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Abstract

Modeling individual heterogeneity in capture probabilities has been one of the

most challenging tasks in capture–recapture studies. Heterogeneity in capture

probabilities can be modeled as a function of individual covariates, but correla-

tion structure among capture occasions should be taking into account. A pro-

posed generalized estimating equations (GEE) and generalized linear mixed

modeling (GLMM) approaches can be used to estimate capture probabilities

and population size for capture–recapture closed population models. An exam-

ple is used for an illustrative application and for comparison with currently

used methodology. A simulation study is also conducted to show the perfor-

mance of the estimation procedures. Our simulation results show that the pro-

posed quasi-likelihood based on GEE approach provides lower SE than partial

likelihood based on either generalized linear models (GLM) or GLMM

approaches for estimating population size in a closed capture–recapture experi-

ment. Estimator performance is good if a large proportion of individuals are

captured. For cases where only a small proportion of individuals are captured,

the estimates become unstable, but the GEE approach outperforms the other

methods.

Introduction

Many estimation methods have been developed for the

analysis of closed population capture–recapture data. For

comprehensive material on the subject see, for instance,

Otis et al. (1978), Seber (2002), Williams et al. (2002)

and Amstrup et al. (2005). The most general capture–
recapture closed population model, considered by Otis

et al. (1978) was denoted by Mtbh where (h) is used to

denote inherent individual heterogeneity, (t) time effect,

and (b) behavioral response to capture. In this work, we

are interested in estimating the population size and SE of

a submodel of the type Mh, where individual heterogene-

ity can be modeled as a function of covariates. Develop-

ment of capture–recapture models dealing with individual

heterogeneity in capture probabilities has been one of the

most challenging tasks. Failure to account for such

heterogeneity has long been known to cause substantial

bias in population estimates (Otis et al. 1978; Lee and

Chao 1994; Hwang and Huggins 2005). Moreover, Link

(2003) showed that without strong assumptions on the

underlying distribution, estimates of population size

under model Mh are fundamentally nonidentifiable.

The use of covariates (or auxiliary variables), if avail-

able, has been proposed as an alternative way to partially

cope with the problem of heterogeneous capture proba-

bilities (Pollock et al. 1984; Huggins 1989; Alho 1990).

The idea is to model capture probabilities as a function

of individual (i.e., age, sex, and weight) and environmen-

tal (i.e., temperature, rainfall, and location) covariates,

using a generalized linear modeling (GLM) approach,

such as logistic regression. The method of Huggins (1989,

1991), based on a conditional likelihood to estimate pop-

ulation size, has become very popular, but it assumes
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independence among capture occasions (Huggins and

Hwang 2011).

In the analysis of capture–recapture data, Hwang and

Huggins (2005) and Zhang (2012) examined the effect of

heterogeneity on the estimation of population size by solv-

ing estimating equations, but these authors also assumed

independence of capture occasions. Capture–recapture
data are collected on the same individuals across successive

capture occasions. One may view capture–recapture data

as binary longitudinal or repeated measurements data

(Huggins and Yip 2001). These repeated observations are

often correlated over time. This dependency or correlation

structure may be induced by incorporating individual het-

erogeneity. Failure to account for this dependency may

provide biased estimates. Hwang and Huggins (2007) also

state that the assumption of independence among capture

occasions is often violated in practice, but the authors still

rely on the assumption. Some dependencies among capture

occasions can be dealt with through the modeling of

behaviorally effects, such as trap happy and trap shy effects,

which are treated as special cases in the capture–recapture
literature (Yang and Chao 2005; Pradel and Sanz-Aguilar

2012). One alternative approach is to use a generalized esti-

mating equations (GEE) to account for a working correla-

tion structure among capture occasions (Liang and Zeger

1986) and use observed individual characteristics to model

heterogeneity in capture probabilities. A mixed effects

modeling approach may also be used to model heterogene-

ity of individual observed and unobserved characteristics

in capture–recapture experiments motivating the use of

generalized linear mixed models (GLMM) (Pinheiro and

Bates 2000). Some authors have previously introduced the

use of GLMM (logit models with normal random effects)

(e.g., Coull and Agresti 1999; Stoklosa et al. 2011). An

advantage of using GLMM for the estimation of capture

probabilities is to accommodate not only the heterogeneity

attributed to individual characteristics, but also the hetero-

geneity that cannot be explained by the observed individual

characteristics.

Bayesian methods have also become popular in capture–
recapture studies. An extensive Bayesian literature on

capture–recapture closed population models includes Cas-

tledine (1981), Smith (1991), George and Robert (1992),

Madigan and York (1997), Basu and Ebrahimi (2001),

Ghosh and Norris (2005), King and Brooks (2008), and

Gosky and Ghosh (2009, 2011). Bayesian statistical model-

ing requires the development of the likelihood function of

the observed data, given a set of parameters, as well as the

joint prior distribution of all model parameters. Bayesian

methods allow for estimation of the unobserved random

effects as well, but the performance of their estimates often

depends on the chosen prior distributions. Often, the

method of selecting prior distributions is subjective (Lee

et al. 2003). A possible advantage of GEE over random-

effects models and Bayesian methods relates to the ability

of GEE to allow specific correlation structures to be

assumed between capture occasions.

Here, we propose a GEE approach for estimating cap-

ture probabilities and population size in capture–recap-
ture closed population studies. We also compare the

results of population size estimates and their SE, when

using the two estimation methodologies (i.e., GEE and

GLMM). For illustrative purposes, we analyze a real data

set that has already been discussed in the literature. Con-

ditional arguments are used to obtain a Horvitz–Thomp-

son-like estimator for estimating population size. A

simulation study is also conducted to compare the perfor-

mance of the estimation procedures. In the next section,

we describe the notation and models that are used to esti-

mate capture probabilities and population size.

Notation and Models

Consider a population consisting of N animals in a cap-

ture–recapture experiment over m capture occasions,

j = 1,2,. . .,m. Let Yij be a binary outcome, equaling 1 if

the ith animal is being caught on the jth capture occasion

and 0 otherwise. Let Yi = (Yi1,Yi2,. . .,Yim)
0
be a random

vector with the capture history of individual i. Let

Ti ¼
Pm

j¼1 Yij be the number of times the ith animal has

been caught in the course of the trapping closed popula-

tion study. Let ti be the time the ith individual is first

captured. Heterogeneity in captured probabilities is often

explained by observed individual covariate xi, such as age,

sex, weight. For simplicity, we consider xi a single covari-

ate, but the model can be easily generalized for xi to be

considered a vector of covariates. Let the probability that

the ith animal is captured on any trapping occasion j, be

piðbÞ ¼PrðYij ¼ 1jXiÞ ¼ hðXibÞ; i ¼ 1; 2; . . .;N;

j ¼ 1; 2; . . .;m
(1)

where

Xi ¼ 1 1 . . . 1
xi xi . . . xi

� �0
; ði ¼ 1; 2; . . .;NÞ

is the design matrix, b = (b0,b1)
0
is the vector of parame-

ters associated with the covariates, and h(u) = (1+exp
(�u))�1 is the logistic function. This is an Mh model

where variation in capture probabilities among individu-

als is explained by the covariate xi. The probability of not

capturing the ith individual on the jth occasion is

(1�pi(b)), and the variance of Yij is pi(b)(1�pi(b)) (Liang
and Zeger 1986). Then, Ti�Bin(m,pi(b)) and pi(b) = 1�
(1�pi(b))

m is the probability of individual i being

captured at least once, given the covariate xi. Let the set
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of distinct individuals captured at least in one occasion

be indexed by i = 1,2,. . .,n and uncaptured individuals

would be indexed by i = n + 1,. . .,N without loss of gen-

erality. To estimate the population size, once an estimate

of b is obtained (b̂), the Horvitz–Thompson estimator

N̂ ¼ Pn
i¼1 1=ðpiðb̂ÞÞ may be used as in Huggins (1989).

Generalized estimating equations approach

Let Vi ¼ A
1=2
i RiðaÞA1=2

i be the covariance matrix of Yi,

where, Ai = diag[Var(Yi1),Var(Yi2),. . .,Var(Yim)] is a

m9m diagonal matrix and Ri(a) is known as the working

correlation structure among Yi1,Yi2,. . .,Yim to describe the

average dependency of individuals being captured from

occasion to occasion. A GEE approach permits several

types of working correlation structure Ri(a) (for details,

see Diggle et al. 1994). For the description that follows,

and for simplicity, we consider an independence working

correlation structure, Ri(a) = I where I is an identity

matrix. The covariate xi is never known for the individu-

als that have not been captured. Therefore, Yij is condi-

tional on the captured individuals (n) (i.e., Ti ≥ 1) with

the corresponding observed individual covariates similar

to Huggins (1989) and Zhang (2012). The probability

that the ith individual is captured on the jth occasion

(pij) given that the ith individual is observed at least once

is, PrðYij ¼ 1jTi � 1Þ ¼ pij
��

1�Qm
k¼1ð1� pikÞ

�
. Let

lij ¼ E ðYijjTi � 1Þ ¼ pij
��

1�Qm
k¼1ð1� pikÞ

�
, and Di be

the matrix of derivatives oli/ob
0
, where li = (li1,li2,. . .,

lim)
0
, hence Di = AiXi. The variance vij of Yij given Ti ≥ 1

is vij ¼ VarðYijjTi � 1Þ ¼ pij
�
1� pij �

Qm
k¼1ð1� pikÞ

���
1�Qm

k¼1ð1� pikÞ
�2
. Considering, Vi = diag(vij), an estimator

of b can be obtained by solving the following generalized

estimating equations:

UðbÞ ¼
Xn
i¼ 1

D0
iV

�1
i ðYi � liÞ ¼ 0 (2)

If covariate xi (i = 1,2,. . .,n) is available for captured

individuals, then the model becomes pi(b) = h(Xib). This
model is not equivalent to any of those discussed in Otis

et al. (1978), rather this model is a restricted version of

their model Mh (Huggins 1991). If pi(b) = h(Xib), then
following Zhang (2012), estimating equations (2) can be

simplified to

Pn
i¼ 1

1�ð1�piðbÞÞm�mpiðbÞð1�piðbÞÞm�1

1�ð1�piðbÞÞm�1

�
Ti � mpiðbÞ

1�ð1�piðbÞÞm
� ¼ 0

Pn
i¼ 1

1�ð1�piðbÞÞm�mpiðbÞð1�piðbÞÞm�1

1�ð1�piðbÞÞm�1

�
Ti � mpiðbÞ

1�ð1�piðbÞÞm
�
xi ¼ 0:

8>><
>>:

(3)

For a given b̂, then p̂iðb̂Þ ¼ 1� ð1� piðb̂ÞÞm and an

estimate of the variance of N̂ is given by

dVarðN̂Þ ¼ Pn
i¼1 p̂iðb̂Þ�2�1� p̂iðb̂Þ

�þ Dðb̂Þ0Cðb̂Þ�1Dðb̂Þ
where Cðb̂Þ represents an estimate of the conditional

information matrix for b and Dðb̂Þ is the vectorPn
i¼1 p̂iðb̂Þ�2@p̂iðb̂Þ=@b̂. If the individual capture probabil-

ity does not depend on time, previous capture history, or

any covariate, then the model (1) simplifies to pi(b) = h

(b0) = p0, which is a reparameterization of model M0 of

Otis et al. (1978) (see Huggins 1991; Hwang and Huggins

2005). This model assumes all the individuals have equal

capture probabilities. Then, the estimating equations for

b0 is simplified to

Xn
i¼ 1

	Xm
j¼ 1

Yij � mp0
1� ð1� p0Þm



¼ 0 (4)

Let b̂0 be the resulting estimator of b0 then

p̂0 ¼ 1� ð1� p̂0Þm where p̂0 ¼ hðb̂0Þ.

Methods based on a partial likelihood

The full likelihood of all model parameters is propor-

tional to

Yn
i¼1

piðbÞTif1� piðbÞgm�Ti

piðbÞ
Yn
i¼1

piðbÞ
YN

i¼nþ1

f1� piðbÞg: (5)

As the number of total individuals, N, is unknown and

the covariates are not known for individuals that are

never captured, this likelihood cannot be directly evalu-

ated. The conditional likelihood (Huggins 1989) is the

first product component, and it can be formulated as a

GLM (Huggins and Hwang 2011) for the positive Bino-

mial distribution (Patil 1962). It may be rewritten as

Yn
i¼ 1

piðbÞTi�1f1� piðbÞgm�ti�ðTi�1Þ

Yn
i¼ 1

� f1� piðbÞgti�1piðbÞ
piðbÞ

�
:

(6)

When the full likelihood is partitioned into a product

of conditional densities, then a partial likelihood (Cox

1975) may arise considering some of the product terms,

but it involves only the parameters of interest, isolating

the nuisance parameters. Therefore, the partial likelihood,

PL(b), is the first product of the equation (6), which is

the likelihood of the number of recaptures after the first

capture (Stoklosa et al. 2011). For a given ti, (Ti � 1)|

ti�Bin(m�ti,pi(b)), which is used to estimate the para-

meters b.
To utilize a simple GLMM with a random effect, we

suppose that pi(b) = h(Xib + rbzi) where zi is a realiza-

tion of the standard normal random variable

Zi �Nð0; 1Þ, with rb>0. The use of random effects

reflects the belief that there is heterogeneity that cannot
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be explained by covariates. The partial likelihood can be

considered as the joint distribution of the response and

the random effects. To estimate b and rb, the marginal

likelihood of the response is obtained by integrating out

the random effects. The integration can be approximated

by penalized quasi-likelihood (Breslow and Clayton

1993), which enables parameter estimation via an iterative

procedure.

The variance of N̂ for a smoothing parameter k may

be estimated according to Stoklosa et al. (2011) using the

following formula, dVarðN̂; kÞ ¼ Pn
i¼1 1� piðbÞð Þ= piðbÞ2

� �
þfXigðbÞg0VarðbÞfXigðbÞg, where g(b) is a vector with

gi(b) = pi(b)
�2mpi(b){1�pi(b)}, and all quantities are

evaluated at b̂. The smoothing parameter k, which is part

of the quasi-likelihood procedure, controls the degree of

roughness of the estimated functions. To obtain an opti-

mal value for k, we used generalized cross-validation

(GCV) technique (Wood 2006).

Application

We applied the techniques discussed in the previous Sec-

tion to a data set of least chipmunks (Eutamias minimus)

made available by V. Reid (1975). The data set has been

previously analyzed and discussed by Otis et al. (1978)

and Wang et al. (2007). V. Reid laid out a 9 9 11 live-

trapping grid with traps spaced 50 feet (15.2 m) apart.

The study was conducted in an area dominated by sage-

brush and snowberry in Colorado, USA. The numbers of

animals caught for six occasions (n1 to n6) were 7, 15, 16,

24, 19, 7, and ∑nk = 88. Of these 88 captures, n = 45 dis-

tinct animals were captured, and the covariate sex (male

or female) was collected for each captured individual;

there were 22 males and 23 females. The recorded capture

frequencies (f1 to f6) were 21, 12, 7, 3, 2, 0. The average

capture frequencies for male and female were 1.86 and

2.04, respectively. Our estimation results are summarized

in Table 1. The inclusion of the covariate sex does not

improve our estimates of population size which are very

similar, except when the random effect is considered in

the GLMM, which is based on partial likelihood estima-

tion. This may indicated that there is unmodeled individ-

ual heterogeneity in capture probabilities that is not being

accounted for with the other models (GLM and GEE).

The population estimate, in this case, is approximately 74

individuals with a SE of 12. Both values are quite high

when compared to the values obtained with the other

estimation strategies. Although, GLMM accounts for het-

erogeneity due to unobserved individual characteristics, it

may also be overestimating population size at the

expenses of greater loss in precision, possibly due to the

increase in the number of model parameters that are esti-

mated. In contrast, quasi-likelihood GEE methodology

provided lower SE, when compared to results from the

Bayesian approach of Wang et al. (2007) for the same

data set. The latter authors estimated population size of

50 with a SE of 3.14. The GEE estimation results also

agree with Otis et al. (1978), but our model jointly takes

into account heterogeneity in capture probabilities and

correlation among capture occasions.

Simulation Study

A simulation study was conducted in order to evaluate

the performance of the estimators. The effect of heteroge-

neity among observed individuals was modeled using two

covariates, sex (male = 1 and female = 0), and weight.

Two levels of population sizes N = 100 and 500 and two

levels of capture occasions m = 6 and 10 were considered.

For each individual, we assigned sex with probability 0.5

from a Bernoulli distribution and weight from a normal

distribution with mean 15 and variance 4. These values

are based on the previous data analysis. Individual cap-

ture probabilities were modeled with a logistic regression,

so that

pi ¼ eb0þb1�sexiþb2�weighti

1þ eb0þb1�sexiþb2�weighti
; (7)

where b0 is the constant term, b1 and b2 represent the sex

and weight effects, respectively. A positive b1 implies that

the sex taking value 1 is more catchable, and a positive b2
means that the catchability increases with weight. We

considered three different simulation scenarios for capture

probabilities: (a) high capture probabilities (b0 = �3.5);

(b) medium capture probabilities (b0 = �4.0); (c) low

Table 1. Comparison of parameter estimates (SE in parenthesis) for

least chipmunk data after fitting models with and without a covariate

(sex).

Model no. logit{pi(b)} N̂

Intercept-only models

1. PL GLM �0.82 (0.18) 50.72 (3.33)

2. QL GEE �0.73 (0.13) 49.66 (2.27)

3. PL GLMM �0.85 (0.26) + 0.00 zi (0.73) 50.73 (3.35)

Linear covariate models

4. PL GLM �0.81 (0.25) � 0.03 sex (0.37) 50.73 (3.35)

5. QL GEE �0.84 (0.18) � 0.21 sex (0.26) 52.40 (2.94)

6. PL GLMM �0.83 (0.34) � 0.14 sex

(0.49) + 1.59 zi (0.00)

74.16 (12.06)

A realization of the standard normal random variable Zi �Nð0;1Þ is

zi. Numbers in this table are rounded to two decimal places; there-

fore, 0.00 does not mean zero.

QL, quasi-likelihood; PL, partial likelihood; GLM, generalized linear

models; GEE, generalized estimating equations; GLMM, generalized

linear mixed models.
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capture probabilities (b0 = �4.5); and their averaged are

presented in Table 2. In addition, a Gaussian random

effect with mean 0 and rb = 0.1 was included as an

unobserved covariate to ensure the existence of heteroge-

neity due to unobserved individual characteristics. For

each simulation scenario, GLM, GEE, and GLMM

approaches were used for data analyses and to assess esti-

mators performances. The simulation study was carried

out with 1000 Monte Carlo replicates.

To evaluate estimators’ performance, we present the SE,

the relative bias (PRB), the root mean square error

(RMSE), the coefficient of variation (CV), and confidence

interval coverage (%) (COV) for the estimates of popula-

tion size. The simulation results for six capture occasions

are given in Table 3. We noticed that all estimation proce-

dures for scenario (a) perform well. There was little bias,

low SE, low coefficient of variation for N̂ . In this scenario,

confidence interval coverage for all estimators is very good

(93–96%), considering a nominal level of 95%. As in our

example, the exception is the GLMM that tends to overesti-

mate population size. Overestimation is particularly severe

when capture probabilities are low, see for instance, results

of scenarios (b) and (c). Confidence interval coverage for

GLMM is also poor (77–90%) in these scenarios. For all

scenarios, the GEE approach performs well when estimat-

ing population size. This approach also consistently pro-

vides lower SE and lower RMSE when compared to GLM

and GLMM estimators, although the differences are mini-

Table 2. Simulated capture probability scenarios for the capture probability model, logit(pi) = b0+b1 9 sex + b2 9 weight. �p represents average

capture probability when weight = 15 and pi represents the average probability of an individual being captured at least once during the study.

Simulation scenarios

Effects of covariates �p

pi

m = 6 m = 10

b0 b1 b2 Male Female Male Female Male Female

(a) High �3.5 0.1 0.2 0.40 0.38 0.95 0.94 0.98 0.98

(b) Medium �4.0 0.1 0.2 0.29 0.27 0.87 0.85 0.94 0.92

(c) Low �4.5 0.1 0.2 0.20 0.18 0.73 0.70 0.83 0.80

Table 3. Simulation results (1000 repetitions) considering m = 6 trapping occasions.

N �n AVE(N̂) SE(N̂) PRB CV RMSE COV

(a) High

PL GLM 100 92 100.63 3.77 0.63 3.75 3.82 94.5

QL GEE 100 92 100.66 2.90 0.66 2.88 2.97 95.8

PL GLMM 100 92 101.81 4.30 1.81 4.22 4.67 95.9

PL GLM 500 460 500.65 7.97 0.13 1.59 8.00 93.2

QL GEE 500 460 500.87 6.28 0.17 1.25 6.34 95.3

PL GLMM 500 460 506.56 9.07 1.31 1.79 11.20 93.1

(b) Medium

PL GLM 100 84 101.56 7.16 1.56 7.05 7.33 94.3

QL GEE 100 84 101.51 4.82 1.51 4.75 5.05 95.2

PL GLMM 100 84 106.58 9.06 6.58 8.50 11.20 89.1

PL GLM 500 421 501.74 14.89 0.35 2.97 15.00 94.6

QL GEE 500 421 501.92 10.31 0.38 2.05 10.50 95.2

PL GLMM 500 421 526.33 18.90 5.27 3.59 32.40 83.3

(c) Low

PL GLM 100 69 104.61 14.01 4.61 13.40 14.80 95.7

QL GEE 100 69 103.53 7.48 3.53 7.22 8.27 94.6

PL GLMM 100 69 131.07 21.14 31.07 16.10 37.60 77.2

PL GLM 500 356 504.24 26.68 0.85 5.29 27.00 95.0

QL GEE 500 356 503.86 15.45 0.77 3.07 15.90 94.5

PL GLMM 500 356 576.72 37.06 15.34 6.43 85.20 77.4

Averages of the numbers of captured individuals, (�n); the estimates of population size, AVE(N̂); SE of the estimated population size, SE(N̂); per-

centage relative bias, PRB ¼ 100 � ðEðN̂Þ � NÞ � N, where EðN̂Þ is estimated by AVEðN̂Þ; root mean square error, RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðN̂Þ þ Bias2

q
;

percentage coefficient of variation, CV ¼ 100 � SEðN̂Þ � EðN̂Þ and confidence interval coverage (%), COV.

QL, quasi-likelihood; PL, partial likelihood; GLM, generalized linear models; GEE, generalized estimating equations; GLMM, generalized linear

mixed models.
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mal for GEE-GLM comparisons. Therefore, our simulation

results indicate that the general performance of estimators

obtained from GEE is better than GLM and GLMM. The

GEE approach may overcome the effect of random effects

due to its ability accounting for the correlation structure

among capture occasions. The simulation results for 10

capture occasions are presented in Table 4. The perfor-

mance of estimators for 10 capture occasions is better than

for six capture occasions yielding lower CV, absolute value

of PRB, RMSE, but higher COV. This is generally true

because the average capture probability is higher for 10

capture occasions than for six capture occasions. We also

conducted simulations for two other levels of N (50 and

200) when m = 6 and 10. These results are similar to the

ones presented here.

Discussion

Individual heterogeneity and time dependence are funda-

mentally important in real-life applications of capture–
recapture studies. The main purpose of this study was to

compare estimates of population size and their SE using

statistical techniques such as, quasi-likelihood for GEE and

partial likelihood for GLM and GLMM. We also present a

GEE approach that permits capture–recapture data analysis

using individual covariates that accounts for heterogeneity

in capture probabilities and for correlation among capture

occasions. Evaluating the pattern of time dependency is

important in several regards: (i) it may help characterize

the relationship between the capture probability and cova-

riates and (ii) it is also important to estimate the popula-

tion parameters accurately in the capture–recapture
studies. A natural question that arise is “what happens if

one ignores the time dependency and uses the traditional

regression methodology assuming independence among

capture occasions?” From a statistical point of view, there

are at least two consequences of ignoring time dependency:

incorrect assessment of the regression estimates and ineffi-

cient estimation of regression coefficients. Therefore, esti-

mated capture probabilities may be incorrect and

consequently population size may not be accurately esti-

mated if time dependency is ignored. The quasi-likelihood

GEE approach seems to perform better than GLM and

GLMM approaches because the SE of the estimated popula-

tion size are consistently lower. The estimators perform

well when average capture probabilities are high, but it is

hard to obtain reliable estimates of GLMM approach for

low capture probabilities. However, other existing methods

in capture–recapture studies allowing for heterogeneity

have similar problems (Nichols and Pollock 1983; Nichols

Table 4 . Simulation results (1000 repetitions) considering m = 10 trapping occasions.

N �n AVE(N̂) SE(N̂) PRB CV RMSE COV

(a) High

PL GLM 100 98 100.11 1.43 0.11 1.43 1.43 94.3

QL GEE 100 98 100.14 1.36 0.14 1.35 1.36 96.3

PL GLMM 100 98 100.15 1.45 0.15 1.44 1.45 94.6

PL GLM 500 492 500.20 3.11 0.04 0.62 3.11 95.1

QL GEE 500 492 500.18 3.03 0.04 0.61 3.03 96.2

PL GLMM 500 492 500.28 3.19 0.06 0.64 3.20 94.9

(b) Medium

PL GLM 100 95 100.47 3.14 0.47 3.12 3.17 95.2

QL GEE 100 95 100.42 2.98 0.42 2.97 3.01 96.5

PL GLMM 100 95 100.92 3.32 0.92 3.29 3.45 93.4

PL GLM 500 473 500.76 6.71 0.15 1.34 6.75 94.6

QL GEE 500 473 500.66 6.35 0.13 1.27 6.38 96.1

PL GLMM 500 473 502.03 7.20 0.41 1.43 7.48 94.1

(c) Low

PL GLM 100 86 101.25 6.18 1.25 6.11 6.31 96.4

QL GEE 100 86 101.31 5.97 1.31 5.89 6.11 94.2

PL GLMM 100 86 104.71 7.35 4.71 7.02 8.73 88.6

PL GLM 500 431 500.98 13.04 0.20 2.60 13.08 95.0

QL GEE 500 431 500.65 12.57 0.13 2.51 12.58 95.4

PL GLMM 500 431 512.15 15.21 2.43 2.97 19.46 88.7

Averages of the numbers of captured individuals, (�n); the estimates of population size, AVE(N̂); SE of the estimated population size, SE(N̂); per-

centage relative bias, PRB ¼ 100 � ðEðN̂Þ � NÞ � N, where EðN̂Þ is estimated by AVE ðN̂Þ; root mean square error, RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðN̂Þ þ Bias2

q
;

percentage coefficient of variation, CV ¼ 100 � SEðN̂Þ � EðN̂Þ and confidence interval coverage (%), COV.

QL, quasi-likelihood; PL, partial likelihood; GLM, generalized linear models; GEE, generalized estimating equations; GLMM, generalized linear

models.
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1986). For cases where only a small proportion of

individuals are captured, the GEE approach provides better

RMSE and is robust to violation of the assumption of inde-

pendence among capture occasions. This approach also

provides means of exploring factors thought to be responsi-

ble for differences in capture probability among individu-

als. Hence, it is important to account for correlation

structure among capture occasions when estimating animal

population parameters in capture–recapture studies. Future
work could focus on expansion of the simulations to assess

the performance of estimators based on GEE, GLMM, and

Bayesian methods for capture–recapture studies. Exten-

sions of this work to model Mth may also be possible after

imposing some parameter constraints. The GEE approach

accounts for individual heterogeneity in capture probability

as a function of covariates and correlation among capture

occasions. It would be interesting if one can modify our

proposed approach to additionally account for individual

heterogeneity that cannot be explained by covariates.

Researchers may also extend this approach for open popu-

lation models to estimate unknown animal abundance in

capture–recapture studies.
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