in sequence to each other. 

CYP2 clan CYP3 clan CYP4 clan mitochondrial clan total 

CYP genes on “big 9 ” scaffolds (chromosomes) 11 47 13 32 103 

CYP genes on small scaffolds 0 10 0 2 12 

total CYP genes 11 57 13 34 115 

unique CYP sequences 10 27 9 22 68 

as single genes 9 10 5 10 34 

as duplicated genes (2-4x) 1 30 4 12 47 

gene fragments 13 15 17 10 55 

Figure 2. Maximum likelihood phylogeny of 

cat flea P450s. The four CYP clans are marked 

in blue (CYP2 clan), green (CYP3 clan), or- 

ange (CYP4 clan) and red (mitochondrial clan). 

P450s marked with an asterisk ∗ are found on 

small scaffolds rather than on the chromosomes 

(big 9 scaffolds). 
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 Ranson et al., 2002 ). Figure 3 shows the phylogenetic relationships

f mitochondrial clan sequences from two Coleoptera, two Lepidoptera

nd two Diptera, as well as the cat flea and illustrates this CYP12 bloom

s well as the sets of conserved orthologs in the other families. 

.3. CYP gene clusters 

Gene duplications are well known to be at the origin of CYP gene

lusters in arthropods ( Feyereisen, 2012 ; Sezutsu et al, 2013 ). The cat

ea genome is therefore not surprisingly harbouring many CYP gene

lusters. Figure 4 illustrates two such clusters. One, on big scaffold 8

hows a small cluster of CYP315A1 genes, usually a single copy gene in

rthropods ( Dermauw et al., 2020 ). Instead, in the cat flee, there is a tan-

em duplication of CYP315A1 along with another gene (loc 3035/3038)

ithin 14 kb, with one of the copies of CYP315A1 pseudogenized (stop
3 
odon and frameshift in exon 1). There is a second duplication with in-

ersion of the CYP315A1 gene. The two CYP315A1 genes differ by just

even amino acids. The other cluster, on big scaffold 9, shows seven

YP9FH genes within 410 kb. It seems to have resulted from a segmen-

al duplication and inversion of three genes, with subsequent duplica-

ion of one gene. This gene, CYP9FH3 is 93% identical to the adjoining

YP9FH4b gene. Supplementary Table 1 shows several more clusters,

ften containing loose exons or partial genes. 

. Discussion 

.1. CYPome size 

CYPome sizes as estimated from automated or manual annotations

re definite numbers, attempting to represent the reality of a “type ”
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Figure 3. Maximum likelihood tree of mito- 

chondrial clan P450s. The cat flea mitochon- 

drial clan P450s are shown along with those 

from two Diptera ( Drosophila melanogaster and 

Anopheles gambiae ), two Lepidoptera ( Bombyx 

mori and Plutella xylostella ) as well as two 

Coleoptera ( Tribolium castaneum and Nicropho- 

rus vespilloides ). CYP18 sequences (CYP2 clan) 

are shown as outgroup. The cat flea sequences 

are from this work, the others are taken from 

Dermauw et al. (2020 ). 

Figure 4. Clusters of CYP genes. Top: 

CYP315A1 cluster on scaffold 8; bottom: 

CYP9FH cluster on scaffold 9. Supplementary 

Table 1 gives the coordinates of more clusters 

and tandem duplications of CYP genes. 
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enome ( Rane et al., 2019 ; Dermauw et al., 2020 ). The inclusion of

seudogenes, gene fragments, or just the use of P450 domain counts

e.g. from Interpro) can bias CYPome size from one study to another

nd criteria should be well defined before comparisons can be made

 Dermauw et al., 2020 , Vertacnik et al., 2021 ). CYPome size is subject to

hange when the genome assembly improves, or when several genomes

f the same species are compared. In that case, changes are a result of

ene copy number variation (CNV) in that species. CNV is often an inter-

ediate step ( Innan and Kondrashov, 2010 ) in the gene duplication pro-

ess observed when comparing sister species. Recently duplicated genes

re often found in tandem and can be identical or differing by one or a

ew residues, e.g. CYP6B4 and CYP6B5 in Papilio glaucus ( Hung et al.,

996 ) or CYP6AF1 and CYP6AF2 in Anopheles gambiae ( Ranson et al.,

002 ). CNV in insect CYPomes is not well documented yet, variable copy

umber of CYP6G1 ( Schmidt et al., 2010 ) and CYP6CY3 ( Bass et al.,

013 ) being good examples of CNV associated with insecticide resis-
4 
ance. Indeed, the study of resistance is now providing more examples

f P450 gene CNV and gene amplification ( Nauen et al., 2022 ). 

The CYPome size of the cat flea is an extreme example of this ambigu-

ty of assigning a precise number to the CYPome size. In part, this may

e due to sub-optimal sequencing quality, shown by a relatively high

umber of single frameshifts, some that can be corrected with the help

f transcript sequences. This sub-optimal quality of sequencing prob-

bly translates in a sub-optimal assembly as well, and future studies

ay resolve such deficiencies, as they have, indeed, with sequential im-

rovements of genomes such as Drosophila over the years. In greater

art, however, the number of CYP genes in the cat flea is ambiguous be-

ause the genomes of Siphonaptera appear to be plastic, with a core of

ine chromosomes covering 654 Mb in the cat flea, and another 120 Mb

eing dispersed in unassembled small scaffolds ( Driscoll et al., 2020 ). 

Even on the nine assembled chromosomes (big 9 scaffolds), there is a

reat number of almost identical copies of P450 genes, probably reflect-
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Table 2 

CYPome size and life history traits of arthropod ectoparasites. Generalist indicates more than one host species documented, spec ialist indicates a single known 

host species. CYPome sizes may to some extent depend on the criteria used by the authors of the studies. 

species CYPome size reference host species specialist /generalist larval feeding adult feeding (female/male) 

Ctenocephalides felis 103 this work generalist blood blood 

Glossina sp. 62-82 Rane et al., 2019 generalist maternal “milk ” blood 

Stomoxys calcitrans 202 Rane et al., 2019 generalist organic matter blood 

Lutzomyia longipalpis 100 Rane et al., 2019 generalist organic matter blood & plant sugars / plant sugars 

Phlebotomus papatasi 94 Rane et al., 2019 generalist organic matter blood & plant sugars / plant sugars 

Philornis downsi 102 Romine et al., 2021 generalist organic matter & blood ? blood 

Cimex lectularius 57 Dermauw et al., 2020 generalist blood blood 

Rhodnius prolixus 117 Rane et al., 2019 generalist blood blood 

Pediculus humanus 36 Dermauw et al., 2020 specialist blood blood 

Lepeophteirus salmonis 21 Humble et al., 2019 generalist skin & blood skin & blood 

Varroa destructor 26 Vlogiannitis et al., 2021 specialist hemolymph hemolymph 

Dermanyssus gallinae 74 this work generalist blood blood 

Ixodes scapularis 199 Dermauw et al., 2020 generalist blood blood 
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ng active, present CNV, caught as a snapshot as it were of the genomes

f the pooled females that were sequenced. Yet, the genome assemblies

f other insects that were obtained from pooled individuals do not show

uch high numbers of nearly identical sequences (i.e. recent CNV) nor

o many gene fragments and pseudogenes (i.e. ongoing selection). The

at flea CYPome is therefore exceptional, reflecting the dynamic nature

f the genome as a whole. 

Such genomic plasticity has also been observed in the rotifer Bra-

hionus asplanchnoidis , with an extreme (2-fold) variation in genome

ize ( Stelzer et al., 2021 ). However, in that case, the variation is due

o satellite DNA rather than active coding genes. Perhaps a closer ana-

og would be in fungi. The plant pathogenic Nectria haematococca car-

ies three “optional ” chromosomes (conditionally-dispensable supernu-

erary chromosomes) enriched with duplicated genes ( Coleman et al.,

009 ), accounting for variation between isolates, and perhaps adapta-

ion to diverse ecological niches. 

.2. CYPome size and life history traits 

With 103 (chromosomal) CYP genes, the cat flea as obligate ectopar-

site does not have a reduced CYPome size when compared to free liv-

ng insects in sister clades (Diptera and Lepidoptera) for which CYPomes

ave been annotated ( Rane et al., 2019 ; Dermauw et al. 2020 ). Other

rthropods feeding exclusively on blood have CYPomes sizes ranging

rom 36 ( Pediculus humanus ), to 199 ( Ixodes scapularis ) ( Table 2 ). Hasty

onclusions about a possible relation between parasitic lifestyle and CY-

ome size are therefore premature. 

.3. CYP gene CNV and duplications 

The great number of very closely related sequences seen in the CY-

ome from the cat flea genome assembly from pooled individuals makes

he distinction between interindividual CNV and species-wide gene du-

lication semantically ambiguous. It is commonly observed that sin-

le genes that show no loss or duplications between closely related

pecies, i.e. “stable ” genes, are mostly those encoding P450 enzymes

ith essential physiological function. This is the case for vertebrates

 Thomas, 2007 ) and for 12 Drosophila species ( Good et al., 2014 ). The

ay this stability is measured, by reference to a common ancestor, is

owever relative to the placement of that ancestor, as shown over the

cale of the arthropod lineage ( Dermauw et al., 2020 ). The association

f gene essentiality with gene conservation or phylogenetic stability is

ntuitively attractive. Yet the two concepts are not fully congruent as

hown by the genome-wide study of Waterhouse et al. (2011) in fungi,

ertebrates and arthropods. They suggested that the "quantitative dis-

inction between genes with known essential functions and those with-

ut is substantially less prominent than the distinction between single-

opy constrained genes and those with a multicopy license. ”
5 
Relatively little is known about which P450 genes have essential

unctions in insects (and which have not). P450s involved in hormone

etabolism or cuticular hydrocarbon biosynthesis are thought to be es-

ential. Yet gene essentiality is probably not a “static and binary prop-

rty ” ( Rancati et al., 2018 ), and is measured by a variety of criteria.

n the other hand, single copy control and multicopy licence can be

easured by more objective criteria once an evolutionary timescale is

efined (see above). This was done elegantly for the timescale of the 12

rosophila radiation ( Good et al., 2014 ). 

The very high proportion of recently duplicated / copy number vari-

ble CYP genes in the cat flea therefore offers the opportunity to identify

enes under single copy control and multicopy license. Can this then be

orrelated with gene essentiality ? The P450s known in Bombyx mori

 Anopheles gambiae and Drosophila (and thus presumably in the cat

ea as well) to catalyze various steps in ecdysteroid synthesis (CYP307,

06, 302, 315, 314) and inactivation (CYP18) do not fall clearly in

he single copy control (or “stable ”) category: three of them are du-

licated (CYP302, 315 and 314, and with a full length pseudogene for

YP315), while they are “stable ” in the Drosophila lineage ( Good et al.,

014 ). Conversely CYP307, unstable in Drosophila, has only single

opies of the 307A and 307B genes found in the holometabolous an-

estor ( Sezutsu et al., 2013 ). It may be relevant that the CYP306A1 and

YP18A1 genes are under single copy control, as they are the product of

n ancient gene duplication (basal to Mandibulata), maintained in close

ynteny (only 5 kb apart in the cat flea), and play opposing roles in

etermining the ecdysteroid titer ( Dermauw et al., 2020 ). These genes

ay therefore remain singletons because dosage imbalance would be

eleterious and lead to developmental defects. The multicopy license of

he CYP302, 315 and 314 genes is not easy to explain. 

All higher insects (Neoptera) studied so far have at least one CYP4G

ene essential for cuticular hydrocarbon biosynthesis and lethal when

nocked out. There are two copies each of the CYP4G1- and CYP4G15-

ype genes as well as ten gene fragments in the cat flea. The CYP4G sub-

amily is notoriously “unstable ” in insects, with a revolving door pattern

f gene birth and death ( Feyereisen, 2020 ) although they are stable in

he Drosophila lineage ( Good et al., 2014 ). 

Among the genes generally considered non-essential, or with “ac-

essory functions associated with unstable environmental interactions ”

 Thomas, 2007 ), while the majority of genes are under multicopy li-

ense, some in the CYP3 and CYP4 clans are not. With unequal crossing

ver as major mechanism of gene duplication, the process leads to a

ariable size of the duplicated (and lost) chromosomal segment, leading

o the duplication of more than one gene (e.g. Figure 4 ), or the gen-

ration of gene fragments. The CYP gene fragments in the cat flea are

ot evenly distributed among the four CYP clans, with the CYP2 and

YP4 clans having proportionally more gene fragments than the CYP3

nd mitochondrial clans, even though they are the two clans with the

owest number of genes. 
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These observations about which genes are duplicated and which are

ot leaves an overall picture that does not support a strong link between

ssentiality and stability. While selection would primarily determine es-

entiality, the proximal cause(s) of copy number control probably in-

lude factors other than selection. Moreover, the fact that the dupli-

ations in the CYPome closely mirror what is observed at the whole

roteome level ( Driscoll et al., 2020 ) points to an idiosyncrasy of the

at flea genome, and possibly that of other Pulicidae. Of course, a bet-

er knowledge of the actual function of each P450 would allow a finer

nalysis. 

.4. Toxicological relevance 

P450s play an important role in insecticide metabolism and resis-

ance ( Nauen et al., 2022 ). While currently there is nothing known about

he precise function of any cat flea P450 beyond presumptions that are

ased on conserved orthology, a few points merit attention. In the sis-

er clades to Siphonaptera, Diptera and Lepidoptera, many studies point

o members of the CYP3 clan as key players in insecticide metabolism

nd resistance ( Vontas et al., 2020 ; Katsavou et al., 2022 ). However,

embers of the CYP2 and mito clans have also been shown to metab-

lize xenobiotics ( Shi et al., 2022 ). The high number of closely related

equences in the cat flea, and the probable variability in numbers be-

ween populations, perhaps even individuals, will make it difficult to as-

ign insecticide metabolism to a definite gene, and, for resistance, make

he design of molecular probes for overexpression or amplification very

ifficult. The proliferation of mitochondrial clan P450s of the CYP12

amily is particularly noteworthy. In the house fly, CYP12A1 is consti-

utively overexpressed in a diazinon-resistant strain, and it metabolizes

iazinon, cyclodienes and a variety of xenobiotics ( Guzov et al. 1998 ).

n Drosophila, CYP12A4 overexpression confers lufenuron resistance

 Bogwitz et al., 2005 ). Conversely, CYP12A5 is responsible for the bioac-

ivation of nitenpyram ( Harrop et al., 2018 ). CYP12D1, a recently du-

licated gene of Drosophila, is commonly observed in transcriptomic

urveys to be associated with xenobiotic resistance, and its transgenic

verexpression confers resistance to DDT and dicyclanil ( Daborn et al.,

007 ). The mitochondrial clan CYP353D1 of Laodelphax striatellus me-

abolizes buprofezin and imidacloprid ( Elzaki et al., 2017a ; Elzaki et al.,

017b ). Because of the focus on CYP3 clan P450s in studies of resistance

r adaptation to host plants in Diptera and Lepidoptera, the toxicologi-

al relevance of insect mitochondrial P450s is often overlooked. Recent

ork on Helicoverpa armigera ( Shi et al., 2022 ) also points to the capacity

f five mitochondrial clan P450s to metabolize xenobiotics. 

. Conclusion 

Resistance, and in particular metabolic resistance, is currently not a

ajor problem in the cat flea ( Rust, 2016 ), with control failures mainly

ttributable to application problems. But resistance is always “around

he corner ”, and in the case of P450-dependent detoxification (or ac-

ivation), the variable geometry of the cat flea CYPome may prove to

inder identification of the responsible gene. In turn, this will delay the

evelopment of molecular diagnostics. These are more easily deployed

n the case of target site resistance based on point mutations in known

argets. 

The very large number of closely related sequences that point to high

NV and rate of gene duplication make the cat flea CYPome a standout

ase for arthropods, and possibly animals in general. The mitochondrial

lan P450s as the second largest clan after the CYP3 clan is unprece-

ented and calls for greater attention to the functions of these P450

nzymes. 
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