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A multimodal medical image fusion algorithm based on multiple latent low-rank representation is proposed to improve
imaging quality by solving fuzzy details and enhancing the display of lesions. Firstly, the proposed method decomposes the
source image repeatedly using latent low-rank representation to obtain several saliency parts and one low-rank part.
Secondly, the VGG-19 network identifies the low-rank part’s features and generates the weight maps. Then, the fused low-
rank part can be obtained by making the Hadamard product of the weight maps and the source images. Thirdly, the
fused saliency parts can be obtained by selecting the max value. Finally, the fused saliency parts and low-rank part are
superimposed to obtain the fused image. Experimental results show that the proposed method is superior to the traditional
multimodal medical image fusion algorithms in the subjective evaluation and objective indexes.

1. Introduction

Medical imaging modalities are varied, each of which pro-
vides different information about organs in the body. For
example, computerized tomography (CT) has excellent reso-
lution, enabling examination of finer details in tissue, but it
is weak in showing the global organ structure and patholog-
ical changes. Magnetic resonance imaging (MRI) reveals
remarkable soft tissue definition with high spatial resolution,
but it is limited in detecting fractures. Furthermore, anatom-
ical imaging techniques such as CT and MRI can not reflect
the body’s movement information, such as metabolism. Pos-
itron emission tomography (PET) and single-photon emis-
sion computed tomography (SPECT) can visualize
metabolic processes and other physiological activities, such
as blood flow and regional chemical composition absorption
[1]. Nevertheless, functional imaging techniques such as
PET and SPECT have a low spatial resolution. In summary,
it is impossible to obtain all the details of an organ from a
separate imaging modality. For improving the clinical accu-
racy of diagnosing based on medical images, an effective

method is multimodal medical image fusion, which com-
bines multiple medical images from various modalities to
improve quality and reduce redundancy of imaging.

Most medical image fusion algorithms are based on the
multiscale transform (MST), which converts the source
images into the transform domain and obtain the trans-
formed coefficients through preset functions. Then, the
processed coefficients can be converted to the fused image
by inverse MST. According to the different decomposition
methods of source images, MST can be divided into
pyramid-based methods [2–4], wavelet-based methods
[5–8], and multiscale geometric analysis- (MGA-) based
methods [9–18]. Due to the limitation of preset functions
in the MST-based algorithm, some essential features of the
source images, such as edge and texture information, may
not be well expressed and extracted, which significantly
reduces the fusion performance. Moreover, the MST-based
algorithm is usually sensitive to misregistration.

Yang and Li [19] first applied sparse representation (SR)
[20] in image processing. SR decomposes the source images
into several patches through a sliding window and
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rearranges these patches to sparse coefficient vectors, which
are the linear combination of vectors in the dictionary matrix.
Then, the fused image’s sparse coefficient vectors can be deter-
mined through maximal l1-norm, rearrange these vectors to
patches of fused image, and put these patches return to the seat
can obtain the fused image. In terms of edge feature extraction,
SR has certain advantages overMST.Many improved versions
of SR have appeared in recent years to increase computational
efficiency or improve fusion quality. Liu and Wang [21] pro-
posed adaptive sparse representation (ASR), with seven sub-
dictionaries trained in advance to match the patches of
images categorized by the gradient. Liu et al. [22] proposed
convolutional sparse representation (CSR), which does not
use the sliding window to decompose the source image but
applies a globe process. Liu et al. [23] proposed convolutional
sparsity-based morphological component analysis (CSMCA),
which simultaneously achieves multicomponent and global
SR by integrating CSR and the morphological component
analysis into a unified framework. However, since the SR-

based algorithm’s dictionary matrix cannot fully include
source image data, it fails to extract the source image’s detailed
texture information. Some scholars applied MST [24–26] or
filter [27–29] to decompose the source images. And SR can
be used to fuse the low-frequency subbands. Theoretically,
such methods can preserve the edge information of the image
better than using SR [30] to decompose the source images. Liu
et al. [31] proposed the low-rank representation (LRR), which
applies the source image as the dictionary matrix, and can
solve dictionary completeness. Liu and Yan [32] proposed
the latent low-rank representation (LatLRR), an improved ver-
sion of LRR, which can decompose the source image to
saliency part, low-rank part, and noise part. Li et al. [33] pro-
posedMDLatLRR, which integrated SR and LatLRR by using a
sliding window to sample the saliency parts of LatLRR and
processed the sparse coefficient vectors just like in SR-based
methods. LatLRR has an extraordinary capacity for extracting
texture from the image, but the ability to extract high-
frequency information is not as good as MST.
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Figure 1: LatLRR decomposition diagram.

LatLRR

X

X1 LX1 X1Z E

LX

Superimpose

LatLRR

XZ E

Figure 2: Two-layer LatLRR decomposition diagram.
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Another type of image fusion method that is more widely
used is with the help of weighted maps [34, 35], and deep
learning-based methods are particularly suitable for generating
weighted maps due to their superior feature recognition capa-
bilities. The deep learning-based methods [36–42] have been
widely used in image fusion with the development of artificial
intelligence. These methods have a prominent ability to extract
feature information from the image. Therefore, it is wise to use
deep learning-basedmethods to deal with high-frequency infor-
mation after image decomposition or generate the weight map
as the basis of image region fusion. Wang et al. [36] applied a
convolutional neural network (CNN) to generate weight maps
and decompose the source images and weight maps by contrast
pyramid and Laplacian pyramid, respectively, and make the
Hadamard product of each decomposition layer. Finally, the
fused image can be reconstructed through the contrast pyramid.
Xu et al. [37] applied LatLRR to decompose source images and
processed the low-rank parts by CNN and pyramid-based
methods, superimposed the fused low-rank part, and fused
saliency part to obtain the fused image. Liu et al. [38] applied

CNN to generate weight maps and use the Laplacian pyramid
and Gaussian pyramid to decompose the source images and
weight maps, respectively, though the Hadamard product to
obtain fused layers, and the fused image can be reconstructed
through the Laplacian pyramid. Li et al. [39] applied the aver-
age filter to decompose the source images, and the fused base
layer can be obtained by comparing the max absolute value of
images in four convolutional layers of the VGG-19 neural net-
work. The fused image can be obtained by superimposing the
base layer and detail layer. Yin et al. [40], Tan et al. [41], and
Panigrahy et al. [42] applied nonsubsampled shearlet trans-
form (NSST) to decompose the source images and selected
the fused high-frequency subbands by more firing times in
the parameter-adaptive pulse coupled neural network
(PAPCNN), boundedmeasured pulse coupled neural network
(BMPCNN), and weighted parameter adaptive dual-channel
pulse coupled neural network (WPADCPCNN), respectively.

As mentioned above, each method has its drawbacks and
advantages. In this paper, the source images are repeatedly
decomposed through LatLRR to extract the saliency parts.
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Figure 3: The procedure of low-rank part fusion.
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The fused saliency parts can be obtained by selecting the max
value. After superimposing these saliency parts, the structure
and edge information of the source images will be well pre-
served and enhance the lesion’s display. Then, the VGG-19
network is used to extract features of the low-rank part, and
the weight maps can be generated to be the basis of the low-
rank part’s activity level. The weight maps and low-rank parts
then make the Hadamard product to obtain the fused low-
rank part. Finally, the fused image can be obtained by super-
imposing the fused saliency part and fused low-rank part.
The experimental results also show that the proposed method
is significantly better than the comparison method regarding
image information retention. The main contributions of this
paper are described as follows:

(1) The proposed method applies the image detail
retention capability of LatLRR while fully extract-
ing the high-frequency information of an image
by iteratively decomposing the original image. It
compensates for the deficiency of LatLRR and
enhances the display of the lesion by superimpos-
ing saliency parts

(2) The feature map of the low-rank part of the original
image is extracted using the VGG-19 network and
then scaled up to match the size of the original
image. The weight map generated in this way can
well fit the low-rank part of the original image with
pixel information blockwise distributed

The rest of this paper is organized as follows. Section 2
introduces the multiple LatLRR decomposition algorithm,
Section 3 introduces the fusion rules, Section 4 describes
the algorithmic structure of the proposed method, Section
5 provides a detailed discussion of the experimental results,
and Section 6 concludes this paper.

2. Multiple Latent Low-Rank Representation

LatLRR is an improved version of LRR, whose principle is
date X = fx1, x2,⋯,xMg in space Rn can be represented by
a linear combination of vectors in an overcomplete dictio-
nary D ∈ Rn×mðn <mÞ, as

X =DZ, ð1Þ

where Z = fz1, z2,⋯,zMg is the coefficient matrix in space
Rm; it can be determined through

min
Z

Zk k∗ s:t:X =DZ, ð2Þ

where k·k∗ denotes the nuclear norm. The idea of this algo-
rithm is similar to that of SR, in that it finds the coefficients
of an image under certain dictionary conditions. LRR using
date X itself as the dictionary, just like equation (3), that is
the reason LRR does not have the problems of dictionary
training or completeness.

min
Z

Zk k∗ s:t:X =XZ: ð3Þ

The noise component E is added in equation (3); this is
because the original purpose of creating the low-rank algo-
rithm is to remove noise from the image. And Equation
(4) is the formula of LRR.

min
Z,E

Zk k∗ + λ Ek k1,2 s:t:X =XZ + E, ð4Þ

where λ > 0 is balance coefficient and kEk1,2 denotes the l1,2
-norm of E.

However, there are two prerequisites for using X itself as a
dictionary. One is that the data vector ofXmust be sufficiently
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Figure 4: Schematic of the grayscale and color image.
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complete. Second, the noise ofXmust be controlled in a small
range. In many practical conditions, such requirements are
challenging to achieve. For this reason, the method of adding
hidden items in the dictionary is proposed in [32]

min
Z

Zk k∗ s:t:XO = XO,XH½ �Z, ð5Þ

where XO denotes the known image data and XH denotes
the unknown hidden data. Since the dictionary contains hid-
den data, this improved algorithm is called the latent low-
rank representation. The influence of noise is taken into
account; then, we rewrite equation (5) into

min
Z,E

Zk k∗ + λ Ek k1 s:t:XO = XO,XH½ �Z + E, ð6Þ

where λ > 0 is the balance coefficient and kEk1 denotes the
l1-norm of E. Simplify equation (6) by computing the skinny
singular value decomposition (SVD) of ½XO,XH � [32], and

equation (7) can be obtained.

min
Z,L,E

Zk k∗ + Lk k∗ + λ Ek k1 s:t:X =XZ + LX + E, ð7Þ

where L denotes the saliency coefficient and Z denotes the
low-rank coefficient. Equation (7) can be solved by the aug-
mented Lagrange multiplier (ALM) [43]; the low-rank part
and saliency part of the image could be represented as XZ
and LX accordingly. The LatLRR decomposition results are
shown in Figure 1. LatLRR decomposes the source image X
to the saliency part LX, the low-rank part XZ, and the noise
part E. LX contains the local structure information and
saliency features or can be thought of as high-frequency infor-
mation. XZ contains more global structure information and
brightness information or can be thought of as low-
frequency information. E denotes the’superfluous’ part that
LatLRR separates.

It is worth noting that in images with high spatial resolu-
tion, such as CT and MRI, detailed textures may contain essen-
tial diagnostic information. Therefore, denoising such images
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Figure 5: Algorithm framework.

5Computational and Mathematical Methods in Medicine



may filter out some critical information. In this case, a reason-
able approach is to superimpose the noise part and low-rank
part. Moreover, the saliency part LX contains most edge and
structure information of the image so that the lesions may
mainly reflect in the saliency part. If the low-rank part of the
image is decomposed repeatedly, the saliency part will be fur-
ther extracted. As shown in Figure 2, a two-layer LatLRR
decomposition structure, after completing the first layer of
LatLRR decomposition, the new object of LatLRR decomposi-
tion could be obtained throughX1 =XZ + E, which can be fur-
ther decomposed into saliency part LX1, low-rank part X1Z,
and noise part E. The source images are denoted as I1 and I2.
If the number of LatLRR decomposition layers is N, there will

be N saliency parts fIS,i1 gNi=1 or fIS,i2 g
N
i=1 and one low-rank part

IL1 or IL2 for each source image. The display of the edge and
structure information will be strengthened in the new image
to highlight the lesions by superimposing saliency parts. How-
ever, suppose the number N of LatLRR decomposition layers
is blindly increased, which will reduce the efficiency of calcula-
tion. More importantly, the final fused image will display some
artificial information unacceptable for medical images. In this
paper, the optimal number of LatLRR decomposition layers will
be determined through the experiment in Section 5.1.

3. Fusion Regulation

The saliency parts of the image include most high-frequency
information. For multimodal medical images, the critical
diagnostic information reflected by a single image is not
the same. Therefore, the max-rule is applied to fuse the
saliency parts of the image can preserve a single image’s

diagnostic information as much as possible. On the other
hand, Simonyan and Zisserman [44] first applied the VGG
network to extract features at different layers from images
and obtain a splendid result. With the development of deep
learning, the operation efficiency and precision of the VGG
network have been significantly improved. As the number
of LatLRR decomposition layers increases, the source
image’s low-rank part will contain less information. If the
recognition results of VGG-19 are extracted and processed,
the weight map with regional emphasis can be generated.
Then, the fused low-rank part can be obtained by multiply-
ing the weight map with the source image’s low-rank part.
Besides, because PET and SPECT images are in color, they
need to be converted into YUV color space before fusing
them with the grayscale image as MRI.

3.1. Fusion of Saliency Parts. Each LatLRR decomposition of
the two source images will produce a saliency part of each.
By adopting max-rule for all saliency parts of N layers of
LatLRR decomposition, N fused significant parts can be
obtained, as

IiS
� �N

i=1 x, yð Þ =max IS,i1
� �N

i=1 x, yð Þ, IS,i2
� �N

i=1 x, yð Þ
h i

, ð8Þ

where fIiSgNi=1ðx, yÞ denote the position ðx, yÞ of the ith

layer saliency part of fused image fIiSgNi=1, so as fIS,i1 gNi=1ðx,
yÞ and fIS,i2 gNi=1ðx, yÞ. The final fused saliency part can be

Input:I1 and I2.
Output: fused image IF
/∗ Part 1: N layer multiple LatLRR decomposition. ∗/

1 for each M = ½I1, I2�do
2 for each i = ½1 : N�do
3 Perform LatLRR decomposition on S to obtain fIS,i1 , IL1g and fIS,i2 , IL2g.
4 end
5 end

/∗ Part 2: Fusion of saliency part. ∗/
6 for each i = ½1 : N�do
7 perform max-rule on fIS,i1 , IS,i2 g to obtain IiS as euqation (8).
8 end

9 Superimpose fIiSgNi=1 to obtain the final fused saliency part IS as equation (9).
/∗ Part 3: Fusion of low-rank part.∗/

10 for each k = ½1, 2�do
11 Input ILk to VGG-19 network to obtain fϕmk g512m=1 extract from the 5th layer of the network;

12 Solve the l1-norm of fϕmk g512m=1 to obtain activity level map Ck as equation (10);
13 Calculate the initial weight map Ŵk by equation (11);
14 Enlarge Ŵk to get the final weight map Wk as equation (12).
15 end
16 Calculate the final fused low-rank part IL as equation (13).

/∗Part 4: Reconstruction.∗/
17 Superimpose the fused saliency part IS and the fused low-rank part IL to obtain the fused image IF as equation (14).

Algorithm 1: Proposed image fusion algorithm.
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calculated by

IS = 〠
N

i=1
IiS: ð9Þ

3.2. Fusion of Low-Rank Parts. VGG-19 is a convolutional
neural network that is 19 layers deep, including 16 convolu-
tional layers and 3 fully connected layers. Its structure is
shown in Figure 3. Each convolutional layer is denoted as
conv‘size of the filter’-‘number of such filters,’ and max-
pooling layers have 2 × 2 filter with the stride of 2. The infor-
mation of the low-rank part of the image after multiple
LatLRR decompositions is relatively fuzzy and presents a
regional-like distribution. According to this feature, the fea-
ture maps extracted from the fifth convolution layer of
VGG-19 can match the low-rank part of the image’s infor-
mation distribution state after amplification.

For low-rank parts IL1 and IL2 , fϕm1 g512m=1 and fϕm2 g512m=1
denote the feature maps extracted from the fifth convolu-
tional layer of VGG-19. As shown in Figure 3, the 5th con-
volutional layer is conv3-512, so there are 512 feature
maps of each low-rank part. Moreover, because of max-
pooling layers, these feature maps are only ð0:5Þ5 the size
of the source image. According to [39], let fϕmk g512m=1ðx, yÞ
denote the ðx, yÞ position of the kth low-rank part’s feature

maps, where k ∈ f1, 2g. The l1-norm of fϕmk g512m=1ðx, yÞ could
be the activity level measure of the low-rank part. So, the
activity level map Ck can be calculated by

Ck x, yð Þ = ϕmkf g512m=1 x, yð Þ
���

���
1
: ð10Þ

Then, the initial weight map Ŵk can be obtained by

Ŵk x, yð Þ = Ck x, yð Þ
C1 x, yð Þ +C2 x, yð Þ : ð11Þ

As feature maps are only ð0:5Þ5, the size of the source
image, so the initial weight map Ŵk, which is generated by
feature maps, is ð0:5Þ5 the size of the source image too. For
matching the size of the source image, Ŵk need the upsam-
pling procedure as

Wk x, yð Þ = Ŵk x + p, y + qð Þ p, q ∈ 1, 2,⋯ ,15f g: ð12Þ

The fused low-rank part IL can be calculated by

IL =W1 ∘ IL1 +W2 ∘ IL2 , ð13Þ

where ∘ denotes the Hadamard product.

MR-PD

(a)

CT

(b)

MR-T1

(c)

CT

(d)

MR-T2

(e)

SPECT-Tl

(f)

MR-T2

(g)

PET-FDG

(h)

MR-T2

(i)

SPECT-Tc

(j)

Figure 6: Five sets of multimodal medical images for the experiment. (a) MR-PD. (b) CT. (c) MR-T1. (d) CT. (e) MR-T2. (f) SPECT-Tl. (g)
MR-T2. (h) PET-FDG. (i) MR-T2. (j) SPECT-Tc.

7Computational and Mathematical Methods in Medicine



3.3. YUV Color Space. For color images such as SPECT and
PET, Yin et al. [40] proposed a YUV space to solve color and
grayscale images’ fusion problems. The color image is first

converted to YUV space and decomposed into one lumi-
nance component, ‘Y’ and two chrominance components,
‘U’ and ‘V.’ Then, the ‘Y’ component of the color image

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

1 2 3 4

V
al

ue
 o

f Q
TE

LatLRR decomposition layer

(a)

1 2 3 4

LatLRR decomposition layer

0.4500

0.5000

0.5500

0.6000

0.6500

0.7000

V
al

ue
 o

f Q
G

(b)

0.6100
0.6350
0.6600
0.6850
0.7100
0.7350

1 2 3 4

V
al

ue
 o

f Q
c

LatLRR decomposition layer

(c)

0.4000
0.4500
0.5000
0.5500
0.6000
0.6500

V
al

ue
 o

f Q
CB

1 2 3 4

LatLRR decomposition layer

(d)

Figure 7: Parametric experimental results. (a) QTE of five sets of images. (b) QG of five sets of images. (c) QC of five sets of images. (d) QCB of
five sets of images.

1 Layer

(a)

2 Layers

(b)

3 Layers

(c)

4 Layers

(d)

1 Layer

(e)

2 Layers

(f)

3 Layers

(g)

4 Layers

(h)

1 Layer

(i)

2 Layers

(j)

3 Layers

(k)

4 Layers

(l)

Figure 8: The fusion result of each LatLRR decomposition level. (a) 1 layer. (b) 2 layers. (c) 3 layers. (d) 4 layers. (e) 1 layer. (f) 2 layers. (g) 3
layers. (h) 4 layers. (i) 1 layer. (j) 2 layers. (k) 3 layers. (l) 4 layers.

8 Computational and Mathematical Methods in Medicine



can be fused with the grayscale image by the proposed
method. The final fused image can be obtained through
transforming the fused component ‘Y’ and other two chro-
minance components ‘U’ and ‘V’ from YUV space to the
RGB space, as shown in Figure 4.

3.4. Reconstruction. Superimpose the fused low-rank part IL
and fused saliency part IS to reconstruct fused image IF as

IF = IS + IL: ð14Þ

4. Structure of Algorithm

Source images I1 and I2 have been registered, the algorithm
framework in this paper as showed in Figure 5.

The main steps of the proposed method are summarized
as Algorithm 1.

5. Experiment

Five sets of registered multimodal medical images collected
from The Whole Brain Atlas [45] are used to verify the effec-
tiveness of the proposed method, as shown in Figure 6.
Figures 6(a) and 6(b) are the first set of images from a 55-
year-old patient with multiple embolic infarctions;
Figures 6(c) and 6(d) are the second set of images from a
31-year-old man with cerebral toxoplasmosis; Figures 6(e)
and 6(f) are the third set of images from a 51-year-old
patient with anaplastic astrocytoma; Figures 6(g) and 6(h)
are the fourth set of images from a 70-year-old patient with
mild Alzheimer’s disease; Figures 6(i) and 6(j) are the fifth
set of images from a 36-year-old patient with infectious dis-
ease due to HIV positive.

All the experiments in this paper are conducted on a PC
equipped Intel(R) Xeon(R) CPU E3-1231 v3 (3.40GHz) and
16GB RAM. The software environment is MATLAB R2019b
installed on Win 10 64-bit operating system.
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Figure 9: Comparison of the fusion results in the first set images. (a) MR-PD. (b) CT. (c) CSR. (d) ASR. (e) CSMCA. (f) CNN. (g)
BMPCNN. (h) MDLatLRR. (i) VGG-19. (j) NSCT_SR. (k) LP_SR. (l) Proposed method.
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5.1. Parametric Experiment. In order to determine the
decomposition layers of LatLRR in this paper, five sets of
images in Figure 6 were fused by the proposed method.
The results are objectively evaluated by four fusion image
evaluation indexes: fusion metric-based on Tsallis entropy
(QTE) [46], gradient-based fusion performance (QG) [47],
image structural similarity metric (QC) [48], and human
perception inspired fusion metric (QCB) [49]. QTE is a diver-
gence measure of the degree of dependence between two dis-
crete random variables, and it calculates information from
the source images is transferred to the fused image. There-
fore, the larger the QTE value, the better the fusion effect.
QG uses the Sobel edge operator to calculate the intensity
and direction information of the edges in the source image
and the fused image. The larger the QG value is, the richer
the edge information of the fused image is. QC is used to
measure the preservation degree of structure of the fused
image, so it calculates how much of the salient information
in each source image has been transferred into the fused

image. The larger the QC is, the better the structure of the
source images is preserved. The calculation process of QCB
is complex and consists of five steps: contrast sensitivity fil-
tering, local contrast computation, contrast preservation cal-
culation, saliency map generation, and global quality map
computation. QCB takes the mean value of the global quality
map. The larger the QCB value is, the richer the contrast
information of the fused image is.

The test decomposition layers of LatLRR are set from 1
to 4. Parameter experimental results of indexes of four sets
of images are shown in Figures 7(a)–7(d). It can be observed
that as the number of LatLRR decomposition layers
increases, not all indexes show a uniform trend. The value
of QTE increased with the increase of decomposition layers,
while QCB are optimal in the case of one-level decomposi-
tion. As for QG and QC, the changing trend is related to
the image set. It is reasonable because the more decomposi-
tion layers, the image background information contained in
the low-rank part will be fuzzier and more contained in the
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Figure 10: Comparison of the fusion results in the first set images. (a) MR-T1. (b) CT. (c) CSR. (d) ASR. (e) CSMCA. (f) CNN. (g)
BMPCNN. (h) MDLatLRR. (i) VGG-19. (j) NSCT_SR. (k) LP_SR. (l) Proposed method.
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saliency part. The max-rule selects the saliency part of the
fused image, so the background information of the source
images may also be strengthened in the fused image,
enhancing the appearance of the lesion. If the greater the
amount of information, the larger the QTE value will be.
However, strengthening image background information will
weaken the boundary observation and reduce the image
contrast, undoubtedly leading to a lower QCB. Medical image
fusion aims to show the information of lesions in the fused
image, so the QTE is more impotent than the other three
indexes. It can be seen from Figure 7(a) that QTE of two
decomposition layers is significantly improved than that of
one decomposition layer. Still, the more decomposition
layers could not considerably improve the QTE.

Besides, as Figure 8 shows, it can be seen that with the
increase of the number of LatLRR decomposition layers,
the artifact around the object will be aggravated in several
sets of images. In order to improve the image fusion quality,
the lesion in the fused image should be highlighted as much

as possible, and artifacts should be strictly controlled. There-
fore, the decomposition layer of LatLRR in this paper is set
as two.

5.2. Contrast Experiment. Nine typical multimodal medical
image fusion methods are selected to compare with the pro-
posed method: four sorts of SR-based methods, CSR [22],
ASR [21], CSMCA [23], and MDLatLRR [33]; three sorts
of deep learning-based algorithm, CNN [36], VGG-19 [39],
and BMPCNN [41]; and two sorts of MST integrated SR
methods are nonsubsampled contourlet transform (NSCT)
combined with SR (NSCT_SR) [24] and Laplacian pyramid
(LP) combined with SR (LP_SR) [24]. The MST decomposi-
tion level is set to 4.

Figure 9 shows the fusion results of the first set images,
Figures 9(a) and 9(b) are the source images. It can be seen
from Figure 9(l) of the proposed method, both the brain tis-
sue texture in the green box and the lesion edge in the red
box are the clearest from other fusion methods. Besides,
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Figure 11: Comparison of the fusion results in the second set images. (a) MR-T2. (b) SPECT-T1. (c) CSR. (d) ASR. (e) CSMCA. (f) CNN.
(g) BMPCNN. (h) MDLatLRR. (i) VGG-19. (j) NSCT_SR. (k) LP_SR. (l) Proposed method.
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the pixel consistency of bone in the proposed method is the
best. Figure 10 shows the fusion results of the second set
images; Figures 10(a) and 10(b) are the source images. As
can be seen in Figure 10(l), the pixel consistency of the skel-
etal structure of the fused images is the best, and the widen-
ing of the brain tissue sulcus in the green box, as well as the
calcified lesions and edema in the red box, are also clearly
visible. Figure 11 shows the fusion results of the second set
images; Figures 11(a) and 11(b) are the source images. In
Figure 11(l) of the proposed method, the boundary of the
metabolic abnormality in the red box is the clearest, and
the chromatic aberration is most consistent with
Figure 11(b). The texture information in the green box is
also clearly visible. Figure 12 shows the fusion results of
the third set images; Figures 12(a) and 12(b) are the source
images. In Figure 12(l) of the proposed method, the bound-
ary of the metabolic abnormality in the red box is the most
distinct, and the texture in the green box also holds the best.
Besides, in this set of images, some fusion methods appear

serious color distortion, as can be seen in Figures 12(c),
12(d), and 12(j), the color rendering of the proposed method
is closest to the source image. Figure 13 shows the fusion
results of the fourth set images, Figures 13(a) and 13(b) are
the source images. Compared with Figure 13(b), the graphic
structure of metabolic abnormalities (red box) in other
fusion methods has been deformed to a certain extent. The
structure is kept intact in the proposed method, and the
chromatic aberration is most consistent with the source
image.

All the fusion images are evaluated by four indexes intro-
duced in Section 5.1. As shown in Tables 1–5, in all sets of
images, the proposed method leads in QTE, especially in
the first set of images, the lead is more than 30 percent. It
means that the proposed method is superior to other
methods in the information conversion of source images.
Moreover, for the first set and the fourth set of images, the
proposed method also leads in the QC. And it indicates that
the proposed method can retain the structure of the source
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Figure 12: Comparison of the fusion results in the third set images. (a) MR-T2. (b) PET-FDG. (c) CSR. (d) ASR. (e) CSMCA. (f) CNN. (g)
BMPCNN. (h) MDLatLRR. (i) VGG-19. (j) NSCT_SR. (k) LP_SR. (l) Proposed method.
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images better than other methods. On the other hand, the
proposed method has no advantage or even a considerable
gap over the best-performing method in terms of the other

two indicators. As mentioned in Section 5.1, QG and QCB
are mainly used to measure the degree to which the fused
image retains the edge information of the source images.
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Figure 13: Comparison of the fusion results in the fourth set images. (a) MR-T2. (b) SPECT-Tc. (c) CSR. (d) ASR. (e) CSMCA. (f) CNN. (g)
BMPCNN. (h) MDLatLRR. (i) VGG-19. (j) NSCT_SR. (k) LP_SR. (l) Proposed method.

Table 1: Objective evaluation of fusion methods in the first set of
images.

Fusion method QTE QG QC QCB t/s
Proposed method 0.4359 0.5145 0.6436 0.5036 158.7860

CSR 0.3096 0.6608 0.5621 0.7137 135.2650

ASR 0.2976 0.6700 0.6121 0.6622 210.1220

CSMCA 0.2945 0.5830 0.5587 0.6103 372.3040

CNN 0.3247 0.6267 0.5560 0.5916 32.7860

BMPCNN 0.3058 0.5554 0.5828 0.5943 67.0890

MDLatLRR 0.2882 0.6527 0.6077 0.6784 69.0270

VGG-19 0.2835 0.5104 0.5569 0.6273 7.4480

NSCT_SR 0.2953 0.6243 0.5895 0.6353 7.4890

LP_SR 0.2948 0.6560 0.5734 0.6588 0.3380

Table 2: Objective evaluation of fusion methods in the second set
of images.

Fusion method QTE QG QC QCB t/s
Proposed method 0.4495 0.5647 0.6995 0.6061 50.6440

CSR 0.3911 0.6363 0.7000 0.7454 33.1950

ASR 0.3595 0.7122 0.7532 0.7328 64.9900

CSMCA 0.3491 0.6315 0.7090 0.6974 78.8380

CNN 0.4131 0.4757 0.6533 0.5848 13.8630

BMPCNN 0.3726 0.5354 0.6918 0.6210 15.7120

MDLatLRR 0.3657 0.6516 0.7108 0.7357 21.1340

VGG-19 0.4211 0.4030 0.6457 0.3627 5.1570

NSCT_SR 0.3725 0.5514 0.6886 0.6389 2.2760

LP_SR 0.3582 0.6025 0.6741 0.6521 0.2210
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QG, in particular, is directly affected by the gradient of the
fused image. As shown in Figure 12(c), the color of the CSR
fusion image is seriously distorted, and the white area in the
middle of the image has apparent artifacts, which is unaccept-
able for brain images. However, the color distortion and arti-
facts bring to the fused image that the ‘border’ does not
initially exist and will undoubtedly increase the image struc-
ture’s gradient value and complexity. That is why QG and QCB

of CSR show undeniable advantages in the contrast experiment
of third set images.QTE measures the degree to which the fusion
image retains the information of the source images, and the dis-
tortion of image structure or color will lower this index. Image
artifacts and structural distortions may mislead medical profes-
sionals, so it is not advisable to blindly pursue high image struc-
ture indexes. The proposed method has obvious advantages in
the QTE index, and the degree of color distortion and artifact
in the fused images is minimal. It is crucial for medical images.
Because artifacts in brain images can sometimes look very sim-
ilar to lesions, false lesions in images can directly affect the judg-
ment of medical professionals. In addition, SPECT and PET
show metabolic abnormalities through chromatic aberration.
If significant color distortions appear in the image, it will cause
deviation from the real. Based on the above analysis, the pro-
posed method is effective.

6. Conclusion

In this paper, a multimodal medical image fusion method
based on multiple latent low-rank representation is pro-
posed. Experimental results show that the proposed method
has advantages in preserving edge features and texture
details and leads to objective evaluation indexes compared
with other fusion algorithms. The proposed method can
enhance the observer’s ability to identify the lesions and
contribute to practical applications such as diagnosis, treat-
ment planning, and surgical navigation. On the other hand,
the proposed method also has some drawbacks. The high-
light of lesions is based on multilayer LatLRR decomposi-
tion, but with the increase of the number of decomposition
layers, artifacts will become more evident. Besides, the more
layers decomposed by LatLRR, the less information of the
low-rank part of the source image, and the greater the error
of VGG-19 network recognition. The next stage should
focus on eliminating artifacts as much as possible in the case
of multilayer LatLRR decomposition and improve the fusion
quality of low-rank parts of source images.
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