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Abstract
Aims/hypothesis The pathogenesis of type 2 diabetes is not fully understood. We investigated whether circulating levels of
preselected proteins were associated with the outcome ‘diabetes’ and whether these associations were causal.
Methods In 2467 individuals of the population-based, cross-sectional EpiHealth study (45–75 years, 50% women), 249 plasma
proteins were analysed by the proximity extension assay technique. DNAwas genotyped using the Illumina HumanCoreExome-
12 v1.0 BeadChip. Diabetes was defined as taking glucose-lowering treatment or having a fasting plasma glucose of ≥7.0 mmol/l.
The associations between proteins and diabetes were assessed using logistic regression. To investigate causal relationships
between proteins and diabetes, a bidirectional two-sample Mendelian randomisation was performed based on large, genome-
wide association studies belonging to the DIAGRAM and MAGIC consortia, and a genome-wide association study in the
EpiHealth study.
Results Twenty-six proteins were positively associated with diabetes, including cathepsin D, retinal dehydrogenase 1,
α-L-iduronidase, hydroxyacid oxidase 1 and galectin-4 (top five findings). Three proteins, lipoprotein lipase, IGF-
binding protein 2 and paraoxonase 3 (PON-3), were inversely associated with diabetes. Fourteen of the proteins are
novel discoveries. The Mendelian randomisation study did not disclose any significant causal effects between the
proteins and diabetes in either direction that were consistent with the relationships found between the protein levels
and diabetes.
Conclusions/interpretation The 29 proteins associated with diabetes are involved in several physiological pathways, but given
the power of the study no causal link was identified for those proteins tested in Mendelian randomisation. Therefore, the
identified proteins are likely to be biomarkers for type 2 diabetes, rather than representing causal pathways.
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MAGIC Meta-Analysis of Glucose and Insulin-related
traits Consortium

MR Mendelian randomisation
NT-proBNP N-terminal-pro brain natriuretic peptide
PON-3 Paraoxonase 3
TIM-1 T-cell and immunoglobulin and mucin

domain-1 (also called KIM-1, kidney injury
molecule 1)

Introduction

Although diabetes primarily could be seen as a disease in
which the insulin secretion is not sufficient compared with
insulin sensitivity in critical organs, the exact mechanisms
leading to type 2 diabetes are not known. In the ‘-omics era’,
several techniques have been used to search for the pathophys-
iological pathways underlying diabetes development, such as
genome-wide association studies (GWASs) [1], DNA-
methylation studies [2] and metabolomics studies [3, 4].

A number of studies have also linked alterations in certain
proteins, such as C-reactive protein (CRP), γ-glutamyl
transpeptidase (GGT) or adiponectin, to diabetes [5–8]. In recent
years, a few studies used an antibody-based proteomics ap-
proach to link proteins to diabetes, which allows simultaneous
investigation of multiple proteins [9–12]. One of these studies
showed that plasma levels of IL-1 receptor antagonist (IL-1ra)
and tissue plasminogen activator (t-PA) were related to incident

diabetes [11]. Three other case–control studies of diabetes
analysed proteins in urine by an untargeted approach usingmass
spectrometry. It was found that levels of histidine triad
nucleotide-binding protein 1 (HINT1), bifunctional aminoacyl-
tRNA synthetase (EPRS) and clusterin precursor protein (CLU)
[9]; fibrinogen alpha chain precursor and prothrombin precursor
[12]; and complement C3f and kininogen 1 isoform 1 precursor
[10] were altered in individuals with diabetes.

We used the proximity extension assay technique to find
proteins previously not known to be associated with diabetes.
We evaluated 249 proteins and tested the hypothesis that a
number of these would be related to prevalent diabetes in
2467 individuals in the general population-based EpiHealth
study [13]. Using summary data from large GWASs for dia-
betes and related glycaemic traits and a GWAS of protein
levels in the EpiHealth study, we performed a bidirectional
two-sample Mendelian randomisation (MR) to test whether
these proteins were causally related to diabetes, or whether
diabetes could induce alterations in protein levels.

Methods

Sample

Between 2011 and 2016, men and women aged 45–75 years
were randomly selected from the population registry in the
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Swedish cities Malmö and Uppsala and invited to participate
in the cross-sectional EpiHealth cohort study [13]. The partic-
ipation rate was approximately 20%. The recruiting and sam-
pling of participants has been completed in Uppsala, but is
ongoing in Malmö. A total of 2467 plasma samples from the
Uppsala part of the EpiHealth cohort were randomly chosen
for the protein and genotyping analyses. The study was ap-
proved by the regional ethical review board at Uppsala
University (Dnr 2010/402). All participants provided in-
formed, written consent.

Examinations

BMI was calculated from the measured height and weight, as
weight in kilograms divided by the square of body height in
meters (kg/m2). Trained staff collected venous blood samples
in the morning after a minimum 6 h fast at the EpiHealth test
centre and stored them at −80°C. Diabetes was defined as
either taking glucose-lowering treatment or having a fasting
plasma glucose level of ≥7.0 mmol/l.

Questionnaire

An extensive web-based questionnaire (EpiHealth Enkät ver-
sion 1.0.1, available from https://www.epihealth.se/PageFiles/
790/Enkät läskopia.pdf; in Swedish) was completed by the
participants, including self-assessment of leisure time physical
activity from low (level 1) to strenuous physical activity (level
5), sex, age, alcohol intake given as drinks per week, educa-
tion length (up to 9 years, 10–12 years, >12 years) and tobacco
use (current smoker, current non-smoker).

Proteomic analysis

Analyses were performed at the Clinical Biomarkers Facility,
Science for Life Laboratory, Uppsala University, with the
high-throughput, multiplex immunoassays Olink Proseek
Multiplex Metabolism, CVD II and CVD III (Olink,
Uppsala, Sweden), measuring 275 preselected protein bio-
markers of metabolism and cardiovascular disease (www.
olink.com/products/document-download-center/; accessed
October 2018). The kits are based on proximity extension
assay technology, and in each kit 92 oligonucleotide-labelled
antibody probe pairs can bind to their respective targets in the
sample [14]. Correction for differences between plates was
performed using ComBat (https://rdrr.io/bioc/sva/man/
ComBat.html) in R (R Foundation for Statistical Computing,
Vienna, Austria) [15]. Twenty-six proteins were removed
from further analysis, since more than 25% of all samples
were below the limit of detection (LOD).

The normalised protein concentrations (NPX-values) from
the laboratory measurements (being on a log2 scale to achieve
a normal distribution) were transformed to an SD scale to

obtain comparable results for all proteins. Before the transfor-
mation to the SD scale, the values below the LOD were re-

placed by LOD/
ffiffiffi
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p
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Genotyping

Genotyping was performed for the same individuals for whom
the protein analysis was done. Staff at the Biobank at
Karolinska Institute extracted DNA from 400 μl EDTAwhole
blood with the Chemagen STAR DNA Blood 400 kit (Perkin
Elmer, Waltham, MA, USA) using a ChemagicStar-robot
(Hamilton, Reno, NV, USA) based on magnetic bead separa-
tion. DNAwas dissolved in 145 μl 10 mmol/l Tris-HCl buffer
(pH 8.0) and quantity and purity determined by measuring
absorbance at 230, 260 and 280 nm. Subsequently, samples
were genotyped at the SNP&SEQ Technology Platform,
Science for Life Laboratory, Uppsala University with the
Illumina HumanCoreExome-12 v1.0 BeadChip (Illumina,
San Diego, CA, USA) including 522,731 autosomal markers.

The genotype data were initially called using Illumina
GenomeStudio 2011.1 GenCall. Sample exclusion filters ap-
plied were: (1) samples with discordant sex information when
comparing reported sex and sex determined by the X-
chromosome; (2) outlying, non-European ancestry based on
the first two components in a multidimensional scaling anal-
ysis (>3 SD from the mean); (3) outlying heterozygosity rate
(>5 SD from the mean based on markers with a minor allele
frequency [MAF] <1% or markers with MAF ≥1%); (4) low
sample call rate (<98%); and (5) one individual in each pair of
related individuals defined based on an identity-by-descent
(IBD) analysis in PLINK [16] where a proportion >0.1875
was used as a cutoff for each pair. Markers with a call rate
<97%, a Fisher’s exact test p value for Hardy–Weinberg equi-
librium <10−4, a cluster separation score <0.4 or a GenTrain
score <0.6 were also excluded. After rare variant genotype
calling with zCall version 3.3 (https://github.com/jigold/
zCall), markers with a call rate <99% or a Fisher’s exact test
p value for Hardy–Weinberg equilibrium <10−4 were also ex-
cluded. Further details can be found in the study by Kamble
et al [17]. In total, 2432 samples passed quality control, and
2378 samples remained after further exclusion of related indi-
viduals. Data were imputed up to 1000 Genomes phase 3 (v5)
(http://www.internationalgenome.org/) and the final genetic
dataset included approximately 12 million markers (minor
allele count ≥1).

Statistical analysis

Observational study (protein levels vs diabetes) A discovery/
validation approach was applied in that a random subset of
two-thirds of the sample was used in the discovery step and
the remaining one-third of the sample was used for validation.

https://www.epihealth.se/PageFiles/790/Enk%C3%A4t%20l%C3%A4skopia.pdf
https://www.epihealth.se/PageFiles/790/Enk%C3%A4t%20l%C3%A4skopia.pdf
https://www.olink.com/products/document-download-center/
https://www.olink.com/products/document-download-center/
https://github.com/jigold/zCall
https://github.com/jigold/zCall
http://www.internationalgenome.org/
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The level of significance was set to a false discovery rate
(FDR) of 5% in both discovery and replication analyses.

A series of logistic regression models was applied to assess
the association of each protein with diabetes. Adjustment was
performed for age, sex, BMI, smoking, alcohol intake, educa-
tion level and leisure time physical activity.

Stata 14 (Stata, College Station, TX, USA) was used for
these calculations.

A power analysis was performed for theMR analysis (elec-
tronic supplementary material [ESM] Table 1) using free soft-
ware (https://sb452.shinyapps.io/power/). The R2 is the
protein level variance explained by the lead SNP. The power
for the MR analysis was calculated with this free software for
an OR of 1.1 (or 0.9) using the Diabetic Genetics Replication
and Meta-analysis consortium (DIAGRAM) study by Xue
et al [18], with 62,892 type 2 diabetes cases and 596,424
control individuals and a significance level of p = 0.05.

Two-sample, bidirectional MR analyses

We implemented bidirectional instrumental variable analysis
to assess causality between proteins observationally associat-
ed with diabetes and insulin resistance (measured by HOMA-
IR), fasting glucose and risk of type 2 diabetes. We obtained
summary GWAS data from the Meta-Analysis of Glucose and
Insulin-related traits Consortium (MAGIC), Dupuis et al [19],
for HOMA-IR (up to 46,186 non-diabetic individuals), from
Scott et al [20] for fasting glucose (up to 108,557 individuals)
and from the DIAGRAM consortium, Xue et al [18], for risk
of type 2 diabetes (62,892 case and 596,424 control individ-
uals). All three studies meta-analysed GWASs in mostly
European participants with adjustments for sex, age and ge-
netic principal components.

To select genetic instruments for type 2 diabetes and fasting
glucose, we selected all SNPs associated at p < 5 × 10−8 and
used the clump_data() function in the TwoSampleMR soft-
ware package in R to prune SNPs in linkage disequilibrium
(LD)with the default clumpingwindow of 10,000 kb and r2 >
0.001. There were no SNPs associated at p < 5 × 10−8 with
HOMA-IR, and we therefore extracted summary data for ten
SNPs previously validated as part of a genetic risk score for
insulin resistance by Scott et al [21]. We then extracted details
of SNP associations with protein levels from the EpiHealth
GWAS using proxy SNPs in LD r2 > 0.7 for SNPs not avail-
able in EpiHealth. Proxy search was carried out in LDLink
using the European reference population (https://ldlink.nci.
nih.gov). SNPs were aligned to the effect allele using the
harmonize_data() function with the recommended option
action = 2 which harmonises SNPs by trying to infer
forward strand alleles using allele frequency information,
and excludes palindromic, non-inferable SNPs. The inverse
variance-weighted and MR Egger methods were used to esti-
mate instrumental variable effects. Heterogeneity and

horizontal pleiotropy were assessed by the Q statistic and
Egger intercept term at the nominal significance level. We
consider as results statistical evidence of causal effects in the
inverse variance-weighted method (Bonferroni corrected for
the number of tested proteins and three outcomes per protein)
with directionally consistent estimates in MR Egger and no
statistical evidence of heterogeneity (Q statistic) and horizon-
tal pleiotropy (Egger intercept).

In order to assess causal effects of proteins on the three
phenotypes, we carried out cis-MR by constricting the selec-
tion of genetic instruments for protein levels to genome-wide-
associated variants within each protein’s gene locus ±1000
base pairs. By restricting selection to SNPs within the protein
locus, cis-MR minimises the likelihood of pleiotropic effects
not mediated by the protein of interest [22]. To identify cis
genetic instruments for observationally diabetes-associated
proteins, we extracted all SNPs associated at p < 5 × 10−8 with
protein levels and located within the gene locus in the
EpiHealth GWAS (ESMTable 2). If several signals were iden-
tified, LD pruning was implemented as described above. We
also searched the GWAS results (1) from Sun et al [23], who
identified 1927 independent genetic associations with 1478
proteins out of ~3600 tested proteins in a sample of 3301
European participants; (2) from Suhre et al [24] (available
via http://metabolomics.helmholtz-muenchen.de/pgwas/
index.php), who carried out a GWAS for 1124 proteins in
1000 German and 338 Arab individuals; and (3) collected in
the GWAS catalogue (https://www.ebi.ac.uk/gwas/). SNP
associations with the outcomes type 2 diabetes risk, fasting
glucose and HOMA-IR were extracted from the three meta-
GWASs [18–20]. Instrumental variable analysis was imple-
mented as described above for multiple-SNP instruments or
using the Wald ratio and delta method to estimate the SE in
cases where a single SNP was selected as instrument, as im-
plemented with default options by the mr() function in
TwoSampleMR [25].

Results

In total, 211 (8.5%) individuals had prevalent diabetes. Basic
characteristics in the discovery and validation subsamples are
given in Table 1.

Observational study (proteins vs diabetes)

In the discovery part of the study, 68 proteins were associated
with diabetes at an FDR of 5%. Of these, 29 could be validated
at an FDR of 5%. An increase in the levels of the following
proteins was associated with higher odds of having diabetes
(top ten findings): cathepsin D (CTSD), retinal dehydrogenase
1, alpha-L-iduronidase (IDUA), hydroxyacid oxidase 1
(HAO1), galectin-4 (GAL-4), growth/differentiation factor

https://sb452.shinyapps.io/power/
https://ldlink.nci.nih.gov
https://ldlink.nci.nih.gov
http://metabolomics.helmholtz-muenchen.de/pgwas/index.php
http://metabolomics.helmholtz-muenchen.de/pgwas/index.php
https://www.ebi.ac.uk/gwas/


Table 1 Basic characteristics in
the discovery and validation sub-
samples of the observational
study in EpiHealth

Variable Discovery subsample (n = 1645) Validation subsample (n = 822)

Age (years) 60.4 (8.3) 61.0 (8.4)

Women (%) 49 52

BMI (kg/m2) 26.5 (3.8) 26.5 (3.9)

Fasting plasma glucose (mmol/l) 6.0 (0.9) 6.0 (1.0)

Diabetes (%) 8.4 8.8

Years in education (%)

<10 21 23

10–12 28 30

>12 51 47

Years of smoking 8.7 (9.1) 9.0 (9.3)

Drinks a week 2.4 (3.0) 2.3 (2.5)

Physical activity (scalea 1–5) 3.0 (0.9) 3.0 (0.9)

Data are displayed as mean (SD) unless indicated otherwise
a Physical activity scale from low (1) to high (5)
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15 (GDF-15), IL-1ra protein, cathepsin O (CTSO), sialic acid-
binding Ig-like lectin 7 and plasminogen activator inhibitor 1.
Only three proteins were associated with lower odds of diabe-
tes, i.e. lipoprotein lipase (LPL), IGF-binding protein 2 and
paraoxonase 3 (PON-3) (Table 2).

As indicated in Table 2, only 15 of the 29 identified pro-
teins are known to be linked to human diabetes. The remain-
ing 14 are novel protein associations.

The majority of these 29 validated proteins were correlated,
with Pearson’s r ranging from −0.30 to 0.51, as apparent in the
heatmap in ESM Fig. 1.

In an additional analysis excluding the 64 study partici-
pants using glucose-lowering drugs, the ORs for most of the
29 proteins found significant in the main analysis were shifted
towards 1, indicating weakened associations with diabetes
(ESM Table 3). Major shifts in the ORs in this additional
analysis were seen for GAL-4, GDF-15, CTSO, T-cell and
immunoglobulin and mucin domain-1 (TIM-1; also known
as kidney injury molecule 1 [KIM-1]) and nodal modulator
1 (NOMO-1).

The participants taking glucose-lowering drugs showed a
similar age, sex-distribution and BMI to the participants with
diabetes not taking glucose-lowering drugs, but the fasting
glucose level was significantly higher in the participants on
glucose-lowering drugs (8.9 vs 7.7 mmol/l, p < 0.001).

In an analysis with additional adjustment for glucose-
lowering medication (but keeping those with glucose-
lowering medication in the sample), 16 of the proteins showed
FDR <5% in the validation step (see ESM Table 2 for details).

Mendelian randomisation

Effect of protein levels on type 2 diabetes, fasting glucose and
HOMA-IR We identified cis-acting genetic instrumental

variables in the EpiHealth GWAS for ten proteins (C-C motif
chemokine 16 [CCL16], CTSD, IDUA, IL-1ra, LPL, TIM-1,
V-set and immunoglobulin domain-containing protein 2
[VSIG-2], GDF-15, IL1-R1, PON-3), but some of the variants
(or proxies with r2 > 0.7) were not available in GWAS results
for some of the outcomes. We additionally identified cis-act-
ing instrumental variables for seven proteins (IDUA, IL1-ra,
TIM-1, GDF-15, ectonucleotide pyrophosphatase/
phosphodiesterase 7 [ENPP-7], selectin P ligand [SELPLG]
and CTSD) by searching previous GWAS repositories and
results reported by Sun et al [23] (ESM Table 4). The median
variance explained (R2) for the levels of these proteins was
0.054. MR results for effects of proteins on glycaemic traits
are given in ESM Table 5.

Genetically raised LPL levels were associated with in-
creased risk of type 2 diabetes (OR per SD unit increase,
1.10; 95% CI 1.06, 1.15; p = 6.7 × 10−7), with a directionally
consistent but statistically weak effect on insulin resistance
(change in natural log-scaled HOMA-IR per SD unit, 0.02;
95% CI 0.00, 0.04; p = 0.046, ESM Table 5). The underlying
instrument for this analysis was the LPL SNP rs325 (effect
allele C, MAF 13.0%, here decreasing LPL), which is in com-
plete LD with the well-described LPL gain-of-function pre-
mature stop codon-inducing variant rs328 (effect allele G,
MAF 13.0%). Given that the G-allele of rs328 is well known
to cause increased levels and activity of LPL [26], probably
through decreased translational inhibition [27], we question
the validity of the association of the C-allele with decreased
levels of LPL in our data.We speculate that the premature stop
codon introduced by the G-allele may affect antibody affinity
of our assay and thereby interfere with accurate measurement
of LPL levels in carriers. The association of the G-allele of
rs328 with lower triacylglycerols, lower risk of diabetes and
increased insulin resistance is well-documented in the



literature [28–31] (available on searching ‘rs328’ at http://
www.phenoscanner.medschl.cam.ac.uk/). To further explore
this issue, we re-assessed LPL using another instrument, the

rs6999612, in low LD (0.001) with the gain-of-function SNP
rs328. The T-allele of this SNP was associated with increased
LPL in EpiHealth (β 1.9, SE 0.17, p = 2.2 × 10−29) and
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Table 2 OR, 95% CI and p value for the 29 proteins associated with prevalent diabetes in the validation analysis of the observational study in
EpiHealth

Protein Short name Main function Previously associated
with diabetes (PMID)a

OR (95% CI) p value

Cathepsin D CTSD Protein degradation 30670722
HR 1.33 (1.13, 1.56)

1.79 (1.38, 2.32) 9.56 × 10−6

Retinal dehydrogenase 1 ALDH1A1 Formation of retinoic acid 24464599
+ p < 0.05

1.71 (1.34, 2.19) 2.09 × 10−5

α-L-iduronidase IDUA Hydrolysis of dermatan
sulfate

1.92 (1.36, 2.71) 1.88 × 10−4

Hydroxyacid oxidase 1 HAO1 2-hydroxyacid oxidase 1.69 (1.28, 2.24) 2.56 × 10−4

Galectin-4 Gal-4 Modulating cell-matrix
interactions

30670722
HR 1.37 (1.15, 1.64)

1.69 (1.28, 2.25) 2.58 × 10−4

Growth/differentiation factor 15 GDF-15 Regulating inflammation
and apoptosis

22997280
+ p < 0.0001

1.77 (1.3, 2.41) 2.78 × 10−4

Lipoprotein lipase LPL Hydrolysis of triacylglycerols 30326043
OR 0.69 (0.62, 0.76)

0.55 (0.4, 0.77) 5.33 × 10−4

IL-1 receptor antagonist protein IL-1ra Immune and inflammatory
responses

26420861
HR 1.28 (1.03, 1.59)

1.75 (1.27, 2.42) 6.64 × 10−4

Cathepsin O CTSO Protein degradation 1.61 (1.22, 2.12) 7.47 × 10−4

Sialic acid-binding Ig-like lectin 7 SIGLEC7 Sialic acid dependent binding
to cells

1.64 (1.22, 2.21) 0.0011

Plasminogen activator inhibitor 1 PAI-1 Involved in fibrinolysis 30670722
HR 1.70 (1.41, 2.05)

1.65 (1.22, 2.24) 0.0013

C-C motif chemokine 16 CCL16 Chemoattractive for monocytes
and lymphocytes

28840653
+ p = 0.04

1.91 (1.28, 2.84) 0.0014

E-selectin SELE Cell surface adhesion protein 30463448
+ p = 0.008

1.71 (1.23, 2.37) 0.0015

Cathepsin Z CTSZ Protein degradation 1.63 (1.2, 2.23) 0.0019

ACE 2 ACE2 Formation of angiotensin 1.48 (1.15, 1.91) 0.0024

V-set and immunoglobulin
domain-containing protein 2

VSIG2 Unknown 1.55 (1.16, 2.07) 0.0027

Ectonucleotide pyrophosphatase/
phosphodiesterase 7

ENPP7 Converts sphingomyelin to
ceramide

1.52 (1.16, 2.01) 0.0028

Tartrate-resistant acid phosphatase
type 5

TR-AP Glycosylated metalloprotein
enzyme

1.62 (1.18, 2.22) 0.0031

Cadherin-2 CDH2 Cell adhesion protein 1.56 (1.16, 2.11) 0.0034

IGF-binding protein 2 IGFBP-2 Inhibits IGF-mediated growth 30670722
HR 0.66 (0.56, 0.77)

0.64 (0.47, 0.88) 0.0052

Fatty acid-binding protein, adipocyte FABP4 Carrier protein for fatty acids 30670722
HR 1.74 (1.44, 2.10)

1.69 (1.17, 2.46) 0.0055

Aromatic-L-amino-acid decarboxylase DDC Decarboxylation of amino acids 1.51 (1.12, 2.04) 0.0067

Paraoxonase (PON 3) PON3 Hydrolyses lactones andbinds
to HDL

30670722
HR 0.65 (0.56, 0.75)

0.66 (0.49, 0.9) 0.0080

IL-1 receptor type 1 IL-1RT1 Inflammation 1.48 (1.11, 1.98) 0.0085

Tissue plasminogen activator t-PA Involved in fibrinolysis 26420861
HR 1.30 (1.03, 1.65)

1.63 (1.13, 2.35) 0.0088

T-cell and immunoglobulin and
mucin domain-1/kidney injury
molecule 1

TIM-1/KIM-1 T helper cell development 24904085
+ p < 0.001

1.5 (1.09, 2.06) 0.013

Protease serine S1 family member 8 PRSS8 Serine protease 1.52 (1.07, 2.14) 0.018

P-selectin glycoprotein ligand 1 PSGL-1 Adhesion molecule 1.49 (1.07, 2.07) 0.019

Nodal modulator 1 NOMO1 Antagonise nodal signalling 1.4 (1.05, 1.88) 0.024

aDetails of whether these proteins have previously been linked to human diabetes, giving the PMID number to that publication and strength (or direction) of
the association. Only the proteins with an FDR <5% in the validation step were included in the Table. OR/HR and 95%CI are given, or direction and p value

http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
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provided a causal estimate of OR 0.970 (0.922, 1.020) for type
2 diabetes.

Effect of diabetes, fasting glucose and insulin resistance on
protein levels We selected 120 SNPs for type 2 diabetes, 35
SNPs for fasting glucose and ten SNPs for HOMA-IR as
genetic instrumental variables. The final set was reduced to
nine SNPs for HOMA-IR after removal of one SNP with no
available proxy (rs731839), and 29 SNPs for fasting glucose
after removal of six SNPs with ambiguous allele
harmonisation. We adjusted analyses for multiple testing
(p < 0.05/29 proteins × 3 outcomes). The results from the glu-
cose trait to protein part are given in ESMTable 6. Genetically
raised fasting glucose was associated with reduced levels of
fatty acid-binding protein 4 (FABP4) (level change in SD unit
per mmol/l increase in fasting glucose, −0.76; 95% CI −1.18,
−0.35; p = 3.3 × 10−4), with directionally consistent estimates
in MR Egger and no evidence of heterogeneity (p > 0.05). A
risk-decreasing effect on type 2 diabetes of raised PON-3
levels using the inverse variance-weighted method (p =
3.0 × 104) was cast in doubt by evidence of heterogeneity
(p = 3.1 × 10−2) and horizontal pleiotropy in MR Egger
(p = 0.033). A decreasing effect on HOMA-IR by raised
PON-3 levels was found in inverse variance-weighted
MR (p = 2.5 × 10−5), with directionally consistent esti-
mates in MR Egger and no evidence of heterogeneity
(ESM Table 6).

Discussion

The present study identified 29 proteins being associated with
prevalent diabetes. Of these, 14 had not previously been de-
scribed to be linked with human diabetes. The MR part of the
study did not, however, disclose any significant causal effects
of the proteins on diabetes, or of diabetes on the proteins, that
were consistent with the relationships found between the pro-
tein levels and diabetes.

Comparison with the literature

Approximately half of the identified proteins being linked to
diabetes in the present study were not previously known.
Amongst the top ranked new associations were IDUA and
HAO1, representing two biological pathways of possible in-
terest for diabetes: breakdown of glycosaminoglycans and 2-
hydroxyacid oxidase activity.

The present study also confirmed some other previously
published protein vs diabetes relationships. Amongst our top
findings, CTSD, retinal dehydrogenase 1 and galectin-4 were
such validations of previously published associations.

Mendelian randomisation

By use of MR, we could not show any causal effects that were
concordant with relationships found for protein levels vs prev-
alent diabetes.

A poor activity of the enzyme LPL has previously been
linked to insulin resistance [32] and diabetes [33], in ac-
cordance with our finding of a negative association be-
tween LPL concentrations and prevalent diabetes. In addi-
tion, in a large study of genetic variants of the LPL gene
associated with lowering of triacylglycerols, a positive as-
sociation with diabetes was found, giving genetic evidence
of a benefit of high LPL activity [28]. In the MR part of our
study, however, a positive association between genetically
determined LPL concentration and diabetes was found.
This was probably due to the fact that as genetic instrument
we had used a SNP in complete LD with an LPL gain-of-
function premature stop codon-inducing variant, which
possibly had changed the affinity of the antibody used for
LPL measurements.

We mainly used a GWAS study based on the almost 2500
individuals in the present study. It might have been that this
number was too small to detect a significant causal effect.
However, the power analysis presented in ESM Table 1
showed that we would have a good power to detect causal
estimates corresponding to ORs below 0.9 and above 1.1 for
most of the instrumental variables used.

In a recent systematic overview of biomarkers for diabetes,
the authors investigated 139 articles describing over 372 bio-
markers, and identified 167 unique biomarkers, which had
been evaluated at least once [34]. Between 53% and 76% of
these biomarkers showed significant associations with type 2
diabetes, depending on the sample size of the study. The au-
thors also evaluated the literature regarding the biomarkers
that have been evaluated by MR, and showed that for ferritin
[35], N-terminal pro brain natriuretic peptide (NT-proBNP)
[36] and resistin [37] there is published evidence of a causal
role for these proteins regarding diabetes. The finding for NT-
proBNP is in contrast to the present study, since NT-proBNP
levels were not associated with diabetes. Such a discrepant
finding could be due to differences in sample characteristics
or assays used.

In the additional analysis, excluding the individuals taking
glucose-lowering medication, we noted as expected a tenden-
cy for a deviation of the ORs towards 1.0 for most proteins,
since we have excluded those with the longest history (and
possibly the worst severity) of diabetes. However, we noticed
a substantial deviation of the ORs towards 1.0 for some of the
proteins, such as GDF-15, which might be due to reverse
causation, in this case an effect of the glucose-lowering med-
ication on the protein in the main analysis. Also, an additional
adjustment for glucose-lowering treatment in the main analy-
sis would reduce the impact of glucose control, since
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individuals on glucose-lowering medication showed a higher
fasting glucose level than individuals with diabetes without
treatment.

Strengths and limitations

A strength of the present study is the high number of proteins
evaluated within a fairly large population-based sample.
Another strength is that we could perform a bidirectional
two-sample MR, since both proteomics and genotyping data
exist in the EpiHealth study. The major limitation is the cross-
sectional nature of the study. Therefore, the present results
must be confirmed in future prospective studies with incident
cases of diabetes. Another limitation is the lack of replication
in an independent sample. We therefore used the second-best
approach, namely the split sample approach, and performed
the discovery/validation procedures within the sample. It
should also be acknowledged that the sample consists of peo-
ple of European ancestry, and therefore the generalisability
might be limited for other ethnic groups.

In this study, we used a definition of diabetes based on a
previous diagnosis or one measurement of fasting glucose
level ≥7 mmol/l. In the clinic, two measurements are usually
warranted for a diabetes diagnosis, but it is very uncommon to
have two measurements in epidemiological studies.
Therefore, it is likely that a slight overestimation of the prev-
alence of diabetes has occurred in the present study. However,
a misclassification of non-diabetic individuals to individuals
with diabetes would only drive the results towards the null
hypothesis and would not cause any false positive results.

Conclusion

The 29 proteins associated with diabetes are involved in sev-
eral physiological pathways, but, given the power of the study,
no causal link was identified for those proteins tested in MR.
Therefore, the identified proteins are likely to be biomarkers
for diabetes, not likely representing causal pathways.
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