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Introduction: Particulate air pollution, containing nanoparticles, enhances the risk of
pediatric allergic diseases that is potentially associated with disruption of neonatal immune
system. Previous studies have revealed that maternal exposure to carbon black
nanoparticles (CB-NP) disturbs the development of the lymphoid tissues in newborns.
Interestingly, the CB-NP-induced immune profiles were observed to be different
depending on the gestational period of exposure. It is important to identify the critical
exposure period to prevent toxic effects of nanoparticles on the development of the
immune system. Therefore, the present study was aimed to investigate the effect of CB-NP
on the development of neonatal lymphoid tissues in mice, depending on the gestational
period of exposure.

Methods: Pregnant ICR mice were treated with a suspension of CB-NP (95 μg/kg body
weight) by intranasal instillation; the suspension was administered twice during each
gestational period as follows: the pre-implantation period (gestational days 4 and 5),
organogenesis period (gestational days 8 and 9), and fetal developmental period
(gestational days 15 and 16). The spleen and thymus were collected from offspring
mice at 1, 3, and 5-days post-partum. Splenocyte and thymocyte phenotypes were
examined by flow cytometry. Gene expression in the spleen was examined by quantitative
reverse transcription-polymerase chain reaction.

Results: The numbers of total splenocytes and splenic CD3−B220− phenotype (non-T/
non-B lymphocytes) in offspring on postnatal day 5 were significantly increased after
exposure to CB-NP during the organogenesis period compared with other gestational
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periods of exposure and control (no exposure). In contrast, expression levels of mRNA
associated with chemotaxis and differentiation of immune cells in the spleen were not
affected by CB-NP exposure during any gestational period.

Conclusion: The organogenesis period was the most susceptible period to CB-NP
exposure with respect to lymphoid tissue development. Moreover, the findings of the
present and previous studies suggested that long-term exposure to CB-NP across
multiple gestational periods including the organogenesis period, rather than acute
exposure only organogenesis period, may more severely affect the development of the
immune system.

Keywords: carbon black nanoparticles, air pollution, nanomaterial, neonates, lymphoid tissue development, immune
response, non-B/non-T cell, CD3-/B220- phenotype

INTRODUCTION
Child health promotion is an important community goal to realize
a sustainable society for future generations. The increasing
prevalence of allergic diseases such as asthma, eczema, and hay
fever is a serious problem (Devereux, 2006), and implicates
disruptions in the immune system. Since the immune system of
newborns is immature and susceptible to exogenous factors,
perinatal exposure to endocrine disruptors (Camacho et al.,
2004; Mustafa et al., 2009), chemical substances (Midoro-
Horiuti et al., 2010), and heavy metals (Jedrychowski et al., 2015)
interferes with the neonatal development of lymphoid tissues. In
addition to these factors, emerging research has suggested that air
pollution increases the risk of developing allergic diseases in the
childhood (Kim et al., 2018; Amazouz et al., 2021).

Among air pollutants, suspended particles, including fine
particle matter (PM2.5), are a major public health concern.
The toxicological properties of particles change as they
approach the nanometer size range. Inhaled nanoparticles can
reach the alveolar region, which is the deepest area of the
respiratory organ (Oberdörster et al., 2002), translocate into
the bloodstream (Choi et al., 2010), and circulate throughout
the body (Kreyling et al., 2002). An ex vivo study using the human
placenta demonstrated that nanoparticles, less than 240 nm, can
pass through the blood-placental barrier (Wick et al., 2010).
Moreover, animal studies have shown that nanoparticle
injected during the fetal period was detected in the fetus
(Takeda et al., 2009; Yamashita et al., 2011) and perinatal
exposure to nanoparticles induced abnormal development of
fetal organs, including the central nervous system (Onoda
et al., 2020), genital organs (Takeda et al., 2009; Kubo-Irie
et al., 2014), and the liver (Jackson et al., 2013). In addition to
these organs, nanoparticles invading fetus may affect the fetal
immune system and cause allergic diseases in the childhood
owing to the strong link between the exposure to
nanoparticles and immune reactions (Zolnik et al., 2010) and
inflammatory responses (Sun et al., 2013). Moreover, maternal
exposure to low doses of air particulate matter has been identified
as a cause of an increase in susceptibility to the allergic diseases of
airways in the offspring (Fedulov et al., 2008). Findings of a
cohort study have suggested that exposure to particulate air
pollution during pregnancy may induce neonatal airway

inflammation associated with allergic diseases in the childhood
(Latzin et al., 2009). Therefore, it is important to reveal the
mechanisms of immunotoxicity caused by nanoparticles and
the effects of maternal exposure to them.

To evaluate the effects of nanoparticles on the development of
the immune system, we have investigated the effects of maternal
exposure to carbon black nanoparticles (CB-NP), model particles
of air pollution (Long et al., 2013), on the development of various
organs related to immune responses of the offspring. Upon
exposure of 11-weeks old pregnant ICR mice to CB-NP
(95 μg/kg body weight) during early- and middle-gestation
period (gestational days 5 and 9, respectively), a decrease in
the number of CD3+, CD4+, and CD8+ T cells in the spleen was
observed in infantile mice (Shimizu et al., 2014). In contrast,
maternal exposure to the same dose of CB-NP during middle-
and late-gestation period (gestational days 9 and 15, respectively)
induced an increase in the number of total thymocytes, including
CD4−CD8− and CD4+CD8+ cells, and splenic lymphocytes,
including CD4−CD8−, CD3+, B220+, and CD3− B220− cells, in
infantile mice, suggestive of stimulation of immature splenocytes
(El-Sayed et al., 2015). Interestingly, the findings of the studies
indicated that immune responses elicited by CB-NP might be
dependent on the stage of gestation to which they were exposed.
Therefore, this critical exposure period is important to
understand the mechanisms underlying the toxic effects of
nanoparticles on the development of the immune system.
Here, we reported differential effects of CB-NP exposure
during each gestation period on the thymus, the central tissue
of the immune system, and the spleen, the peripheral tissue of the
immune system, in infantile mice. The exposure period was
divided into three periods: pre-implantation period,
organogenesis period, and fetal developmental period.

MATERIALS AND METHODS

Preparation of Carbon Black Nanoparticles
Suspension
The CB-NP suspension was prepared according to previously
reported methods (Onoda et al., 2014; Shimizu et al., 2014; El-
Sayed et al., 2015). Printex 90 (CB-NP; primary particle diameter
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of approximately 14 nm and surface area of 295–338 m2/g) was
obtained from Degussa Ltd. (Frankfurt, Germany). Constituent
elements of CB-NP are >99% carbon, 0.82 weight percent (wt%)
nitrogen, 0.01wt% hydrogen, and <1wt% organic and inorganic
impurities. Before intranasal instillation, CB-NP were suspended
at a concentration of 5 mg/ml in ultrapure water, sonicated for
30 min using an ultrasonicator, and immediately filtered through
a 450 nm filter (S-2504, Kurabo Co., Ltd., Osaka, Japan) to
remove agglomerated particles, as previously described
(Shimizu et al., 2014; El-Sayed et al., 2015).

As previously described (Shimizu et al., 2014), the distribution
of hydrodynamic diameter of CB-NP in the suspension was
measured by dynamic light scattering (NANO-ZS, Sysmex Co.,
Kobe, Hyogo, Japan) using the Rayleigh-Debye equation, and the
estimated mode value was 68 nm. Similarly, field-emission
scanning electron microscopy (FE-SEM, JSM-6500F, JEOL
Ltd., Tokyo, Japan) on a silicon wafer showed small
agglomerates having a characteristic diameter of approximately
50–500 nm (Shimizu et al., 2014). The primary and secondary
diameters of CB-NP were smaller than the ones of inorganic
nanoparticles used in the previous study that revealed the
placental translocation of nanoparticle (Wick et al., 2010). CB-
NP concentration in the suspension was calculated as 95 μg/ml by
the peak area of the carbon signal (2.77 keV) obtained using an
FE-SEM (JSM-6500F) with an attached energy-dispersive X-ray
analyzer (Onoda et al., 2014).

Animals and Treatments
Thirty-one pregnant ICR mice at 11 weeks of age were purchased
from Japan SLC Inc. (Shizuoka, Japan) and were randomly
divided into control group (C group; n�8), pre-implantation
period exposure group (P group; n�9), organogenesis period

exposure group (O group; n�7), and fetal developmental
period exposure group (F group; n�7). The mice were housed
in a room at a controlled temperature (22–24°C) and humidity
(50–60%), with a 12-h dark/light cycle, and were given ad libitum
access to food and water.

The amount and method of exposure of pregnant mice to CB-
NP were the same as described in previous studies (El-Sayed
et al., 2015; Shimizu et al., 2014), except for gestational periods
of exposure. Before exposure, the pregnant mice were placed in
an anesthesia box filled with halothane and removed from the
box after they began to sleep. Immediately, the sleeping mice
were laid on their backs and exposed to the CB-NP suspension
(1 ml/kg body weight) by intranasal instillation through both
nostrils. Intranasal instillation was performed at gestational
days 4 and 5 for the P group, gestational days 8 and 9 for the O
group, and gestational days 15 and 16 for the F group
(Figure 1). The total dose of CB-NP was 190 μg/kg body
weight per pregnant mouse. Control mice were treated with
the same volume of ultrapure water each time using the same
exposure method. After childbearing, six male offspring per
1 dam were randomly selected and their thymus and spleen
were collected at postnatal day (PND) 1, 3, and 5 under
anesthesia with sodium pentobarbital for flow cytometry and
gene expression analysis. Each offspring mouse was used for
one analysis. The differential effects of CB-NP exposure
depending on the gestational period of exposure was
comparatively investigated by observing the lymphatic cell
phenotype of the thymus and the spleen of offspring mice at
1, 3, and 5 days of age, which is useful for screening of
developmental immunotoxicity following exposure to
inorganic nanoparticles as shown by previous studies
(Shimizu et al., 2014; El-Sayed et al., 2015).

FIGURE 1 | Summarized scheme of animal treatments and sample collection. Pregnant mice were randomly divided into four groups; control group (C group; n�8),
pre-implantation period exposure group (P group; n�9), organogenesis period exposure group (O group; n�7), and fetal developmental period exposure group (F group;
n�7). The pregnant mice were intranasally exposed to carbon black nanoparticle suspension (95 μg/kg body weight) at gestational days 4 and 5 for the P group,
gestational days 8 and 9 for the O group, and gestational days (GDs) 15 and 16 for the F group. The control group were treated with the same volume of ultrapure
water each time. After childbearing, six male offspring per 1 dam were randomly selected and their spleen and thymus were collected at postnatal day (PND) 1, 3, and 5
for flow cytometry and gene expression analysis.
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All animal experiments were treated and handled in
accordance with the Animal Research: Reporting In Vivo
Experiments (ARRIVE) guidelines for the care and use of
laboratory animals (Kilkenny et al., 2011), and with the
approval of the Institutional Animal Care and Use Committee
of Tokyo University of Science. All efforts were made to minimize
the number of mice used and the suffering experienced by them.

Near-Infrared Imaging of Instilled
Nanoparticles in the Airways of Mice
To investigate the distribution of intranasally instilled inorganic
nanoparticles into the lung tissues, adult mice were treated with
intranasal instillation of an aqueous suspension of NaYF4 co-doped
with Yb3+ and Er3+, which emits near-infrared luminescence at
1,550 nm by irradiation with 980 nm light, as a model of inorganic
nanoparticles (120 nm, 10mg/ml) (Kamimura et al., 2017). The
distribution of the instilled nanoparticles was observed using a near-
infrared camera (Xenics, Leuven, Belgium) under irradiation with
near-infrared light of a wavelength of 976 nm.

Hematoxylin and Eosin Staining of the Nasal
Cavity of Dams
The nasal cavity of the dams collected after 10-days of final
instillation (5-days after birth of the offspring) was fixed in the
0.1 mol/L phosphate buffer (pH 7.4) containing 4%
paraformaldehyde for 24 h. The fixed tissues were decalcified
using 15% formic acid in the 10% formaldehyde for 48 h. After
softening the bone tissues, the nasal cavity was divided into three
regions (nasal vestibule, respiratory region, and olfactory region).
The tissues were embedded into paraffin after dehydration using
ethanol and xylene. The tissues cut into 4 μm sections by
microtome (TTM-200, Sakura Finetek Japan Co., Ltd., Tokyo,
Japan) and stained with hematoxylin and eosin (H&E) for
histopathological analysis.

Flow Cytometry
Fluorescein isothiocyanate (FITC)-conjugated anti-CD3 (2C11)
and anti-CD4 (GK1.5) antibodies purified from hybridoma
culture supernatants were provided by the Division of
Immunobiology, Research Institute for Biological Sciences,
Tokyo University of Science (Chiba, Japan) (Watanabe et al.,
2012). Phycoerythrin (PE)-conjugated anti-B220 (RA3-6B2) and
anti-CD8 (53–6.7) antibodies were purchased from BD
Bioscience Co. (San Jose, CA, United States). Cells of the
thymus and spleen collected from individual male offspring at
PND 1, 3, and 5 mice were dispersed in a single cell using frosted
glass slides and suspended in RPMI-1640 medium at a
concentration of 1 × 106 cells/ml. The suspensions were
washed with fluorescence-activated cell sorting (FACS)
medium (phosphate-buffered saline containing 1% fetal bovine
serum and 0.1% sodium azide), treated with anti-FcR (2.4G2) to
block non-specific binding (Watanabe et al., 2012), and then
stained with fluorescent-conjugated antibodies. The cells were
then washed, resuspended in the medium, and prepared for flow
cytometric analysis.Fluorescence data of 10,000 lymphocyte

events per sample were acquired with BD FACSCantoTM II
(BD Biosciences, San Jose, CA, United States) and analyzed using
FlowJo 7.2.2.2. software (Tomy Digital Biology Co., Ltd., Tokyo,
Japan). The lymphocyte subpopulation was discriminated from
other cells, including monocytes and granulocytes, using peak
area of forward- and side-scatter signal (FSC-A and SSC-A). Also,
dead cells were excluded using FSC-A gating and propidium
iodide staining. In the lymphocyte subpopulation, the numbers of
CD4−CD8−, CD4+CD8−, CD4−CD8+ cells, and CD4+/CD8+ ratio
in the thymus and CD3−B220−, CD3+B220−, CD3−B220+,
CD4−CD8−, CD4+CD8−, and CD4−CD8+ cells in the spleen
were calculated based on the percentage of each subpopulation.

Total RNA Extraction and Quantitative
Reverse Transcription-Polymerase Chain
Reaction
Spleen tissues were homogenized in Isogen II to extract total RNA
(Nippon Gene Co., Ltd., Tokyo, Japan) according to the
manufacturer’s protocol, and suspended in RNase-free water.
RNA quantification was performed by spectrophotometry at
OD260 in a BioPhotometer plus (Eppendorf, Hamburg,
Germany). RNA extracted from each sample was used for
qRT-PCR analyses.

Total RNA (1 μg) from each sample was reverse-transcribed
withM-MLV reverse transcriptase (Invitrogen Co., Carlsbad, CA,
United States) to generate complementary DNA according to the
manufacturer’s instructions. qRT-PCR was performed in
duplicate using SYBR Green Real-Time PCR Master Mix
(Toyobo Co. Ltd. Osaka, Japan) and primers (Fasmac Co., Ltd.
Kanagawa, Japan) for the indicated genes (Table 1). In the present
study, we chose genes associated with major chemokines for
recruitment of lymphocyte subsets and master regulators for
differentiation of each lymphocyte. The target gene expression
levels were normalized to the expression level of the housekeeping
gene, glyceraldehyde 3-phosphate dehydrogenase (Gapdh).

Statistical Analysis
All data are presented as mean ± standard deviation (SD), and the
levels of significance are cited. R version 3.6.3 (https://www.r-
project.org/) was used for statistical analyses. Significant effects
and interaction of gestational periods of CB-NP exposure and age
on number and sex ratio of newborns per dam, body weight of
offspring, and flow cytometry data, and mRNA expression levels
were identified by two-way repeated-measures analysis of
variance (ANOVA). The ANOVA was combined with the
Tukey-Kramer post-hoc test when appropriate. The
significance level was set at p < 0.05.

RESULTS

Translocation of Nanoparticle to the Lung
The distribution of nanoparticles instilled into the nasal cavity of
mice was investigated using an aqueous suspension of
fluorescent-labelled NaYF4, model inorganic nanoparticles,
that fluoresces in over-1000 nm near-infrared region. Upon
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irradiation of the nanoparticle suspension with near-infrared light
(976 nm), which highly penetrates biological tissues, the emission of
infrared fluorescence peaked at 1,550 nm (Figures 2A–C). The
fluorescence derived from the nanoparticles was observed
throughout the lung at 80min after intranasal instillation, while
no fluorescence was observed in other organs (Figures 2D–G). In
addition, fluorescence remained in the lungs at 24 h after instillation
(Figures 2H–K). The images have shown that the intranasal
instillation can transport the nanoparticle to the respiratory
organ but not the gastric organ and the translocated
nanoparticle to the respiratory organ was gradually removed
from the lung over 24 h. Since this ex-vivo imaging analysis
using near-infrared light can capture at only so far nanoparticle-
accumulated sites, it was not possible to evaluate the translocation of
nanoparticle to the extrapulmonary organs, including the placenta,
even if a small amount of the nanoparticle reached the organs.

Histopathology of the Nasal Cavity of Dams
In mother mice, CB-NP were not deposited in the nasal cavity or
surrounding regions (Figure 3). In addition, no inflammation
was observed in the tissues (Figure 3). The results suggested that
the nasal cavity was not damaged by instillation or recovered
during gestation.

Number of Newborns per Dam, Sex Ratio,
and Body Weight
No deaths caused by intranasal instillations of CB-NP in
pregnant mice were observed during each exposure period.
There were no significant differences in the number of
offspring per dam and sex ratio of newborns (Table 2), and
offspring body weights at PND 1, 3, and 5 among each group
(Table 3).

TABLE 1 | Primer and probe sequences for quantitative reverse transcription-polymerase chain reaction analyses.

Gene Accession No Sequence (5’ > 39) Tm (°C)

IL7 NM_008371.4 F: ACCTCCCGCAGACCATGT 58
R: CAGAACAAGGATCAGTGGAGGA

IL15 NM_001254747.1 F: ACCAGCCTACAGGAGGCCAAGAAG 62
R: TGAGCTGGCTATGGCGATGGG

GATA3 NM_008091.3 F: CAACCTTTTGGCTGCACCCCA 62
R: CATACCTGGCTCCCGTGGTGGG

GAPDH NM_008084.2 F: AGCCCTGGGAGTTCCTGGTCGG 60
R: GGATGCATTGCTGACAATCT

CCR7 NM_008084.2 F: GCACCATGGACCCAGGGAAACC 60
R: GTCCACCGTGGTATTCTCGCCG

CCL19 NM_008084.2 F: CTGCCAAGAACAAAGGCAACAGCAC 60
R: CAGAGCATCAGGAGGCCTGGTC

FIGURE 2 | Distribution of intranasally instilled nanoparticle throughout the lung in mice. (A–C): Images of NaYF4: Yb
3+, Er3+ nanoparticle dispersions and their

luminescence under irradiation with near-infrared light (976 nm). (D–G): Distribution of nanoparticles in each organ after 80 min of intranasal instillation of the suspension.
(H–K): Distribution of nanoparticles in each organ after 24 h of intranasal instillation of the suspension. (A,D,E): Pictures of nanoparticles dispersions and the organs
captured under bright field. (B,E,I): Luminescence under irradiation with near-infrared light. (C,F,J): Merge images of A and B, D and E, and H and I, respectively.
(G,K): Illustration showing the positions of the organs in the D and H pictures. Fluorescence images were obtained using a near-infrared camera with an InGaAs sensor
(integration time: 500 ms), scanned under irradiation with near-infrared light (976 nm, 4.2 W) with a Galvano mirror.
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Number of Total Lymphocytes and Each
Immunophenotype in the Thymus and
Spleen
To identify the critical gestational periods, we evaluated the total
number and immunophenotyping of lymphocytes in the thymus
and spleen of offspring.

In the thymus, no significant changes were detected in the
number of total lymphocytes and specific phenotype (Figures
4A–E). However, exposure to CB-NP during the organogenesis
period induced a high ratio of CD4+CD8−/CD4−CD8+ in
offspring at PND 1 compared with other groups (Figures 4F,G).

In the spleen, CB-NP exposure significantly affected the
number of total lymphocytes and CD3−B220− phenotype with

FIGURE 3 | Histological analysis of nasal cavity of mother mice. (A–C): Control group. (D–F): CB-NP-exposed group. (A,D): Nasal vestibule region. (B,E):
Respiratory region. (C,F): Olfactory region. The scale bars represent 50 mm. Paraffin sections (4 μm) of the nasal cavity of mother mice (n�5) were stained with
hematoxylin and eosin after 10-days of final instillation. Deposition of CB-NP and histopathological alteration was not detected in the nasal cavity and/or surrounding
regions of mother mice. Abbreviations: RE; Respiratory Epithelium, LP; Lamina Propria, Ca; Cartilage, OE; Olfactory Epithelium, SE; Squamous Epithelium, TB;
Turbinate Bones.

TABLE 2 | Number and sex ratio of offspring.

Group Number of dams Number of offspring
per mother mouse

Sex ratio (%)
[male/(male + female)

x 100]

Control 11 14.82 ± 2.14 53.37 ± 2.14
Pre-implantation 13 15.08 ± 1.04 55.10 ± 1.04
Organogenesis 13 14.45 ± 1.39 47.87 ± 1.39
Fetal developmental 10 13.60 ± 2.41 50.76 ± 2.41

TABLE 3 | Body weight [g] of offspring at postnatal days (PND) 1, 3, and 5.

Group PND 1 PND 3 PND 5

Male Female Male Female Male Female

Control 1.87 ± 0.18 1.77 ± 0.18 2.56 ± 0.42 2.47 ± 0.41 4.10 ± 0.75 3.97 ± 0.82
Pre-implantation 1.92 ± 0.13 1.79 ± 0.11 2.57 ± 0.23 2.65 ± 0.31 4.20 ± 0.35 4.11 ± 0.41
Organogenesis 1.84 ± 0.18 1.87 ± 0.23 2.80 ± 0.33 2.77 ± 0.30 4.06 ± 0.70 4.08 ± 0.52
Fetal developmental 1.89 ± 0.16 1.89 ± 0.13 2.75 ± 0.42 2.66 ± 0.36 4.18 ± 0.65 4.17 ± 0.53
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respect to CB-NP exposure (gestational periods)/age (PND)
interaction. The numbers of total lymphocytes and
CD3−B220− phenotype in the lymphocyte subpopulation were
significantly increased on PND 5 after exposure to CB-NP during
the organogenesis period compared with other groups
(Figures 5A,D). Moreover, the CD4−CD8− phenotype in the
lymphocyte subpopulation tended to increase after maternal
exposure to CB-NP during the organogenesis period
(Figures 5G,H). Since CD4−CD8− subpopulation includes
various types of lymphocytes such as double-negative T cells,
thymic-derived immature T cells, B cells and non-T/non-B cells,
we analyzed CD3/CD220 lymphocyte populations in the same
individuals. The analysis indicated that the increase in the
CD4−CD8− subpopulation was due to the increase in the
CD3−B220− lymphocytes (non-T/non-B cells), but not CD3+

lymphocytes (T cell) or B220+ lymphocytes (B cell). Both
lymphoid tissues were significantly affected by the
organogenesis exposure to CB-NP. In contrast, neither the
total number nor the specific lymphocyte population changed
significantly after exposure to CB-NP during the pre-
implantation and fetal developmental periods (Figures 5A–H).

Quantitative Analysis of Splenic mRNA
Expression
To elucidate the mechanisms underlying the changes in the
number of splenic lymphocytes, we evaluated the expression
levels of genes associated with cell migration (Cxcr5, Cxcl13,

Ccr7, and Ccl19) and differentiation (Tbx2, Gata3, and Foxp3) in
the spleen. No significant differences were observed among
groups with respect to these genes (Figure 6).

DISCUSSION

Particulate air pollutants, which induce adverse effects on
lymphoid tissues, have been recognized as potential risk
factors for allergic diseases (Kim et al., 2018; Amazouz et al.,
2021). Previous studies using adult animals have shown that
nanoparticles approaching pulmonary tissues were translocated
to the surrounding lymph nodes and exaggerated inflammatory
responses (Shwe et al., 2005; Shimada et al., 2006). Moreover,
antigen sensitization after nanoparticle exposure stimulated
immune cells more severely than after single exposure to
antigens or nanoparticles (van Zijverden et al., 2001; de Haar
et al., 2005; Nygaard et al., 2009). Nanoparticle exposure
potentially causes adverse effects on the immune system, and
therefore, the risk of allergic and infectious diseases might be
increased. Thus, studying immune response is crucial to
understand the adverse outcomes of nanoparticle exposure.
Besides postnatal exposure to nanoparticles, prenatal exposure
is likely to cause impairment of the immune system, resulting in
the frequent onset of allergic diseases in the childhood (Dietert
and Holsapple, 2007). In other words, the immune systemmay be
more susceptible to nanoparticles in the developmental stage than
after maturity. In fact, maternal exposure to diesel exhaust and

FIGURE 4 | Effect of maternal exposure to carbon black nanoparticle (CB-NP) on the number and percentage of each lymphocyte in the thymus of offspring at
postnatal day 1, 3 and 5, as measured by flow cytometry. (A): Number of total lymphocytes in the thymus. (B–E): Number of each lymphocyte calculated based on the
total lymphocytes and percentage of each cell type. (F): All p-values calculated by two-way ANOVA. Two-way ANOVA showed no significant effect of CB-NP exposure
on the number of (A) total lymphocytes [F (3, 79) � 1.32; p � 0.28], (B) CD4−CD8− [F (3, 79) � 0.83; p � 0.48], (C) CD4+CD8+ [F (3, 79) � 1.38; p � 0.26], (D)
CD4+CD8− [F (3, 79) � 0.82; p � 0.33], and (E) CD4−CD8+ [F (3, 79) � 1.22; p � 0.30]. (F) A significant effect of CB-NP exposure was detected on the CD4+CD8−/
CD4−CD8+ ratio [F (3, 79) � 4.12; **p � 0.0090] with significant exposure/age interaction [F (6, 79) � 3.78; **p � 0.0023]. The Tukey post-hoc test showed that (G) the
CD4+CD8−/CD4−CD8+ ratio after CB-NP exposure during the organogenesis period was higher than that of the control (**p � 0.0081), pre-implantation period (***p <
0.001), and fetal developmental period groups (***p < 0.001) on postnatal day 1. Values are expressed as mean ± SD.
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tobacco smoke, containing particulate matter, has been identified
as a risk factor for allergic immune responses in offspring
(Watanabe and Ohsawa, 2002; Singh et al., 2003; Penn et al.,
2007). Investigation of the developmental immunotoxicity
induced by maternal exposure to nanoparticles can provide
essential information to establish preventive methods against
the development of allergic diseases. The present investigation,
using CB-NP as a model of particulate air pollutants,

demonstrated that the adverse effects of CB-NP on infantile
lymphoid tissues were different depending on the gestation
period of exposure. The organogenesis period was observed to
be the most susceptible period with regard to the lymphocyte
population, even at low doses of CB-NP exposure corresponding
to the environmental reference value (35 µg/m3). In detail, CB-
NP exposure on gestational days 8 and 9 during the
organogenesis period induced significant increase in the

FIGURE 5 | Effect of maternal exposure to carbon black nanoparticle (CB-NP) on the number and percentage of each lymphocyte in the spleen of offspring at
postnatal day 1, 3 and 5, as measured by flow cytometry. (A): Number of total lymphocytes in the spleen. (B–G): Number of each lymphocyte calculated based on the
total lymphocytes and percentage of each cell type. (H): All p-values calculated by two-way ANOVA. Two-way ANOVA showed significant effects of CB-NP exposure on
the number of (A,H) total lymphocytes [F (3, 79) � 3.66; *p � 0.016] with exposure/age interaction [F (6, 79) � 2.53; *p � 0.027]; (D,H) CD3−B220− [F (3, 79) � 4.39;
**p � 0.0066] with significant exposure/age interaction [F (6, 79) � 5.12; **p � 0.0058]; and (G,H) CD4−CD8− [F (3, 52) � 3.94; #p � 0.013] without exposure/age
interaction [F (6, 52) � 1.89; p � 0.14] in the spleen, and no significant effect of the exposure on the number of (B)CD3+B220− [F (3, 79) � 1.11; p � 0.35]; (C)CD3−B220+

[F (3, 79) � 1.44; p � 0.24]; (E)CD4+ CD8− [F (3, 52) � 1.18; p � 0.33]; and (F)CD4−CD8+ [F (3, 52) � 1.68; p � 0.18]. The Tukey post-hoc test showed that the number of
(A) total lymphocytes in the organogenesis period group was significantly increased compared with the control (***p < 0.001), pre-implantation period (***p < 0.001), and
fetal developmental period groups (**p � 0.0057) on postnatal day 5. In addition, the Tukey post-hoc test indicated that the number of (D) CD3−B220− cells in the
organogenesis period group was significantly increased compared with the control (***p < 0.001), pre-implantation period (***p < 0.001), and fetal developmental period
groups (**p � 0.0012) on postnatal day 5. Values are expressed as mean ± SD.
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number of lymphocytes, particularly CD3−B220− phenotype, in
the spleen of offspring (Figure 7), even though their body weight
did not change significantly. The organogenesis period
(gestational days 6–14 in mice) in humans corresponds to
4–13 weeks of pregnancy, when the mother is often unaware
of her pregnancy (O’Rahilly and Muller, 2010; Xue et al., 2013).
These findings suggest the importance of focusing on the
organogenesis periods for the evaluation and management of
developmental immunotoxicity of nanoparticles as well as
chemical toxic substances.

While our findings indicated an increase in the number of
lymphocytes in the spleen by CB-NP exposure on gestational days

8 and 9, a previous study displayed a decrease in the number of
lymphocytes in the spleen and thymus on gestational days 5 and 9
in pregnant mice treated with the same exposure (Shimizu et al.,
2014) (Figure 7). Another study demonstrated an increase in the
number of nearly all phenotypes of lymphocytes in the spleen and
thymus along with dysregulation of the gene expression related to
the development of lymphocytes (IL-7 and Themis), by CB-NP
exposure on gestational days 9 and 15 in pregnant mice treated
with the same exposure (El-Sayed et al., 2015) (Figure 7). On the
contrary, the present study showed only a moderate increase in
the number of lymphocytes in the spleen without dysregulation of
gene expression. The evidence suggests that exposure to

FIGURE 6 | Expression levels of genes related to chemotaxis and differentiation of immune cells in the spleen. mRNA expression levels of Cxcr5, Cxcl13, Ccr7,
Ccl19, Tbx2, Gata3, and Foxp3 in the spleen on postnatal days 1, 3, and 5, as measured by qRT-PCR. Values are expressed as the mean ± SD.

FIGURE 7 | Summary of the effects of maternal exposure to carbon black nanoparticle on lymphoid tissues. The present study and the previous studies have
shown that the effects of maternal CB-NP exposure on the population of lymphocytes in the thymus and spleen were different depending on the gestational periods of
the exposure. The effects were greater for exposures that include the organogenesis period. The evidence suggests that long-term exposure across multiple gestational
periods including the organogenesis period may cause serious effects on the development of immune tissues compared with acute exposure. The arrows indicate
a significant increase or decrease in the cell number. The arrows with brackets indicate a tendency of the increase or decrease in the cell number.
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nanoparticles across several gestational periods including the
organogenesis period may cause different biological effects of
varied intensity on the development of immune organs compared
with acute exposure. It is important to evaluate the developmental
toxicity induced by long-term exposure to nanoparticles during
multiple prenatal periods.

In the present study, dams were exposed to CB-NP on
gestational days 8 and 9, which correspond to the period
approaching the start of gestational thymus and spleen
development. The initial formation of splenic and thymic
primordia in mice occur at gestational day 9.5 (Hollander
et al., 2006) and 11.5 (Gordon and Manley, 2011),
respectively. No significant effects were observed in the pre-
implantation period and the fetal developmental period
exposure groups, suggesting that nanoparticle exposure during
the period of initial formation of lymphoid primordia may trigger
the disturbance of fetal immune development and alteration in
lymphocyte population in the infants. With the formation of
primordia, progenitor cell-derived hematopoietic stem cells
migrate and enter the thymic and splenic primordium
(Hollander et al., 2006; Hörnblad et al., 2011). Subsequently,
thymic progenitor cells interact with stromal microenvironments
for T-cell development (Petrie, 2003; Takahama, 2006). On
gestational days 14–16 of mice, blood vessels begin to sprout
into the thymic primordium, which then allows hematopoietic
progenitor cells to access the thymus through the vasculature
(Blackburn and Manley, 2004; Gameiro et al., 2010). Dramatic
changes in the lymphocyte population in the thymus and spleen
of the infant induced by CB-NP exposure on gestational days 9
and 15, as previously shown (El-Sayed et al., 2015) (Figure 7),
may be associated with angiogenesis in the thymic primordium.
The disturbance in the initial formation of the primordia seems to
be exacerbated by additional stimulation of nanoparticles after
formation of blood vessels. Repetitive stimuli during the critical
developmental stage of lymphoid tissues may cause serious health
problems, even at low doses. Furthermore, stimulation during the
postnatal period as well as the fetal developmental period may
exacerbate the disturbance in the development of the immune
system of newborns because the spleen and thymus continue to
mature until approximately 21 days after birth in mice
(equivalent to 6–8 years of age in humans) (Dietert and
Holsapple, 2007). Since humans are usually exposed to air
pollutants during both prenatal and postnatal periods, it is
necessary to evaluate the combined effects of nanoparticle
exposure during the organogenesis and perinatal period to
understand developmental immunotoxicity by particulate air
pollution, which leads to an increase in the risk of allergic
diseases.

The clinical implications of the findings related to changes in
the lymphocyte population and their cell types may help in
predicting and preventing the diseases related to abnormal
development of the immune system owing to the maternal
exposure to nanoparticles. CD3 can activate cytotoxic T cells
and T helper cells and is primarily used as a T lymphocyte
marker. In contrast, B220, also known as CD45R, is mainly
expressed on B cells at all developmental stages including Pro-
B cell, Pre-B cell, and up to mature B cells, but its expression also

observed on NK cell and T cell subsets. Thus, CD3 and B220
generally used in combination for the identification of T cell and
B cell. The CD4 and CD8 are frequently used as markers of T
helper cells with the surface marker CD4 and cytotoxic T cells
with the surface marker CD8. CD4+/CD8+ phenotype in the
thymus mainly includes immature T cells in the developmental
stage. It should be noted that CD4+, CD8+, or double-positive
cells include several subsets such as regulatory T cells. The
increase in the number of splenic lymphocytes due to CB-NP
exposure during organogenesis was observed particularly in the
CD3−B220− cell number in the lymphocyte subpopulation.
Besides, the present study observed the tendency of increase in
the CD4−CD8− cell number after CB-NP exposure during the
organogenesis period. Since CD4−CD8− lymphocytes are
included in the CD3−B220− subpopulation, the alterations in
the same cell population likely to be captured in both populations.
In fact, our analysis has shown that the increase in the CD4−CD8−

subpopulation was caused by the increase in the CD3−B220−

lymphocytes, but not CD3+ (T cell) or B220+ lymphocytes
(B cell). The CD3−B220− phenotype in the lymphocyte
subpopulation is generally referred to as non-T/non-B
lymphocytes, which mainly include innate lymphocytes and
mast cells (Yudanin et al., 2019). The cells in the CD3−B220−

phenotype are important for the innate immune system
(Buonocore et al., 2010; Spits et al., 2013), initiation of allergic
and/or inflammatory responses via production of key cytokines
(von Freeden-Jeffry et al., 1998; Klein Wolterink and Hendriks,
2013; Walker et al., 2013), and contribute to the activation of the
adaptive immune system (Galli et al., 2005; Klose and Artis,
2020). The increase in the CD3−B220− subpopulation following
maternal CB-NP exposure may reflect the induction of
inflammation in the fetus and infants. In particular, excessive
proliferation of the innate lymphocytes has been observed in
patients with asthma (Bartemes et al., 2014; Dunican and Fahy,
2015; Fahy, 2015), atopic dermatitis (Salimi et al., 2013), and
chronic rhinosinusitis (Miljkovic et al., 2014). Even though we
still failed to acquire further characteristic information for the
specific cell type, the increase in the CD3−B220− subpopulation
by maternal CB-NP exposure may suggest the impairment of the
lymphocyte regulation as a potential mechanism underlying
developmental immunotoxicity of particulate air pollution
containing carbon soots (Fedulov et al., 2008; Latzin et al.,
2009). Further investigations are needed to clarify the
relationship between the increases in the prevalence of
pediatric allergic diseases and disturbance of the CD3−B220−

lymphocyte population induced by CB-NP exposure during the
organogenesis period. Also, since type 2 inflammation
contributes primarily to the progression and exacerbation of
allergic diseases such as asthma (Brown et al., 2008; Koyasu
and Moro, 2011; Licona-Limón et al., 2013; Halim, 2016), it is
necessary to analyze the cytokines related to type 2 inflammation.
Moreover, the present study cannot reveal the principal cause of
the increase in CD3−B220− phenotype induced by CB-NP
exposure. In particular, the present study evaluated expression
levels of genes associated with chemotaxis andmaster regulator of
immune cell differentiation, including Gata3, which is an
important transcription factor of innate lymphocytes, in the
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spleen as one of the molecular mechanisms, but no significant
differences were observed among groups. Thus, we speculate that
it is important to analyze the post-transcriptional regulation such
as suppressive microRNA expression for understanding their
molecular mechanisms (Dinh et al., 2014; Melo et al., 2019;
Bolandi et al., 2020). For example, the previous study reported
that overexpression of miRNA-135a results in a significant
decrease in the expression level of Gata3 protein, even though
only minor changes in the Gata3 gene expression is observed
(Wei et al., 2019). Also, miRNA-27 and miRNA-128 indirectly
regulate stabilities of Gata3 protein after transcription and affect
lymphocyte differentiation (Guerau-de-Arellano et al., 2011). The
evidence suggests that alteration of microRNA expression may be
related to the molecular mechanisms underlying the abnormal
lymphocyte population induced by CB-NP exposure during the
organogenesis period.

Finally, asthma-like symptoms during childhood adversely
affect the maturation of lung function leading to chronic
obstructive pulmonary disease later in life (Bisgaard et al.,
2021). Hence, prevention of asthma caused by particulate air
pollution is a challenging issue that should be solved for health
promotion of the society as a whole, including children. For
realization of the health promotion, it is essential to understand
the relationship between particulate air pollution and allergic
diseases.

CONCLUSION

The present study is the first to evaluate the differential effects of
nanoparticles on developmental immunotoxicity with respect to
the gestational period of exposure. The organogenesis period, in
which the lymphoid primordium formation is initiated, was
observed to be the most critical period concerning CB-NP
exposure. While no effects were observed after the exposure
during pre-implantation and fetal developmental gestational
periods, exposure to low doses of CB-NP on gestational days 8
and 9 during the organogenesis period in mice disturbed the
lymphocyte population in offspring. Moreover, the CD3−B220−

phenotype (non-T/non-B lymphocytes), which likely to be
involved in innate immune system associated with the
pathogenesis of allergic diseases, increased in the
organogenesis exposure group. Collectively, the present study
revealed the effects of maternal exposure to CB-NP on the
development of the thymus and spleen during each stage of
gestation. Our findings indicate the importance of focusing on the
organogenesis period for evaluation and management of
developmental immunotoxicity caused by nanoparticle
exposure. Based on the findings of the present and previous
research, we can propose that evaluation of combined effects

during the organogenesis and perinatal periods are needed to
prevent developmental immunotoxicity and to predict the risk of
allergic diseases caused by particulate air pollution.
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