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COMMENTARY
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Recent advances in single-cell sequencing technologies
enable the characterization of cellular heterogeneity
and biological processes in complex diseases. This pro-
vides unprecedented opportunities to understand disease
pathology at a level that allows mechanistic classifica-
tion and development of precision therapeutic strate-
gies. Extensive research has been performed in clinical
studies at the single-cell level.1 In addition, emerging deep
learning (DL) technologies hold great potential in mod-
eling large-volume and highly heterogeneous single-cell
data by using sophisticated architectures, such as artificial
neural networks,2 for translational and clinical purpose.3
In this commentary, we focus on the DL analysis of single-
cell data in empowering the clinical implementation of
personalized medicine.

1 DEVELOPING DIAGNOSIS
METHODS

Single-cell technology (e.g., single-cell RNA sequencing
[scRNA-seq]) for characterizing diseased cell populations
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was first applied to cancers and then to Alzheimer dis-
ease and chronic bowel disease.4,5 DL technologies can
extract and recognize features from single-cell data in a
hypothesis-free manner, especially neglected and incon-
spicuous features in cell subpopulations, such as clonal
tumor subtypes,minimal residual disease (MRD), and can-
cer stem cells (CSCs). These cells are critical in disease
treatment and vulnerable to evolution, but they represent
only a tiny proportion in samples, while maintaining high
heterogeneity among patients. Identifying clonal tumor
subtypes characterizes tumor heterogeneity and signifi-
cantly improves disease prognosis. The DL framework
RDAClone was used with an extended robust deep autoen-
coder to embed noisy single-cell genomics sequencing data
in order to cluster cells into subclones and infer sub-
clone evolutionary relationships.6 Another hybrid deep
clustering approach was used to identify potential tumor
subclones in triple-negative breast cancer samples and
investigate the role of clonal heterogeneity.7
MRD plays a pivotal role in the initiation and pro-

gression of diseases, such as cancer. However, studying
small tissue samples and rare cell populations is a major
challenge in efficient translational studies of MRD. To
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successfully detect the presence of certain rare cell pop-
ulations, researchers used a DL model trained from
known cell populations in large-scale cell atlas stud-
ies, combined with single-cell sequencing, to adopt deep
transfer learning and transfer the knowledge to unseen
MRD data.8
CSCs, a subpopulation of tumor cells, drive tumor

growth and give rise to differentiated progeny. Targeting
genes specific to CSCs may have therapeutic potential. For
example, DeepCpG, a deep neural network (DNN)-based
computational approach, applies modular DL architec-
ture to learn features from single-cell bisulfite sequencing
data.9 In DeepCpG, the DNA module consists of two
convolutional and pooling layers to identify predictive
motifs from the local sequence context and one fully
connected layer to model motif interactions; the CpG
module scans the CpG status in multiple cells using a
bidirectional GatedRecurrentUnit (GRU) neural network;
and the joint module learns interactions between higher-
level features derived from the DNA and CpG modules
to predict methylation states in all cells. DeepCpG can
be used to differentiate human induced pluripotent stem
cells (iPSCs) in parallel with transcriptome sequencing in
order to specify splicing variation (exon skipping) and its
determinants. The scVI tool uses stochastic optimization,
variational autoencoders, and generativemodeling to com-
pute cell embeddings and gene expression distribution. It
enables multiple analysis, including batch effect removal,
cell cluster prediction, gene imputation, and differentially
expressed gene identification.10 scVI can identify CSC
populations and determine what types of cells CSCs can
differentiate into. This way, stem cell subsets with the
required differentiation direction can be directly used for
treatment. Similar DL technologies may be used to detect
circulating tumor cells (CTCs, isolated tumor cells enter-
ing the circulatory system of a patient with cancer), which
are considered an effective tool for diagnosingmalignancy.

2 ASSISTING DISEASEMECHANISM
STUDIES

DL technologies can be especially used to model single-
cell sequencing data in order to determine the underlying
molecular mechanisms in immuno-oncological microen-
vironment.We applied a heterogeneous graph transformer
model to specific gene regulatory networks in two abnor-
mal B-cell stages from diffusing small lymphocytic lym-
phoma samples by integrating scRNA-seq and single-cell
assay for transposase-accessible chromatin with sequenc-
ing (scATAC-seq) data.11 Analysis of scRNA-seq samples
before and after treatment may reveal subsets refractory

to a given therapy and their biomarkers and mecha-
nism response to immune-checkpoint therapy (ICT).1
scRNA-seq shows that the effects of different ICTs on
monocytes/macrophages in tumors are especially signifi-
cant, leading to a high degree of plasticity and complexity
in the cell population.12 DeepGeneX uses a two-phase
DNN to predict a patient’s response to immunotherapy.
First, it removes genes that are less important to response
prediction according to gene permutation, and then, it
predicts the responsiveness of the patient using a fully
connected layer based on the remaining highly impor-
tant genes. Studies have used DeepGeneX to identify high
LGALS1 andWARS expression in macrophage populations
as a biomarker for ICT nonresponders, indicating that
these macrophages may be a target for improving ICT
response.13

3 SUPPORTING DRUG DESIGN

Another emerging clinical application of DL technologies
at the single-cell level is drug-related predictions, such as
drug response, drug repurposing, and drug combination.14
DL models have been used for drug-related predictions
at the bulk level for years,14 yet research at the single-
cell level is still in its infancy due to insufficient training
data in the public domain. Massive bulk gene expression
databases incorporating drug-screening data can be used
to determine the optimal clinical application of cancer
drugs. Intuitively, drug-related bulk RNA-seq data may
help infer gene expression–drug response relationships
and predict drug responses at the single-cell level. Deep
transfer learning can transfer knowledge and relationship
patterns from bulk data to single-cell data to overcome
the issue of limited training data.15 scDEAL, a deep trans-
fer learning framework integrating large-scale bulk and
scRNA-seq data, adapts a domain-adaptive neural network
to predict single-cell drug responses from scRNA-seq data
by integrating and harmonizing large-scale drug response
data of bulk cancer cell lines; it does not depend on pre-
defined single-cell labels.16 It can further predict critical
genes that significantly contribute to drug sensitivity and
resistance prediction. In another study, a convolutional
neural network (CNN)-based model was designed to pre-
dict antitumor drugs for CTCs at the single-cell level.17
Analysis of single-cell subsets identified a combination
therapy that targeted two mutually exclusive pathways,
more effective than monotherapy, in a patient-derived
xenograft model. Single-cell DL analysis may also be used
for drug repurposing18 and drug design19 for patients with
infections during the coronavirus disease 2019 (COVID-19)
pandemic.
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4 CHALLENGES AND PERSPECTIVES

With the development of single-cell and DL technologies,
we can foresee broad DL applications in clinical stud-
ies at the single-cell level. A pioneer practice led by the
LifeTime Initiative aims to track, understand, and target
human cells during the onset and progression of com-
plex diseases and to analyze their response to therapy
using DL at the single-cell level.20 In addition to exist-
ing DL methods, such as CNNs, deep transfer learning,
and graph neural networks, many advanced DL frame-
works hold great potential. For example, meta-learning21
and few-shot learning22 strategies can help improvemodel
generality by combining abundant public cell atlas and
rich clinical-specific data from patients’ electronic health
records. Knowledge-based neural networks,23 which con-
struct DL architectures using known biological data, can
help make single-cell DL analysis more biologically rele-
vant and explainable. Emerging federated learning strate-
gies may support DLmodels across multiple decentralized
servers holding local data.24
The challenges limiting DL’s clinical applications at the

single-cell level are as follows: Clinical and Translational
Medicine

1. Limited availability of single-cell sequencing data in
clinical studies. The isolated, private, and sparse patient
data collected in diverse quality and formats from dif-
ferent institutions are usually difficult to access and
are handled by classical DL methods designed for basic
research. Clinical practitioners need to be more proac-
tive in collecting patient data and provide them for
research.

2. Limitations of currentDLmodels’ capacities in transfer-
ring knowledge from basic research to clinical research.
DL models, which are designed and trained on public
atlas single-cell sequencing data, often do not workwell
in individual, patient-specific studies in clinical prac-
tice. Extensivemethod development is required tomake
DL models generalizable, robust, and explainable.

3. Limited availability of benchmarks for DL models
developed in clinical research. Unlike basic benchmark
studies that can use a large amount of public data, few
golden-standard data exist for clinical studies.25 The
research community needs to develop data standards
and make data DL-ready.

In summary, accumulation of high-quality single-cell
sequencing data in both basic and clinical research fosters
the development of DL algorithms and their applica-
tions in new areas. The growth of DL modeling with the
availability of fine-grained, cell-based clinical sequencing
data pushes the understanding, diagnosis, and treatment

of diseases in clinical practice. With the maturation of
single-cell technologies in clinical research and the con-
tinuous advancements in DL, more translational clinical
applications can be developed.
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