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Abstract: On-line fatigue crack evaluation is crucial for ensuring the structural safety and reducing
the maintenance costs of safety-critical systems. Among structural health monitoring (SHM), guided
wave (GW)-based SHM has been deemed as one of the most promising techniques. However, the
traditional damage index-based method and machine learning methods require manual processing
and selection of GW features, which depend highly on expert knowledge and are easily affected
by complicated uncertainties. Therefore, this paper proposes a fatigue crack evaluation framework
with the GW–convolutional neural network (CNN) ensemble and differential wavelet spectrogram.
The differential time–frequency spectrogram between the baseline signal and the monitoring signal
is processed as the CNN input with the complex Gaussian wavelet transform. Then, an ensemble
of CNNs is trained to jointly determine the crack length. Real fatigue tests on complex lap joint
structures were carried out to validate the proposed method, in which several structures were tested
preliminarily for collecting the training dataset and a new structure was adopted for testing. The
root mean square error of the training dataset is 1.4 mm. Besides, the root mean square error of the
evaluated crack length in the testing lap joint structure was 1.7 mm, showing the effectiveness of the
proposed method.

Keywords: fatigue crack evaluation; guided wave; convolutional neural network ensemble; time-
frequency spectrogram

1. Introduction

Structural integrity is a key issue for safety-critical systems such as aircraft, infrastruc-
tures, and nuclear plants [1,2]. Commonly, fatigue cracks are one of the primary causes of
structural failure [3,4]. It is crucial to examine the state of fatigue cracks in the structure to
demine whether or when maintenance operations are needed. In recent decades, structural
health monitoring (SHM) [5] has shown great potential in interrogating structural health
state in real-time, whose results can be incorporated for the timely optimizing of the main-
tenance strategies, consequently ensuring structural safety and reducing the maintenance
cost [6].

In the SHM field, different kinds of methods have been developed [7–10]. Among
them, the guided wave (GW)-based SHM [11–13] has been deemed as one of the most
promising techniques due to its sensitivity to small damages and capability of monitoring
a region that is sometimes inaccessible [14]. In the GW-based method, the GW signal is
excited to propagate in the structure. GW signals tuned by the crack are then collected and
processed to evaluate the crack state. The basic method is to evaluate the scalar called the
damage index [11] from GW signals in the time or frequency domain. This method needs a
reasonable selection of the damage index and the wave packet for calculation. However,
it would get into trouble when the wave packet is badly overlapped due to frequency
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dispersion and reflection from complex geometries in the structure [15]. Moreover, fatigue
crack growth is a complicated process affected by uncertainties from sources like fatigue
loading, boundaries, and environmental factors. These uncertainties would also cause
changes to fatigue crack growth itself and GW signals, introducing difficulties for reliable
crack evaluation. To deal with these problems, machine learning methods are adopted,
such as the auto-regression model [16], the Gaussian mixture model [17], artificial neural
networks [18], and hidden Markov models [19,20]. These methods are widely explored in
the SHM field; however, most of them still require manual processing and the selection of
GW damage index, which rely heavily on expert knowledge.

Recently, deep learning has already made a huge impact in areas such as cancer diagno-
sis, precision medicine, self-driving cars, predictive forecasting, and speech recognition [21].
More and more attention is paid to deep learning-based diagnosis due to its strong feature
extraction and features fusion capability [22], especially for the fault diagnosis of rotary
machines [23–25] and vision-based crack detection in infrastructures [26,27]. Moreover,
attempts were made for applying deep learning in the GW-based SHM. For example, Xu
et al. [28] organized GW damage indexes from different excitation–sensing paths as a
one-dimensional vector, which was input into a convolutional neural network (CNN) for
classifying fatigue crack levels in a lug structure. Rai et al. [29] and Mariani et al. [30]
directly adopted the one-dimensional GW signal as the CNN input to localize and evaluate
the notched damage in the plate structure. Lim et al. [31] repeated the same GW signal
as a matrix, in which the CNN is used for monitoring the stress in a strip structure. Hu
et al. [32] and Melville et al. [33] stacked GW signals from different excitation-sensing paths
as an image. Then the CNN was utilized to process these images to localize simulated
damages in the pressure vessel or an aluminum plate. In these studies, the CNN is preferred
due to its unique structures such as local connection, shared weights and subsampling,
allowing it to automatically extract representations of GW signals that are beneficial for
damage diagnosis.

Instead of organizing damage indexes or stacking original signals, the time–frequency
spectrogram (TFS) [34] of the GW signal has been more preferred as the input of the CNN
model, since the TFS contains both the time-domain information and frequency-domain
information. Besides, TFS is naturally an image that is more suitable to be processed with
the CNN. Liu et al. [35] adopted the GW time–frequency image, which was obtained with
short-time Fourier transform, to detect notched crack damage in an aluminum plate with
the VGG-16 network. Compared to the short-time Fourier transform, the wavelet transform
is a more powerful mathematical tool used to analyze the signal at different resolutions
for nonperiodic and transient signals. Ewald et al. [36] and Rautela et al. [37] simulated
GW signals in the notched plate. The wavelet coefficients of the GW signals were used as
the CNN inputs for notch detection. Ebrahimkhanlou et al. [38] incorporated the CNN to
localize the source of acoustic emission simulated with pencil break in an aluminum plate,
in which wavelet coefficients of GW signals are normalized and converted to the input
image. Wu et al. [39] adopted the TFS from GW signals in the composite plate to localize ply
delamination with a deep CNN. Li et al. [40] used the synchrosqueezed wavelet transform
to create the time–frequency image of acoustic emission wave data. Then multibranch
CNN was combined for detecting cracks in the rail. All the studies show the effectiveness
of the CNN-based damage diagnosis with TFS. However, most of them were performed on
simulated damages in simple plate structures. Real fatigue cracks were rarely discussed.
For engineering structures with real fatigue cracks, fatigue crack evaluation is affected
by complicated uncertainties, from sources like crack geometries, holes, boundaries, and
connections. These uncertainties make it difficult to extract GW features for the accurate
diagnosis of the crack size, since changes of the GW signals caused by the fatigue crack
may be masked. More importantly, the training data for real fatigue cracks are difficult to
collect, resulting in a few-shot learning problem.

Aiming at automatically extracting more effective features from GW signals for evalu-
ating fatigue crack size under complicated uncertainties, this paper proposes a fatigue crack
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evaluation method based on the GW–CNN ensemble and differential TFS. The GW signal
is transformed into a two-dimensional TFS image with the complex Gaussian wavelet
transform. The differential TFS between the baseline signal and the monitoring signal is
processed as the CNN input in order to amplify the effect of the fatigue crack. Besides, an
ensemble of CNNs is trained to determine the crack length in the structure jointly to deal
with overfitting caused by small sample data. Each CNN in the ensemble automatically
extracts high-level features from the TFS, aiming at evaluating the fatigue crack length
rather than crack length levels.

The rest of this paper is organized as follows: the details of the proposed method are
given in Section 2, including extracting the differential TFS with the complex Gaussian
wavelet transform, as well as the construction of the GW–CNN ensemble. In Section 3, the
fatigue tests of complicated lap joint structures are carried out, in which the GW-based
technique is adopted for crack monitoring. The proposed method is then verified with the
fatigue test data. Finally, the discussions and conclusions are in Sections 4 and 5.

2. GW–CNN Ensemble-Based Fatigue Crack Evaluation Method
2.1. Differential Time–Frequency Spectrogram Extraction

GW is a kind of elastic wave that propagates in a wave-guide structure [41]. As shown
in Figure 1, piezoelectric transducers (PZTs) are arranged or embedded in the structure.
The GW signal is excited to propagate in the structure through the PZT and collected by
the other PZT. If there is a fatigue crack, it would cause changes to the propagation of the
GW signal. By comparing the monitored GW signal with the baseline signal obtained at
the pristine structural state, the state of the fatigue crack can be identified.

Figure 1. Illustration of the GW-based crack monitoring.

Instead of directly extracting the damage index [11] from the original GW signals,
this paper converts the GW signal into the TFS with the continuous wavelet transform
to evaluate the crack length in the structure. The continuous wavelet transform [42] is
a powerful tool to explore the characteristics of nonperiodic and transient signals such
as GW signals in the time–frequency domain. It introduces an expandable spatial and
frequency window called the “wavelet” which can overcome the inferiority of localization,
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characteristic in Fourier transform and short-time Fourier transform. In the time domain, a
general wavelet transform can be expressed as follows,

Wϕ(a, b) =
1√
a

∫
h(t)ϕ∗

(
t− b

a

)
dt, a > 0 (1)

where h(t) represents the GW signal, ϕ represents the mother wavelet, ϕ* is the complex
conjugate of ϕ, a is the scaling factor that controls the wavelet’s frequency, and b is the
translation factor that identifies its location.

The wavelet coefficients Wϕ(a,b) represent the similarity between the signal and the
mother wavelet after being shifted and scaled. The scale of the wavelet can be converted
to the frequency f = f 0 · f s/a, where f 0 is the center frequency of the mother wavelet, f is
the instantaneous frequency, and f s is the sampling rate. The selection of an appropriate
wavelet is important, which directly affects the crack evaluation result. There are different
kinds of wavelets, such as the Mexican Hat wavelet, the Morlet wavelet, and the Haar
wavelet [43]. In this paper, the complex Gaussian wavelet is chosen as the best candidate
due to its advantages of guaranteeing the edge position detected when changing the scale.
The complex Gaussian wavelet is defined as Equation (2) [44]

ϕn(t) = Cn
dn

dtn (e
−jωte−t2

) (2)

where n denotes the order and Cn is a normalizing constant that depends on n.
By using a series of wavelets with different scales, and shifting them in time along

with the signal, a map of wavelet coefficients Wϕ(a,b) is obtained. The wavelet coefficients
Wϕ(a,b) are complex values, and their modules can be arranged as an image, e.g., the TFS.
In this paper, the differential TFS between the baseline signal and the monitoring signal is
processed as the input of the CNN model, as expressed in Equation (3).

ζ(a, b) =
(∣∣Wϕ(a, b)

∣∣)2 −
(∣∣∣Wbaseline

ϕ (a, b)
∣∣∣)2

(3)

where ζ(a,b) is called the differential magnitude. The square of the module is proposed to
amplify the difference between the monitoring GW signal and the baseline.

2.2. GW–CNN-Based Crack Evaluation Model

The CNN is a well-known deep learning model which is quite suitable for processing
images of classification and regression problems [45]. This subsection briefly introduces
the underlying concept of the CNN.

As shown in Figure 2, the CNN usually has a multilayer structure, including the
convolutional, activation, pooling, and full connection layer. The TFS image enters the
network as the input, then the convolutional layers and pooling layers extract important
local features. Finally, the crack length is outputted with the full connection layer.

Figure 2. Architecture of a typical CNN.

The convolution layer utilizes the convolution operation to process the input image.
In each convolutional layer, there are several convolutional kernels (or filters). The convo-
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lutional kernels consist of trainable weights which can generate a series of feature maps by
sliding over the small local receptive fields of the input. The output of the jth feature map
in the lth convolution layer is calculated as Equation (4) [40],

xl
j = f ( ∑

i/∈Mj

xl−1
i ∗wl

ij + bl
j) (4)

where xl−1
i denotes the ith feature map in the l-1th layer, wl

ij denotes the weight matrix of

the jth filter, bl
j denotes the bias matrix of the jth filter, Mj denotes the number of feature

maps, * represents the convolution operation, and f (·) denotes the activation function.
The activation function f (·), named as the activation layer, brings nonlinearity to the

CNN model by being imposed on the convolution filter output. Usually, the rectified
linear unit (ReLU) activation function is preferred in deep learning because it has a simpler
derivative result, leading to faster training and avoiding the gradient diffusion problem [46].
The expression of the ReLU activation function is given as Equation (5).

ReLU(x) =
{

0 if x ≤ 0
x if x > 0

(5)

The pooling layer is commonly placed between successive convolution layers. It
can progressively reduce the spatial size of the feature maps. This is also referred to
as downsampling, by which the overfitting of the network can be controlled. Usually,
downsampling can be implemented by operations like maximum pooling and average
pooling. Assuming the pooling size is c, the average pooling feature of the jth region at the
lth pooling layer is expressed as Equation (6).

xl
j = f (βl

j mean(xl−1
j ) + bl

j) (6)

where βl
j and bl

j represent the multiplicative and additive biases and mean(·) represents
the average operation. The convolution layer detects the local connections of the features
from the previous layer, while the pooling layer merges similar features and removes
unnecessary irrelevant details.

The full connection layer is called the perceptron layer, which is applied at the end
of the CNN to flatten the learned feature maps into one vector and obtain the expected
output form. In this paper, the fatigue crack evaluation problem is a regression problem.
Therefore, a linear activation function is adopted in the full connection layer, by which a
scalar value denoting the crack length is outputted.

Moreover, there are auxiliary layers in the CNN, like the batch normalization layer and
the dropout layer. The batch normalization layer normalizes a mini-batch of data across all
training data for each channel independently, which can speed up training and reduce the
sensitivity to network initialization. The dropout layer randomly sets input elements to
zero with a given probability during training to deactivate a part of neurons on a particular
layer [47]. This improves the generalization ability of the CNN because it forces the layer to
learn with different neurons the same “concept”. During the prediction phase, the dropout
is deactivated.

The training of CNN is a procedure of optimizing the weights and bias in the layers,
via minimizing the loss function. In this paper, the mean square error is adopted as the
loss function in accordance with the regression problem. For CNN optimization, the most
popular algorithms include the stochastic gradient descent (SGD) and the adaptive moment
estimation (Adam) algorithm [48]. The SGD is preferred for computer vision, while Adam
is preferred for natural language processing and speech problems [40]. Therefore, the
SGD algorithm is adopted in this paper. In the stochastic gradient descent algorithm,
weights are updated after every sample is shown to the network. In order to speed up
the training process, weights are updated only after a batch of images are shown to the
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network, named as the mini-batch SGD algorithm [49]. The training of the CNN is finished
when the loss function is close to converging or a defined maximum number of training
iterations is reached.

2.3. Fatigue Crack Evaluation Method Based on the GW–CNN Ensemble

As mentioned in Section 2.1, the GW signal collected at the structural pristine state is
called the baseline signal. When a new GW signal is collected, its wavelet coefficients can
be evaluated with the wavelet transform, along with the wavelet coefficients of the baseline
signal. Then, the TFS image of this GW signal is evaluated with Equation (3). With the
CNN mentioned above, the TFS image can be converted to the crack length in the structure,
e.g., the fatigue crack evaluation, after the CNN is trained. Usually, the training dataset is
collected by conducting a series of fatigue tests of several structures that are identical to the
target structure. Due to the complexity of implementing fatigue tests, the number of the
training structures are usually small. Therefore, the training dataset for the fatigue crack
evaluation is a small sample problem. Besides, the training of the CNN includes several
stochastic steps such as the parameter initialization. The CNNs will have different outputs
even while being trained with the same dataset.

Therefore, this paper proposes the CNN ensemble for the fatigue crack evaluation
problem, as shown in Figure 3. The CNN ensemble is composed of M CNNs, which are
trained with the same dataset and settings. Assuming the rth CNNs outputs the crack
length yr in the target structure, the final crack evaluation result is determined by all the
CNNs’ outputs, as shown in Equation (7).

y =

M
∑

r=1
yr

M
(7)

where y is the crack evaluation result.

Figure 3. Implementation of the GW–CNN ensemble-based fatigue crack evaluation.

In general, the proposed GW–CNN ensemble-based fatigue crack evaluation method
is implemented, as in Figure 3. At the structure’s pristine state, a GW signal is collected as
the baseline. This GW signal is converted to the TFS with the continuous wavelet transform.
During the service of the structure, the monitoring GW signal is acquired and used for
fatigue crack evaluation. The differential TFS of the monitoring GW signal as Equation (3)
is evaluated as the input of the CNN ensemble. By synthesizing the result of a series of
CNNs, the final fatigue crack evaluation result is obtained.
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3. Experimental Validation

The proposed method is validated on the fatigue test data of a lap joint structure,
which is an important joint type of aircraft fuselage. The following firstly introduces the
fatigue test settings, as well as some typical fatigue test results. Then, the training of the
GW–CNN ensemble and its validation is carried out with the fatigue test data.

3.1. Fatigue Test Settings

As shown in Figure 4, the lap joint structure is made of the 2 mm thick 2024-T4
aluminum alloy plate, which is jointed by overlapping two plates with six countersunk
rivets. It was designed and purchased by the authors, which was fabricated in a machining
factory. According to the finite element analysis result, fatigue cracks are prone to initiate
and grow at Nos. 4, 5, and 6 rivets due to the weakening of the countersunk holes. Therefore,
two PZTs are arranged to monitor the growth of fatigue cracks, denoted as PZT1 and PZT2.
Figure 5 shows the real specimen with the PZT smart layer designed by the authors’ group.

Figure 4. Specimen dimensions and sensor layout.

Figure 5. Specimen with the PZT smart layer.
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In Figure 6, the lap joint specimen is clamped vertically on the SUNS10T fatigue
loading system. Since there is no precrack in the structure, a series of sinusoidal loading
cycles are applied to initialize the fatigue crack at first. This load includes 13,000 sinusoidal
cycles with a peak value of 25 kN and stress ratio of 0.1, and a number of sinusoidal cycles
with a peak value of 20 kN and stress ratio of 0.1, until a crack is observed at any rivet hole.
After that, a weakened load with a peak value of 15 kN and stress ratio of 0.1 is applied to
slow the fatigue crack growth. This fatigue load was selected based on a previous study for
this kind of lap joint. Firstly, finite element simulations were carried out to calculate the
stress distribution in the structure, which is used to estimate its crack initiation with S-N
curves. Then, previous fatigue tests of these kinds of lap joints were performed to adjust
the fatigue load, to make the time duration of the crack initiation within several hours so to
accelerate the fatigue test.

Figure 6. Setup of the fatigue test.

During the fatigue crack growth, the fatigue crack is observed through a digital
microscope and the fatigue crack length is measured with scales on the specimen. The
microscope model used in the fatigue test is BL-SM210, which has a maximum resolution of
210 M pixels, and 40 times zoom. The multichannel PZT array scanning system developed
by the authors’ group [50] is used for the excitation and acquisition of GW signals. The
excitation waveform is the three-cycle Hanning-windowed sine burst with the central
frequency of 160 kHz. The GW signal is collected with a sampling rate of 10 MHz. Once
the crack grows for a certain length, the fatigue load is suspended and a static load of 5 kN
is applied. Meanwhile, the GW signal is excited and acquired with PZT1 as the actuator
and PZT2 as the sensor. In total, six specimens, labeled from D1 to D6, are involved in the
fatigue test. Before the crack growth of each specimen, a baseline GW signal is obtained at
the pristine state.

3.2. Fatigue Test Results of the Lap Joint Structure

Figure 7 illustrates the fatigue cracks in the lap joint specimen D2. After a number of
loading cycles, the fatigue crack occurs at the edge of the No. 4 rivet. The crack continuously
grows and another crack initiates at the edge of No. 5 rivet. Finally, the two cracks link
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together. The locations and geometries of the cracks in the other specimens are different
from Figure 7. To simplify the data processing, the total crack length of these cracks is
considered in this paper. Figure 8 shows the total crack length versus the loading cycles
recorded for the specimens mentioned above.

Figure 7. Fatigue cracks of the lap joint structure: (a) Fatigue crack just occurs at No. 4 rivet;
(b) Cracks from No. 4 rivet and No. 5 rivet link together.

Figure 8. Total crack length versus fatigue loading cycles.

Typical guided wave signals are given in Figure 9. For each GW signal, the front
wave packet is the crosstalk that is useless and introduced by the electromagnetic induction
between the circuits of the actuator and sensor. Excluding the crosstalk, the direct wave
packet is usually used for crack monitoring since signals after this packet are affected by
different kinds of uncertainties and show large dispersion between different specimens.
It can be found the shape of the direct wave packet is different from the excitation signal.
This is due to frequency dispersion, as well as reflections and scattering caused by the
rivets and boundaries. Small changes can be observed in the direct wave packet with the
crack growth.
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Figure 9. Typical guided wave signals with the increase of the crack lengths: (a) Whole guided wave
signal collected during the fatigue test; (b) Magnification of the direct wave packet of the collected
GW signal.

3.3. GW–CNN Ensemble-Based Fatigue Crack Evaluation

In this paper, the time–frequency spectrogram, e.g., TFS, is evaluated with the complex
Gaussian wavelet transform. Figure 10 shows the TFS extracted from the direct wave packet
at different crack lengths in specimen D1. The frequency of the wavelet is chosen from
100 kHz to 300 kHz with an interval of 1 kHz. As a result, the TFS has a size of 201 × 213.
The TFS clearly shows the time–frequency distribution of the direct wave packet. It can be
found there is an increase of the magnitude from Figure 10a–f. This is because the reflection
wave from the crack will increase when the cracks grow, leading to an increase of the signal
amplitude of the direct wave packet.

Figure 10. Extracted TFS images with the fatigue crack growth in specimen D1: (a) The TFS image
of the GW signal collected when the total crack length is 0 mm obtained by the continuous wavelet
transform; (b) The total crack length is 4.2 mm; (c) The total crack length is 9.5 mm; (d) The total crack
length is 16 mm; (e) The total crack length is 22 mm; (f) The total crack length is 32 mm.
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After that, the differential TFS is evaluated as the input of the GW–CNN ensemble,
as shown in Figure 11. At the initial time, there is no crack length, thus the image is zero.
With the growth of the cracks, the magnitude in the TFS increases, which locates at the tail
of the direct wave packet. This is because the reflection of the GW signal from the crack has
a longer propagation distance than the wave directly from PZT1 to PZT2. The differential
TFS well represents the growth of the fatigue cracks.

Figure 11. Extracted differential TFS images with the fatigue crack growth in specimen D1: (a) The
total crack length is 0 mm obtained by the continuous wavelet transform; (b) The total crack length is
4.2 mm; (c) The total crack length is 9.5 mm; (d) The total crack length is 16 mm; (e) The total crack
length is 22 mm; (f) The total crack length is 32 mm.

Aiming at verifying the GW–CNN ensemble-based fatigue crack evaluation method on
the lap joint structure, the CNN is firstly designed as Figure 12. There are five convolution
layers and three pooling layers. In each convolution layer, the ReLU activation function is
used. After the convolution operation, batch normalization is conducted. A dropout layer
is added before the full connection layer. The output of the CNN is the total crack length in
the lap joint structure, whose dimension is 1. To construct the CNN ensemble, a total of
M = 20 CNNs with the same structure are employed.

In order to train the CNN, the data from the former specimens D1–D5 are used as the
training samples. Besides, the data of specimen D6 are used for verifying the proposed
method. Firstly, the GW signals collected at different crack lengths in specimens D1–D5
are used to evaluate corresponding differential TFS images, resulting in a dataset size of
77. That is, a total of 77 TFS images are used for training. In addition, there are 17 images
obtained from specimen D6, which are used for testing the proposed model. There is no
postprocessing for the TFS images. The training dataset is normalized to train the 20 CNNs
with the same settings. The training algorithm is the mini-batch SGD algorithm. The initial
learning rate is 1 × 10−4, which will decrease for every 200 epochs with a rate of 0.5. The
batch size is 8 and the maximum number of epochs is 1000. The computer used for training
runs on the Intel(R) Core(TM) i7-10750H CPU, GeForce GTX1660ti GPU, and 16 GB RAM.
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Figure 12. Structure of the CNN for fatigue crack evaluation.

4. Results and Discussions

Figure 13 shows the typical loss varying with the training process. No validation data
is used during the training process, since only 77 TFS images are collected from specimens
D1–D5 for training. It can be found that the loss converges after sufficient iterations. The
time for training each CNN is about 9 min. The root mean square error (RMSE) of the
trained dataset is 1.4 mm.

After the training of the GW–CNN ensemble, the TFS image from specimen D6 is
sequentially evaluated and input into the GW-CNN ensemble, which outputs the evaluation
result of the crack length. As shown in Figure 14a, there are 20 crack length outputs at
each loading cycle, which are evaluated with the 20 CNNs in the GW–CNN ensemble,
respectively. The outputs of the CNNs show large dispersion, since the number of the
training TFS images is small. In addition, Figure 14b illustrates the final crack evaluation
results by averaging the CNNs’ outputs with Equation (7). The actual cracks of specimen
D6 are given in Figure 15. The crack firstly initiates at the right hole edge of the No. 4 rivet
and grows with fatigue loading. Then, new cracks occur at another hole edge of the No. 4
rivet and the No. 5 rivet. The total crack length of these cracks is evaluated with the trained
GW–CNN ensemble, which coincides with the experimental crack length.
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Figure 13. Loss varying with the training process.

Figure 14. Fatigue crack evaluation result with the GW–CNN ensemble: (a) Output of the CNNs in
the CNN ensemble; (b) Final output of the CNN ensemble.

The commonly used damage index-based crack evaluation method is also considered
for comparison. In this paper, two kinds of widely used damage indexes are extracted
from the guided wave signal, which are the root mean square deviation damage index [51]
and the drop-in correlation coefficient damage index [52]. The root mean square deviation
damage index mainly represents the energy change of the GW signal. The drop-in correla-
tion coefficient damage index mainly represents the phase changes of the GW signal. The
direct wave packet in the GW signal, as shown in Figure 9b, is intercepted for evaluating
the damage index since it is less affected by the boundaries of the structure. The extracted
damage indexes of specimens D1–D6 are given in Figure 16. It can be found that the
damage indexes for the different specimens show large dispersion. This is due to the
geometric complexity of the lap joint structure and the uncertainties of fatigue cracks. The
lap joint structure is composed of two aluminum plates which are assembled by the rivets.
The guided wave propagating in the structure is not only affected by the fatigue cracks, but
also by the rivet holes, the rivets, and the contacts between the two plates. These effects
are different and uncertain for different specimens. The geometries and locations of the
fatigue cracks in different specimens are different due to the stochastic nature of fatigue
crack initiation and growth. Guided wave signals acquired under the same crack length



Sensors 2022, 22, 307 14 of 19

from different specimens are different. The above-mentioned problems lead to the large
dispersion of the damage indexes.

Figure 15. Fatigue cracks of specimen D6 at different stages: (a) Total crack length of 0 mm; (b) Total
crack length of 2 mm; (c) Total crack length of 17 mm; (d) Total crack length of 29.5 mm.

Figure 16. Widely used damage indexes extracted from the GW signal: (a) Root mean square
deviation damage index; (b) Drop-in correlation coefficient damage index.
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The damage index-based crack evaluation needs a surrogate model to establish the
mapping between the damage index vector and the crack length. In this paper, a two-input
and two-order polynomial mapping is also constructed with the data from specimens
D1–D5. The data from specimen D6 are used for testing the damage index-based crack
evaluation model. The result is shown in Figure 17.

Figure 17. Fatigue crack evaluation result compared with the damage index-based method.

There are large errors between the crack evaluation results obtained with the damage
index-based method. Figure 18a shows the absolute errors of the GW–CNN ensemble and
the damage index-based method. The horizontal axis is the experimental crack length.
The fatigue evaluation result of the damage index-based method shows small errors when
the crack length is small but expresses large errors when the crack length is large. This is
because the damage index-based model represents the average relationship of specimens
D1–D5, which deviates from the new target specimen D6. This deviation is bigger when the
crack length is larger. On the other hand, the proposed GW–CNN ensemble shows smaller
errors than the damage index-based method, especially when the crack length is large.
The maximum evaluation error with the proposed GW–CNN ensemble is 3 mm, which
occurs when the actual crack length is 5 mm. This point is singular, which may be caused
by the training data. Figure 18b gives the relative errors of the evaluation results. The
relative error of the GW–CNN ensemble is large when the crack length is small. However,
it is acceptable if we consider the complexities of the lap joint structure and the absolute
errors. The effect of a small fatigue crack on the GW propagation may be masked by the
effects of the rivets, holes, and contacts. It is difficult to have a very small relative error
when the crack length is small. The RMSE of the GW–CNN ensemble is 1.7 mm, compared
with 12.7 mm of the damage index-based method. In summary, the proposed GW–CNN
method gives satisfying results, thus verifying the effectiveness of the proposed method.
The proposed method offers a new way for automatically extracting more effective features
from GW signals aiming at evaluating real fatigue cracks under complicated uncertainties.
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Figure 18. Fatigue crack evaluation errors: (a) Absolute error; (b) Relative error.

5. Conclusions

This paper proposes a GW–CNN ensemble-based method for the on-line evaluation
of fatigue cracks under complicated uncertainties. The GW signal is transformed into a
two-dimensional TFS image with the complex Gaussian wavelet transform, by which the
differential TFS between the baseline signal and the monitoring signal is processed as the
CNN input. Besides, an ensemble of CNNs is trained to jointly determine the crack length
in the structure. The fatigue tests of complicated lap joint structures are carried out to
validate the proposed method. The data of the former five specimens, D1–D5, are used to
train the GW–CNN ensemble, and the data collected from specimen D6 is used for testing.
The crack evaluation result shows the proposed ensemble can effectively diagnose the total
crack length in the lap-joint structure compared with the traditional damage index-based
method. The maximum evaluation error with the proposed GW–CNN ensemble is 3 mm
and the root mean square error is 1.7 mm, showing the effectiveness of extracting more
effective features from the TFS with the CNN.

The proposed method is a kind of data-driven method which depends on the training
data. The more data is collected, the better the method performs. However, carrying out
fatigue tests of the structure to collect the training data is time and cost consuming, which is
the main limitation of the method. Therefore, in the future, simulation data of GW signals
with the finite element method can be a useful complement for enriching the training
dataset. Moreover, real fatigue tests, including different load levels, a different disposition
of the rivets, etc., may also be considered for correcting the finite element model, thus
aiming at providing more effective data.

Bedsides, all the acronyms are listed in Appendix A to make them clear.
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Appendix A

The acronyms in this paper are listed in Table A1.

Table A1. Acronyms in this paper.

Acronym Definition

SHM Structural health monitoring

GW Guided wave

CNN Convolutional neural network

TFS Time–frequency spectrogram

PZT Piezoelectric transducer

SGD Stochastic gradient descent

Adam Adaptive moment estimation

RMSE Root mean square error

ReLU Rectified linear unit
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