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Abstract: Ongoing aortic wall degeneration and subsequent aneurysm exclusion failure are major
concerns after an endovascular aneurysm repair with a stent-graft. An ideal solution would be a drug
therapy that targets the aortic wall and inhibits wall degeneration. Here, we described a novel drug
delivery system, which allowed repetitively charging a graft with therapeutic drugs and releasing
them to the aortic wall in vivo. The system was composed of a targeted graft, which was labeled with
a small target molecule, and the target-recognizing nanocarrier, which contained suitable drugs. We
developed the targeted graft by decorating a biotinylated polyester graft with neutravidin. We created
the target-recognizing nanocarrier by conjugating drug-containing liposomes with biotinylated
bio-nanocapsules. We successfully demonstrated that the target-recognizing nanocarriers could bind
to the targeted graft, both in vitro and in blood vessels of live mice. Moreover, the drug released
from our drug delivery system reduced the expression of matrix metalloproteinase-9 in mouse aortas.
Thus, this hybrid system represents a first step toward an adjuvant therapy that might improve the
long-term outcome of endovascular aneurysm repair.
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1. Introduction

Abdominal aortic aneurysm (AAA) is a noteworthy disease that causes segmental expansion and
aortic rupture [1,2]. AAA is characterized by chronic inflammation and progressive extracellular-matrix
destruction, by proteolytic enzymes, like matrix metalloproteinases (MMPs), which eventually lead
to fatal rupture [3–5]. MMP-9 is the primary enzyme responsible for aortic wall degradation. We
previously reported that pharmacologic treatment with hydroxymethylglutaryl-coenzyme A reductase
inhibitors (statins) inhibited the secretion of MMP-9, a marker of vessel wall degeneration, from human
aneurysm tissues in culture [6]. Other clinical studies reported that statins might be associated with
the attenuation of aneurysm growth [7–10]. We also showed in a mouse model that pharmacologic
inhibition of c-Jun N-terminal kinase (JNK), a proinflammatory signaling molecule, could successfully
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treat aortic aneurysms [11,12]. These data and other reports have indicated the potential role of
pharmacologic therapy in the treatment of AAA.

There are two ways to apply drugs in the treatment of AAA: primary therapy and adjuvant therapy.
We have long awaited a primary pharmacologic treatment for small AAAs to prevent progression;
currently, there is no effective therapy for patients with small AAA. However, large AAAs can be
treated with endovascular aneurysm repair (EVAR), and this approach might benefit from adjuvant
pharmacologic therapy [13].

EVAR has become widely accepted as a minimally invasive treatment for aortic aneurysms [14].
However, after EVAR, occasionally, a late failure occurs in the aneurysm exclusion, which results in
aneurysm expansion and rupture [1,15]. Aneurysm progression is caused by aortic wall degeneration.
Therefore, an adjuvant pharmacologic intervention that stabilizes the aortic wall might prevent late
EVAR failure [13]. A previous randomized clinical trial was conducted to test doxycycline after EVAR.
In that trial, doxycycline therapy showed beneficial effects in several patient groups, which suggested
that pharmacologic treatment might be useful as an adjuvant therapy to improve EVAR results [16].
However, systemic administration of doxycycline, or other drugs, could cause systemic adverse
effects. Moreover, drugs with poor water solubility have limited clinical applications. Alternatively,
drug-eluting stent grafts can be used to deliver drugs in combination with EVAR. With this technology,
sufficiently high drug concentrations can be delivered to the aortic wall. However, once a stent graft is
placed in the body, it is not possible to adjust the drug elution rate.
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 15 

 

 

Figure 1. Concept of a novel hybrid drug delivery system. (A) Diagram shows the configuration of 

the system. The targeted graft is decorated with biotin–neutravidin complexes. Neutravidin serves as 

the target. (B) Diagram shows the function of the system. The system is charged by injecting 

drug-containing nanocarriers. In the aorta, nanocarriers recognize and bind to the target molecules 

attached to the graft. After releasing the drug at the site of the aneurysm, the nanocarrier degrades, 

and the target molecules are regenerated. 

2. Results and Discussion 

2.1. Development of the Targeted Graft 

First, we intended to label a prosthetic vascular graft with biotin. Initially, we biotinylated a 

woven polyester graft with an amine-coupling reaction (Figure 2A). Later, we developed a different 

biotinylated graft by coating a woven polyester graft with a biocompatible polymer, poly 

(2-hydroxyethyl methacrylate), which could be biotinylated, p(HEMA-biotin) (Figure 2B). The grafts 

biotinylated with amine-coupling contained 3.1 nmol/cm2 biotin, and the grafts biotinylated with a 

pHEMA coating contained 245 nmol/cm2 biotin. Thus, the pHEMA-coating technique greatly 

increased the amount of biotin on the graft (Figure 2C). 

Figure 1. Concept of a novel hybrid drug delivery system. (A) Diagram shows the configuration of
the system. The targeted graft is decorated with biotin–neutravidin complexes. Neutravidin serves
as the target. (B) Diagram shows the function of the system. The system is charged by injecting
drug-containing nanocarriers. In the aorta, nanocarriers recognize and bind to the target molecules
attached to the graft. After releasing the drug at the site of the aneurysm, the nanocarrier degrades,
and the target molecules are regenerated.

To address this problem, we created a new hybrid device that combined a drug delivery system and
an endovascular stent graft, for treating aortic aneurysms. We called it a rechargeable drug delivery
system (RDDS), because it can be charged with a drug, release the drug, and then be recharged, which
provided great flexibility in drug administration. Briefly, the RDDS is composed of a target-recognizing
nanocarrier that transports the drug to a targeted device (Figure 1A). Any artificial device, like a prosthetic
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vascular graft, can serve as a targeted device by adding target molecules to the surface. Then, after the
device is implanted in the body, the target-recognizing nanocarriers can bind to the target molecules on
the device. Utilizing the interaction between biotin and neutravidin, we developed a target-recognizing
nanocarrier labeled with biotin and a targeted vascular graft labeled with neutravidin. Most drug types
can be incorporated into the nanocarrier. Once the target-recognizing nanocarriers are filled with a
suitable drug, they are administered intravenously. The nanocarriers circulate in the bloodstream, then
bind to the target molecules on the vascular graft. Next, the nanocarrier shell undergoes hydrolysis,
which results in the local delivery of the drug. After the nanocarrier is degraded, the target molecules are
regenerated, and thus, they are available for binding to another set of nanocarriers (Figure 1B).

In the present study, we aimed to demonstrate the feasibility of the RDDS in vitro and in vivo.

2. Results and Discussion

2.1. Development of the Targeted Graft

First, we intended to label a prosthetic vascular graft with biotin. Initially, we biotinylated a woven
polyester graft with an amine-coupling reaction (Figure 2A). Later, we developed a different biotinylated
graft by coating a woven polyester graft with a biocompatible polymer, poly (2-hydroxyethyl
methacrylate), which could be biotinylated, p(HEMA-biotin) (Figure 2B). The grafts biotinylated
with amine-coupling contained 3.1 nmol/cm2 biotin, and the grafts biotinylated with a pHEMA coating
contained 245 nmol/cm2 biotin. Thus, the pHEMA-coating technique greatly increased the amount of
biotin on the graft (Figure 2C).
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Figure 2. Development of the biotinylated graft. (A) Schematic diagram illustrates the preparation
of the biotinylated graft with an amine-coupling reaction. (B) Schematic diagram illustrates the
preparation of the biotinylated graft by coating with poly (2-hydroxyethyl methacrylate) (pHEMA).
(C) Quantification of the amounts of biotin on the graft surfaces.

2.2. Feasibility of Using the Targeted Graft in Mouse Blood Vessels

We investigated the feasibility of using the targeted graft in blood vessels in vivo. First, we placed
the targeted graft, which was coated with p (HEMA-biotin), into the mouse inferior vena cava. Then,
we injected fluorescence-labeled neutravidin intravenously. At 15 min after injection, neutravidin had
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successfully accumulated on the biotinylated graft. This result indicated that the interaction between
biotin and neutravidin was preserved within blood vessels in vivo (Figure 3).
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Figure 3. Feasibility of using the targeted graft in mouse blood vessels. (Upper panels) Schematic
diagrams show the main features of the procedure. (Lower, left) Bright field image shows the placement
of the biotinylated graft in the mouse inferior vena cava. (Lower, middle) Fluorescence image acquired
just after injection shows the passage of DyLight549-labeled neutravidin (red) through the inferior vena
cava. (Lower, right) Fluorescence image acquired at 15 min after injection shows the accumulation of
DyLight549-labeled neutravidin at the biotinylated graft.

2.3. Development of the Bio-Nanocapsule-Liposome Complex

The bio-nanocapsule-liposome (BNC-LP) complex was previously reported to be useful for
delivering drugs to specific tissues in vivo [17–19]. Therefore, we developed a BNC-LP complex as a
target-recognizing nanocarrier. First, we selected two drugs for treating aortic aneurysms: SP60015,
a JNK inhibitor, and pitavastatin, a statin, and we incorporated them into liposomes (Figure 4A,B).
Both SP600125 and pitavastatin were encapsulated within liposomes at favorable concentrations
(3.0 mg/mg lipid and 0.37 mg/mg lipid, respectively). The BNC, which is a hepatitis B virus surface
antigen L protein with lipid bilayer, was biotinylated (Figure 4C), as described previously [20–22]. We
then conjugated the biotinylated BNC with drug-containing liposomes to create the drug-containing
biotinylated BNC-LP complex, as described previously [17].

Next, we checked the binding of the biotinylated BNC-LP complex to the targeted graft, in vitro.
The targeted graft was prepared by allowing DyLight488-labeled neutravidin to bind to the biotin
attached to the graft (Figure 4D). Then, we demonstrated that the Cy3-labeled biotinylated BNC-LP
complex could specifically bind to the neutravidin attached to the targeted graft in vitro (Figure 4D,E).

2.4. Accumulation of the Target-Recognizing BNC-LP Complex on the Targeted Graft in Mouse Blood Vessels

We checked that the biotinylated BNC-LP complex could bind to the targeted graft in vivo by
placing the targeted graft into the mouse inferior vena cava, then injecting the biotinylated BNC-LP
complex intravenously. A non-biotinylated BNC-LP complex was used as the control (Figure 5A).
At 180 min after injection, the targeted grafts had accumulated the biotinylated BNC-LP complex, but
not the control BNC-LP complex (Figure 5B).
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Figure 4. Development of the bio-nanocapsule-liposome (BNC-LP) complex. (A,B) Incorporation
of (A) SP60015 and (B) pitavastatin into liposomes. Successful incorporation was determined by
measuring drug autofluorescence, before and after liposomes were dissolved with sodium dodecyl
sulfate (SDS) treatment. (C) Schematic diagram illustrates the preparation of the drug-containing
biotinylated BNC-LP complex. The liposome is an empty lipid micelle that can be filled with the
desired drug. The bio-nanocapsule is a hollow sphere composed of hepatitis B virus surface antigen
(HBsAg). Biotin reacted with HBsAg, then the BNC was conjugated to the LP. (D) Diagram shows the
configuration of a BNC-LP complex labeled with Cy3. The attached biotin recognizes the neutravidin
on the targeted graft. (E, left) Bright field images show the woven polyester grafts used for the in vitro
binding assay. (Middle) Fluorescence images show the binding of DyLight488-labeled neutravidin
(green) to the biotinylated grafts. (Right) Fluorescence images show the binding of the biotinylated
Cy3-labeled BNC-LP (red) to the neutravidin on the biotinylated grafts.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 15 
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Figure 5. Accumulation of the target-recognizing BNC-LP complex on the targeted graft in mouse
blood vessels. (A) Schematic diagram of the experiment: the biotinylated BNC-LP complex is compared
to the non-biotinylated control. (B, left) Bright field images show the grafts excised from mice after the
in vivo binding assay. (Right) Fluorescence images show the accumulation of biotinylated Cy3-labeled
BNC-LP (red) on the graft.

2.5. Efficiency of Loading (Charging) the Targeted Graft with the Target-Recognizing BNC-LP Complex In Vivo

Next, we examined how efficiently the target-recognizing BNC-LP complex could be loaded onto
the targeted graft. Here, we placed either the targeted graft or an untreated graft into the mouse inferior
vena cava. The next day, we injected the biotinylated BNC-LP complex labeled with Cy3 intravenously.
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At 60 min after injection, the grafts were excised, and we examined the Cy3 fluorescence intensities
(Figure 6A).
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Figure 6. Efficient charging of the targeted graft with the target-recognizing BNC-LP complex in vivo.
(A) Schematic diagram of the experiment: the targeted graft is compared to the untreated control graft.
(B, left) Bright field images show the grafts excised from mice after the experiment. (Right) Fluorescence
images show the accumulation of Cy3-labeled BNC-LP on the targeted graft. (C) Efficiency of charging
the targeted graft with the BNC-LP complex, determined by measuring the relative fluorescence intensity.
Data are the means ± standard deviations of 3 independent observations. ** p < 0.01 compared to the
untreated graft.

We found that the targeted grafts showed significantly higher fluorescence intensities (relative
intensity) than the untreated grafts (targeted graft, 1.00 ± 0.11; untreated graft, 0.09 ± 0.01, p < 0.01
compared to untreated graft). This result indicated that charging the targeted graft was over ten times
more efficient than charging an untreated graft (Figure 6B,C).

2.6. Efficiency of Recharging the Targeted Graft with the Target-Recognizing BNC-LP Complex In Vivo

Next, we examined the capacity of the targeted graft to be recharged with the target-recognizing
BNC-LP complex. We placed the targeted graft into the mouse inferior vena cava. For this recharging
experiment, we first intravenously injected a biotinylated BNC-LP complex without the Cy3 label,
on the same day of graft placement (Figure 7A). Then, 24 h later, we injected another dose of the
biotinylated BNC-LP complex, but this dose was labeled with Cy3. As a control experiment, at 24 h
after graft placement, a single intravenous injection of the biotinylated BNC-LP complex labeled
with Cy3 was performed. The grafts were excised at about 24 h after graft placement, and the Cy3
fluorescence intensities of the grafts were examined.

The recharged grafts showed high fluorescence intensities (Figure 7B), comparable to those of
the singly charged grafts (initial charge intensity: 1.00 ± 0.11; second charge intensity: 0.95 ± 0.24,
n = 3; Figure 7C). This result suggested that recharging the targeted graft with the target-recognizing
BNC-LP complex was highly efficient in vivo.
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Figure 7. Efficient recharging of the targeted graft with the target-recognizing BNC-LP complex in vivo.
(A) Schematic diagram of the experiment: an initial charge is compared to a second charge (recharge).
(B, left) Bright field images show the grafts excised from mice after the experiment. (Right) Fluorescence
images show the accumulation of Cy3-labeled BNC-LPs on both targeted grafts. (C) Efficiency of
recharging the targeted graft with the BNC-LP complex, determined by measuring relative fluorescence
intensities. Data are the means ± standard deviations of 3 independent observations.

2.7. Effect of Releasing Drug from the Graft Charged with BNC-LP Complexes

Finally, we examined the effects of releasing drug from the graft charged with drug-containing
BNC-LP complexes. For this experiment, we prepared a drug-containing graft by combining the targeted
graft with the pitavastatin-containing BNC-LP complex. We stimulated the abdominal aorta with 0.5M
CaCl2 and then placed the pitavastatin-containing graft close to the aorta (Figure 8A). As a control, we
used the targeted graft charged with BNC-LP complexes that did not contain a drug (Figure 8B).
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tissues. (A) Schematic diagram of the experimental design: CaCl2 induces inflammation in the aorta
(red); the pitavastatin-releasing graft or the control graft is placed next to the aorta. (B) Schematic
diagram of the experiment: the pitavastatin-releasing graft is compared to the control graft. (C)
Representative images of western blots for estimating the expression of matrix metalloproteinase-9
(MMP-9) relative to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression (internal loading
control). (D) Quantification of MMP-9 expression in mouse aortic tissues. Data are the means ±
standard deviations of 5 independent observations. * p < 0.05 compared to the control.
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In the control experiment, at 24 h after treatment with 0.5M CaCl2, MMP-9 was highly expressed
in aortic tissues (Figure 8C). Notably, when the pitavastatin-containing graft was placed next to the
CaCl2-treated aorta, the MMP-9 expression level was significantly reduced (63%± 9% reduction, p < 0.05
compared to control, Figure 8D). This result demonstrated that experimental inflammation of mouse
aortic tissues was successfully inhibited by the drug released from our hybrid drug delivery system.

2.8. Summary of the Results

In summary, the targeted graft was successfully prepared by combining the biotinylated graft
with neutravidin. The target-recognizing nanocarrier was created by conjugating biotinylated BNCs
with liposomes that contained drugs, such as SP60015 and pitavastatin. Both in vitro and in vivo,
the biotinylated BNC-LP complex successfully bound to the targeted graft, but not to an untreated
graft. After the target-recognizing BNC-LP complex was intravenously injected, it specifically and
effectively accumulated at the targeted graft in the mouse blood vessel. In a recharging experiment, the
target-recognizing BNC-LP complex accumulated again at the previously charged targeted graft. These
findings indicated that the target-recognizing nanocarriers could charge and recharge the targeted graft
in vivo. Finally, the targeted graft charged with pitavastatin-containing BNC-LP complexes significantly
reduced MMP-9 expression in aortic tissue, which indicated that the drug had been successfully released
from the graft and had treated the aortic wall in vivo. Thus, we successfully developed a novel drug
delivery device system, called RDDS. Although the scale of our experimental model system with mice
was too small to test the RDDS through every step of the treatment, it was sufficient for testing the
system at three stages (charging, releasing, and recharging). Importantly, no mouse died, during this
study, due to use of the RDDS, which included biotin, neutravidin, BNC-LP, and pitavastatin.

2.9. Clinical Implications and Future Directions

Regardless of promising results in preclinical studies, to date, no AAA drug has shown beneficial
effects in the clinical setting. One potential explanation for this failure might be that inappropriate
doses were used in previous clinical trials [13,23]. Since AAAs are predominately localized to a limited
site on the aorta, it is reasonable to strive for local drug delivery to increase the therapeutic efficacy and
reduce systemic side effects. Recently, several studies have demonstrated the efficacy of nanoparticle
therapies for treating AAAs in rodent models [24–28]. Those approaches could provide attractive
strategies for inhibiting AAA progression. Moreover, other studies have reported the effectiveness of
prolonged drug release from biodegradable systems for treating AAAs [29–31]. Although drug-eluting
stents, in combination with EVAR, might also be a means to deliver drugs to aortic aneurysms, they
are likely to lack control of drug elution. In contrast, the RDDS that we developed is distinctively
different from systemic drug delivery or drug-eluting stent approaches, and theoretically, the RDDS
has more potential for providing great flexibility in drug administration. The RDDS could enable the
safe delivery of the desired drugs to an aneurysm, based on a therapeutic marker, when necessary
(Figure 9). This approach could counteract aneurysm exclusion failures and encourage AAA regression.
Although further studies are necessary before the RDDS can be put into practical use, the system could
provide a useful adjuvant therapy to improve the long-term results of EVAR.

3. Materials and Methods

3.1. Biotinylation of a Graft Surface and In Vitro Detection of Biotin

The surface of an artificial blood vessel (UBE woven polyester graft, Ube Industries, Tokyo, Japan)
was treated with 1 N sodium hydroxide, which partially hydrolyzed it and exposed free carboxyl
groups. The carboxyl groups were activated with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
hydrochloride (EDC), a cross-linker, combined with N-hydroxysuccinimide (NHS). Then, the EZ-Link
Biotin-PEO3-LC Amine kit (Pierce, Rockford, IL, USA) was used to attach biotin to the graft surface.
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To produce the p (HEMA-Biotin) conjugate, we performed a condensation reaction between
poly (2-hydroxyethyl methacrylate) (pHEMA) and (+)-biotin. We combined pHEMA and biotin at a
molar ratio of 1:5, with EDC in N,N-dimethylformamide (DMF), and incubated the reaction at room
temperature for 24 h. Then, a graft was immersed in the p (HEMA-Biotin) solution for 6 h to produce a
surface-biotinylated graft. The amount of biotin coupled to the graft surface was measured with the
4’-hydroxyazobenzene-2-carboxylic acid biotin quantification kit. For binding assays, the biotinylated
graft was combined with DyLight488-labeled neutravidin (Pierce), which served as the target molecule
that could bind a biotinylated drug carrier.

3.2. Verification of the In Vivo Interaction Between Biotin and Neutravidin

Male C57BL/6 mice, obtained from Chiyoda Kaihatsu (Japan), were used for experiments at 10- to
15-weeks old. An operating microscope with 25×magnification was used for the procedure.

A mid-line abdominal incision was made. The inferior vena cava, together with the infrarenal
aorta, were dissected as a unit and mobilized at levels between the renal arteries and the aortic
bifurcation. The proximal and distal portions of the inferior vena cava, together with the infrarenal
aorta, were clamped as a unit with an Acland microvascular clamp (B-1V). A longitudinal incision
was made in the inferior vena cava between the clamps, and a tiny piece of the biotinylated graft
(4 × 1 mm) was placed within the lumen of the inferior vena cava. The incision in the inferior vena
cava was closed with the interrupted suture technique, performed with 10-0 nylon sutures (10V43-10R,
Keisei Medical, Tokyo, Japan). The clamps were then released, and blood flow was reestablished.

Shortly thereafter, DyLight549-labeled neutravidin (Pierce) was injected through the iliac vein.
The fluorescent signal was visualized with a fluorescence stereomicroscope (MVX10, Olympus, Tokyo,
Japan) in real time. During the fluorescence-labeled neutravidin injection, successful reestablishment
of the blood flow was confirmed when the fluorescent signal passed through the inferior vena cava.
The interaction between biotin and neutravidin was considered successful when the fluorescent signal
accumulated in the biotinylated graft.

All experiments in this study were performed in accordance with the Guidelines for the Care
and Use of Laboratory Animals, published by the United States National Institutes of Health. All
protocols were approved by the Institutional Animal Care and Use Committee of Yamaguchi University
Graduate School of Medicine (No. 31-072, 01/09/2009).

3.3. Drug Encapsulation in Liposomes

We used two commonly known therapeutic drugs for aortic aneurysms [6,11,12,32]: a JNK inhibitor
(SP600125, Tocris Bioscience, Bristol, UK) and statin (pitavastatin, Santa Cruz Biotechnology, Dallas, TX,
USA). We encapsulated these drugs in liposomes. Briefly, lipids (10 mg of dipalmitoylphosphatidylcholine:
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dipalmitoylphosphatidylethanolamine:dipalmitoylphosphatidylglycerol:cholesterol, at a ratio of:
15:15:40:30) were dissolved in a methanol/chloroform solution (2 mL). Then, the drug mixture (0.5 mg)
was dissolved in this solution. The solvent was evaporated in an evaporator and heated in a water
bath at 60 ◦C, to prepare a lipid film. The film was hydrated with a buffer (10 mM 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid (HEPES), 150 mM NaCl, pH 7.4, 1 mL). Next, the hydrated film was
passed through an extruder (500 mL syringe-type, pore size 100 nm, Avestin, Ottawa, ON, Canada) 50
times. Then, gel filtration (Superdex G-50, GE Healthcare, Amersham, UK) was carried out to remove
unencapsulated drugs, and thus, purified liposomes were obtained. Both SP600125 and pitavastatin
exhibit specific fluorescence characteristics. Therefore, to test fluorescence measurements for detecting
the released drugs, purified liposomes were destroyed in the presence of 0.1 N HCl and 0.5% sodium
dodecyl sulfate (SDS).

3.4. Preparation of the Biotinylated BNC-LP Complex

As described previously [20,33,34], BNCs were overexpressed in Saccharomyces cerevisiae AH22R−

cells that carried the ZZ-BNC expression plasmid, pGLD-ZZ50. Next, as described previously [20,35],
BNCs were extracted by disrupting the cells with glass beads; then, BNCs were purified on an AKTA
chromatography system (GE Healthcare). Next, BNCs were biotinylated with the EZ-Link Sulfo-N-
hydroxysuccinimide-biotin kit (Pierce), according to the manufacturer’s protocol. For binding assays,
biotinylated BNCs were labeled with Cy3-dye (GE Healthcare) with N-hydroxysuccinimide chemistry,
as described previously [36]. Finally, the drug-containing, biotinylated BNC-LP complex was prepared
by conjugating the biotinylated BNC with drug-containing liposomes at a weight ratio of 1:35, as
described previously [17].

3.5. Binding Assay In Vitro

The targeted graft was prepared by incubating the biotinylated graft with DyLight488-labeled
neutravidin (0.1 mg/mL)/phosphate buffered saline (PBS) for 30 min. Next, pieces of the targeted
graft (5 × 5 mm) were immersed in Tris-buffered saline with Tween20 (TBS-T), and then incubated
with 5% bovine serum albumin/TBS-T for 30 min, to block non-specific binding. After washing in
TBS-T, the targeted grafts were incubated with the biotinylated BNC-LP complex labeled with Cy3
(0.2 mg/mL)/PBS for 20 min. The targeted grafts were washed three times with TBS-T, then fluorescence
was measured with a fluorescence stereomicroscope. Negative controls included non-biotinylated
grafts, biotinylated grafts without neutravidin, and non-biotinylated BNC-LP complexes.

3.6. Binding Assay In Vivo

The targeted graft was prepared by incubating the biotinylated graft with neutravidin
(0.1 mg/mL)/PBS for 30 min. After non-specific blocking and washing, as described in Section 3.5,
a piece of the targeted graft (4 × 1 mm) was placed within the lumen of the mouse inferior vena
cava. After reestablishing blood flow, we injected the biotinylated BNC-LP complex, labeled with
Cy3 (0.2 mg/mL)/PBS (250 µL) into the iliac vein. We used non-biotinylated BNC-LP complex labeled
with Cy3 (0.2 mg/mL)/PBS (250 µL) in a control experiment. At 180 min after injection, the mice were
sacrificed. The graft was immediately excised, together with the inferior vena cava and infrarenal
aorta, as a unit. The specimen was washed with normal saline and examined with a fluorescence
stereomicroscope.

3.7. Assay for Charging the Targeted Graft with the Target-Recognizing BNC-LP Complex In Vivo

The targeted graft was prepared by incubating the biotinylated graft with neutravidin
(0.1 mg/mL)/PBS for 90 min. After non-specific blocking and washing (Section 3.5), a piece of the targeted
graft (4 × 1 mm) was placed within the lumen of the mouse inferior vena cava. Non-biotinylated
grafts were used as negative controls. At 24 h after placing the graft, the biotinylated BNC-LP complex,
labeled with Cy3 (0.025 mg/mL)/PBS (200 µL), was injected into the iliac vein. At 60 min after injection,
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the mice were sacrificed. The graft was immediately excised, together with inferior vena cava and
infrarenal aorta, as a unit. The specimen was washed with normal saline and examined with a
fluorescence stereomicroscope.

3.8. Assay for Recharging the Targeted Graft with the Target-Recognizing BNC-LP Complex In Vivo

The targeted graft was prepared by incubating the biotinylated graft with neutravidin
(0.1 mg/mL)/PBS for 90 min. After non-specific blocking and washing (Section 3.5), a piece of the targeted
graft (4 × 1 mm) was placed within the lumen of the mouse inferior vena cava. For this experiment, on
the same day, after reestablishing blood flow, the biotinylated BNC-LP complex, without Cy3 label,
was injected into the iliac vein (first charge). Then, 24 h after the graft placement, the biotinylated
BNC-LP complex labeled with Cy3 (0.025 mg/mL)/PBS (200 µL) was also injected into the iliac vein
(recharge). For the control experiment, at 24 h after graft placement, a single intravenous injection
of the biotinylated BNC-LP complex labeled with Cy3 (0.025 mg/mL)/PBS (200 µL). At 60 min after
injecting the biotinylated BNC-LP complex labeled with Cy3, the mice were sacrificed. The graft was
immediately excised, together with the inferior vena cava and infrarenal aorta, as a unit. The specimen
was washed with normal saline and examined with a fluorescence stereomicroscope.

3.9. Assay for Releasing Drug from the Graft Charged with BNC-LP Complex In Vivo

The targeted graft was prepared by incubating the biotinylated graft with neutravidin
(0.1 mg/mL)/PBS for 90 min. The pitavastatin-containing biotinylated BNC-LP complex was prepared
by conjugating biotinylated BNC with pitavastatin-containing liposomes (drug content: 0.37 mg/mg
lipid, average particle diameter: 577 nm, polydispersity index: 0.399) at a weight ratio of 1:35, as
described previously [17]. Subsequently, the pitavastatin-releasing graft was charged by incubating the
targeted graft (5 × 5 mm) with the pitavastatin-containing biotinylated BNC-LP complex (0.4 mg)/buffer
(0.24 mL of 10 mM HEPES, 150 mM NaCl, pH 7.4) for 90 min, then washing in TBS-T three times.
For the control experiment, a control graft was charged by incubating the targeted graft (5 × 5 mm) with
the biotinylated BNC-LP complex without drug for 90 min, and then washing in TBS-T three times.

Eight-week-old male C57BL/6 mice were used for this experiment. A mid-line abdominal incision
was made. The infrarenal aorta was dissected and mobilized at levels between the renal arteries and
the aortic bifurcation. Next, the mobilized aorta was stimulated by applying periaortic 0.5 M CaCl2 for
15 min, to induce inflammation in the aorta, as described previously [11,37–39]. Then, a piece of the
pitavastatin-releasing graft (5 × 1.2 mm) was placed near the part of the abdominal aorta that was
stimulated with CaCl2. The control graft was used in the control group. The mice were sacrificed
at 24 h after the CaCl2 treatment. The abdominal aorta was immediately excised and subjected to
protein analysis.

Protein extraction and western blotting were performed, as described previously [11,40,41].
Briefly, equal amounts of sample proteins were loaded onto individual lanes in sodium dodecyl
sulfate polyacrylamide gels. Then, the proteins were separated by electrophoresis and transferred
onto polyvinylidene difluoride membranes. Membranes were probed with antibodies against MMP-9
(1:1,000; R&D Systems, Minneapolis, MN, USA) and glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) (1:50,000; Millipore, Billerica, MA, USA).

3.10. Statistical Analysis

Data are expressed as the mean ± standard deviation. Statistical analyses were performed with
the Student’s t-test (n = 3) or the Mann–Whitney test (n > 3). Data were analyzed with Prism 6.0
(GraphPad Software, La Jolla, CA, USA). p-values < 0.05 were considered statistically significant.

4. Conclusions

In conclusion, we provided a proof-of-concept for the novel RDDS. We showed that the RDDS
was capable of transporting and releasing desired drugs to a specific site, repeatedly and safely.
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The practical development of this system might be a major step toward improving the long-term
outcome after EVAR.
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AAA Abdominal aortic aneurysm
BNC Bio-nanocapsule
BNC-LP
EDC
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JNK
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NHS
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RDDS
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Bio-nanocapsule-liposome
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride
Endovascular aneurysm repair
Glyceraldehyde 3-phosphate dehydrogenase
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
c-Jun N-terminal kinase
Matrix metalloproteinase
N-hydroxysuccinimide
Phosphate buffered saline
poly (2-hydroxyethyl methacrylate)
Rechargeable drug delivery system
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