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Independent studies on major depressive disorder (MDD) and hypertension, suggest overlapping abnormalities
in brain regions associated with emotional and autonomic processing. However, the unique and interactive ef-
fects of MDD and hypertension have never been studied in a single sample. Brain volume in these areas may
be an explanatory link in the comorbidity between MDD and hypertension. Voxel-based morphometry was
used to test for main effects of MDD (N = 152) and hypertension (N = 82) and their interactions on gray and
white matter volumes. Voxel-wise results are reported at p b .05 FWE corrected for the spatial extent of the
whole brain and a-priori regions of interest (ROIs: hippocampus, anterior cingulate cortex (ACC) and inferior
frontal gyrus (IFG)). In addition, analyses on the extracted total volumes of our ROIs were performed. Interactive
effects in themid-cingulate cortex (MCC) (pFWE= .01), cerebellum (pFWE= .01) and in the ACC total ROI volume
(p = .02) were found. MDD in the presence, but not in the absence of hypertension was associated with lower
volumes in the ACC and MCC, and with a trend towards larger graymatter volume in the cerebellum. No associ-
ations with white matter volumes were observed. Results suggest that the combination of MDD and hyperten-
sion has a unique effect on brain volumes in areas implicated in the regulation of emotional and autonomic
functions. Brain volume in these regulatory areas may be an explanatory link in the comorbidity between hyper-
tension and MDD.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The incidence of hypertension is increased in depressed patients
compared to the general population (Meng et al., 2012). Moreover,
both hypertension and depression increase the risk of incident cardio-
vascular disease (CVD) and accelerate the progression of CVD
(Nemeroff and Goldschmidt-Clermont, 2012; Thayer and Lane, 2007).
Multiple biological factors have been proposed to play a role in the asso-
ciation between depression and vascular related diseases (de Jonge
et al., 2010), including inflammation, hypothalamus–pituitary–adrenal
(HPA) axis dysregulation, and autonomic dysfunction, reflected by de-
creased heart rate variability. Although both depression and hyperten-
sion have independently been associated with abnormalities in brain
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structure and function, regional brainmorphology as a shared biological
link has rarely been studied.

Depression has been associated with gray matter (GM) volume loss
predominantly in prefrontal-limbic networks, such as the anterior cin-
gulate cortex (ACC), hippocampus, and inferior frontal gyrus (IFG)
(Arnone et al., 2012; Bora et al., 2012; Du et al., 2012; Lai, 2013),
which have been implicated in processing of emotional information
(Groenewold et al., 2013). It is not fully clear whether alterations in re-
gional brain volumes are a cause or consequence of depression, or both.
Conceivably, pre-existing abnormalities in brain regions involved in
emotion processing may render individuals vulnerable to depression.
Alternatively, excessive stress during depressive episodes could have
damaging effects on the brain. The association between white matter
(WM) volumes and depression has been studied less extensively and
has resulted in inconsistent findings (Abe et al., 2010; Kim et al., 2008;
Steingard et al., 2002).

Like depression, hypertension is also an established risk factor for
brain abnormalities such as WM lesions and decreased GM volumes in
prefrontal-limbic areas (Beauchet et al., 2013; Gianaros et al., 2006;
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Jennings et al., 2012; Jennings and Zanstra, 2009; Maillard et al., 2012;
Raz et al., 2003). In addition to the damaging effects of hypertension
on the brain, it has been proposed that alterations in regional brain
volume may predispose individuals to develop hypertension and car-
diovascular disease, due to reduced regulatory control on blood pres-
sure and heart rate during stressful situations (Jennings and Zanstra,
2009). According to this theory, subclinical hypertensionwould be asso-
ciated with similar alterations in brain structure as found in clinical hy-
pertension and CVD. Of interest, GM abnormalities in persons with
hypertension are reported in structures that correspond to the ‘emo-
tional’ areas implicated in depression, i.e. in prefrontal-limbic areas
such as the prefrontal cortex, the ACC, and the hippocampus
(Beauchet et al., 2013; Gianaros et al., 2006; Gilbert et al., 2010;
Jennings and Zanstra, 2009; Maillard et al., 2012; Raz et al., 2003; Woo
et al., 2009). In addition to emotion processing, these regions have
also been found to play a role in regulating autonomic functions, such
as heart rate and blood pressure (Critchley et al., 2011; Gasquoine,
2013; Gianaros et al., 2008; Parvizi et al., 2013;Williamson et al., 2006).

There may be several explanations for this overlap in brain abnor-
malities, such as a shared vulnerability for depression and hypertension,
in which the same brain regions could be involved in multiple (i.e. both
emotional and cardiovascular) processes. In addition, stress is a shared
risk factor for the development of high blood pressure, CVD, and depres-
sion, and could also potentially impact brain volumes (Baune et al.,
2012; Brotman et al., 2007; Grippo and Johnson, 2002; Harrison et al.,
2013). Furthermore, it has been suggested that depression in the ab-
sence and presence of cardiovascular and metabolic conditions has dis-
tinctive subtypes, in terms of genetic predisposition (Kendler et al.,
2009), time of onset (Alexopoulos et al., 1997), and symptomatology
(Ormel and de Jonge, 2011). Possibly, these subtypesmay be associated
with distinctive brain morphology. Alternatively, the vascular depres-
sion hypothesis posits that brain structural abnormalities, such as WM
lesions, as a result of vascular pathology may give rise to depressive
symptoms (Alexopoulos et al., 1997; Krishnan et al., 2004; Thomas
et al., 2002).

Despite the suggested overlap of brain abnormalities in depression
and hypertension, volumetric brain differences associated with hyper-
tension and depression have never been studied simultaneously. The
current study investigated whether hypertension and depression
share regional volumetric alterations in a whole brain voxel-wise com-
parison, and in specific regions of interest (ROIs): the hippocampus, in-
ferior frontal gyrus (IFG) and anterior cingulate cortex (ACC). The
comorbidity of MDD and hypertension has never been taken into ac-
count in previous MRI research. As comorbid depression is associated
with accelerated CVD progression (Nemeroff and Goldschmidt-
Clermont, 2012), comorbid depression and hypertension may have
more advanced vascular pathology, potentially leading to more pro-
nounced volumetric brain alterations. Alternatively, comorbid depres-
sion and hypertension may be a vulnerable subgroup characterized by
distinctive brain morphology. Therefore, the effects of hypertension
and MDDmay not be independent, but rather interactive.

2. Materials and methods

2.1. Participants

For this study we used data from the Netherlands Study of Depres-
sion and Anxiety (NESDA), a multicenter longitudinal cohort study.
This study was approved by the ethical review board of each participat-
ing center and all of the participants signed informed consent before in-
clusion. The design has been described in detail elsewhere (Penninx
et al., 2008). Out of 2981 NESDA respondents, 301 native Dutch-
speaking participants aged between 18–57 years were asked to partici-
pate in the NESDA neuroimaging study if they met the following inclu-
sion criteria: the DSM-IV criteria for a diagnosis of MDD and/or anxiety
disorder (panic disorder, social anxiety disorder, generalized anxiety
disorder) in the past 6months, or no life-timeDSM-IV diagnosis (except
for life-time alcohol and/or drug dependency or abuse) (control group).

The exclusion criteria were: 1) the presence of axis-I lifetime
disorders other than MDD or anxiety disorder; 2) use of psychotro-
pic medication other than SSRIs or infrequent benzodiazepine use
(i.e. equivalent to 2 × 10 mg oxazepam; 3 times a week, or use within
48 h prior to scanning); 3) presence of major internal and/or neurolog-
ical disorders (e.g. type 1 diabetes, CVA/TIA); 4) systolic blood pressure
N180 mm Hg and/or diastolic blood pressure N 120 mm Hg (because
this can affect the brain3s hemodynamics and thereby potentially con-
found functional MRI measurements, which was also part of the
NESDA neuroimaging scan-protocol); 5) dependency or recent abuse
(past year) of alcohol and/or drugs; 6) use of beta-blockers that may af-
fect the brain3s hemodynamics (Carvedilol, Oxprenolol, Pindolol,
Bisoprolol, and Nebivolol); 7) general MRI contra-indications.

In total, 301 participants underwent MRI in one of three participat-
ing centers, i.e. Leiden University Medical Center (LUMC), Academic
Medical Center Amsterdam (AMC) and University Medical Center
Groningen (UMCG). Data from patients with CVD (self-reported diag-
nosis of coronary disease, cardiac arrhythmia, angina, heart failure, or
myocardial infarction) was excluded (N = 6), because in this study
we specifically examined hypertension. In addition, data from 10 partic-
ipants was excluded because of poor image quality. Therefore the final
sample consisted of 285 participants.

2.2. Hypertension

To assess hypertension, systolic and diastolic blood pressure was
measured during supine rest on the right arm, using an OMRON M4
IntelliSense digital blood pressure monitor (HEM-752A, Omron
Healthcare, Inc., Bannockburn, Illinois, USA). The participants were
classified as hypertensive when one of the following conditions was
met: 1) they reported to have hypertension or to receive medication
for hypertension, or 2) when the average of two consecutive baseline
measures (at intervals of at least 1 min) for blood pressure exceeded a
systolic value of 140 mmHg, or 3) when blood pressure exceeded a di-
astolic value of 90mmHg, which are commonly used thresholds for hy-
pertension (Pickering et al., 2005). For interpretation purposes, we used
hypertension as a categorical measure, as descriptive variables and
brain volumes can then be compared across groups. Moreover, we
were specifically interested in a clinically relevantmeasure, that also in-
cluded currently normotensive participants with treated hypertension.
Furthermore, we chose to incorporate systolic and diastolic blood pres-
sure in onemeasure, as thesewere highly correlated in the current sam-
ple (r = .75).

2.3. Depressive disorder

All participants were interviewed with the Composite International
Diagnostic Interview (CIDI) version 2.1 to establish the presence of de-
pressive and anxiety disorders according to the Diagnostic and Statisti-
cal manual of Mental disorders fourth edition (DSM-IV) (Kessler and
Ustun, 2004), administered by trained interviewers. In the current
study analyses were focused on Major Depressive Disorder (half-year
recency), while anxiety (Social Anxiety Disorder, Panic Disorder with
or without Agoraphobia, and/or Generalized Anxiety Disorder; half
year recency) was accounted for by including it as a covariate.

2.4. Other variables

Information about baseline characteristics was obtained from inter-
views, clinical measurements, and questionnaires. Age, sex, years of
education, presence of type 2 diabetes, and medication use were deter-
mined during an interview.Measures ofweight and lengthwere used to
calculate body mass index and Doppler measures of blood pressure of
the arm and ankle were used to calculate ankle-brachial index (ABI), a
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measure of peripheral arterial disease.Metabolic syndromewas defined
according to the revised guidelines of the National Cholesterol Educa-
tion Program (NCEP) Adult Treatment Panel III (ATP III) (Expert Panel
on Detection, Evaluation, and Treatment of High Blood Cholesterol in
Adults, 2001; Grundy et al., 2005), described in detail previously
(Klabbers et al., 2010). In short, metabolic syndrome was defined
when 3 of the following abnormalities were present: increased waist
circumference, (treatment for) increased triglycerides, (treatment for)
reduced high-density cholesterol, increased blood pressure or treat-
ment for hypertension, and (treatment for) elevated glucose levels. A
questionnairewas used to verify smoking status. The severity of depres-
sion was assessed by the Inventory of Depressive Symptoms (IDS). In
addition, the groups with MDD might be characterized by different de-
pressive symptom profiles. Therefore, the IDS was divided into two de-
pressive symptom dimensions: a mood–cognition subscale and an
anxiety–arousal subscale, whichwere identified previously in this sam-
ple by principal component analysis and confirmatory factor analysis
(Wardenaar et al., 2010).

2.5. MRI data acquisition

Participants were scanned in Philips 3-Tesla MRI scanners located at
each of the three participating centers, equipped with either a SENSE-6
or a SENSE-8 channel head coil. Anatomical images were acquired by
using a 3-dimensional gradient-echo T1-weighted sequence with the
following parameters: 170 slices; repetition time = 9 ms; echo
time = 3.5 ms; matrix: 256 × 256; voxel size: 1 × 1 × 1 mm; scan
duration = 4.5 min.

2.6. Data preprocessing

Imaging data were analyzed with Statistical Parametric Mapping
software (SPM 12), implemented in Matlab 7.8.0. The images were
manually reoriented to the anterior commissure and segmented into
GM, WM, cerebrospinal fluid, skull, and soft tissue outside the brain,
using the standard segmentation option in SPM 12, including the ‘light
clean-up’ setting. Diffeomorphic Anatomical Registration Through
Exponentiated Lie algebra (DARTEL) was used for normalization and
modulation of the images. DARTEL is a recommended method to in-
crease the accuracy of inter-subject alignment by modeling the shape
of each brain (Ashburner, 2007). First, a DARTEL template was created
based on the deformationfields that are produced during the segmenta-
tion procedure. Next, all individual deformation fields were registered
to this template. After this, the obtained deformed images were used
to generate smoothed, spatially normalized, and Jacobian scaled gray
and white images in MNI space. To increase the signal to noise ratio,
the GM and WM images were smoothed using an 8 mm full-width-
half-maximum Gaussian kernel.

2.7. Statistical analyses

Voxel-based morphometry (VBM) analyses were masked to exclu-
sively select true positive gray and white matter voxels and to optimize
sensitivity, by using the Masking toolbox (Ridgway et al., 2009). In this
study a 2 × 2 ANOVA analysis was performed to test for the main and
interaction effects of hypertension and MDD. Scan location, age, sex,
and the current presence of anxiety disorder were entered as covariates
in each comparison, as thesemight confound the findings. Furthermore,
we examined whether adding selective serotonin/norepinephrine re-
uptake inhibitor (SSRI/SNRI) use as a covariate would change the re-
sults, as SSRIs and SNRIs might affect brain volumes.

For effects occurring in our a-priori regions of interest (ROIs, i.e. the
anterior cingulate cortex (ACC), the inferior frontal gyrus (IFG) and the
hippocampus); based on previous meta-analyses on volumetric differ-
ences in MDD (Arnone et al., 2012; Bora et al., 2012; Du et al., 2012;
Lai, 2013), a composite mask was created using the WFU PickAtlas
and encompassed these regions as defined by the corresponding auto-
mated anatomical labeling (AAL) system labels. Volumetric studies in
the hypertension literature often analyzed total ROI volumes instead
of employing voxel-based analyses (Beauchet et al., 2013; Jennings
et al., 2012;Woo et al., 2009),which ismore common for thedepression
literature. To be able to compare our results to both fields we analyzed
our ROIs as total volumes as well as voxel-based. For the total ROI-
based analyses, we extracted GM volumes of the individual bilateral
ROIs (i.e. full spatial extent of the AAL labels) and exported these ROI
volumes to SPSS 20.0 to perform ANCOVA. The VBM ROI analyses
were performed in SPM, in which multiple comparison correction was
restricted to the spatial extent of compositemask of the ROIs. Effects oc-
curring outside these ROIs had tomeet whole-brain correction for mul-
tiple comparisons. All VBM results are reported at p b0.05 FWE cluster-
corrected, with the initial voxel threshold at p b 0.005 and a spatial clus-
ter extent threshold of k N 50. Non-stationarity correction was applied
to correct for non-uniformity in image smoothness (http://fmri.
wfubmc.edu/cms/software#NS) in all analyses.

VBM analyses were corrected for total gray and white matter vol-
umes (i.e. Total Brain Volume (TBV)), by using the global values to pro-
portionally scale the original voxel values. In the SPSS ROI analyses, TBV
was included as a covariate. SPSS was also used to analyze the demo-
graphic and clinical data, using ANOVA and Chi-square with alpha set
at p b 0.05.

3. Results

3.1. Baseline characteristics

The total sample consisted of 285 participants (mean age: 37; SD:
10). The baseline characteristics are listed in Table 1 for 4 groups:
1) no hypertension and no MDD (N = 92); 2) no hypertension and
MDD(N=111); 3) hypertension andnoMDD(N=41); 4) both hyper-
tension and MDD (N = 41) (Table 1). Participants with hypertension
were significantly older and less likely to be female, and had a higher
BMI than participants without hypertension. Participants with MDD
had less years of education and were more likely to use SSRIs and
SNRIs. Furthermore, depressive participants with comorbid hyperten-
sion had a later age at onset of depression and amore severe depression,
but did not differ on symptom dimensions compared to depressive par-
ticipants without hypertension. Hypertensive participants with comor-
bid depression had a lower average systolic blood pressure compared to
hypertensive participants without depression.

3.2. ROI-based analyses

We did not observe main effects for hypertension in the SPSS total
ROI volume analyses, in which mean volumes of each of the total ROIs
were analyzed. There was a main effect for MDD, in which persons
with MDD had lower total GM in the ACC (p = 0.01). In addition,
there was an interaction effect in this region (p = 0.02) (Table 2a and
Fig. 1). In order to be able to interpret the effect of MDD in the context
of an interaction with hypertension, the effect of MDD was stratified
on hypertension; MDD with hypertension was significantly associated
with lower GM volume in the ACC (p=0.01), but notMDDwithout hy-
pertension (p = 0.83). In Fig. 1 it can be observed that the comorbid
group had the lowest ACC volume of all groups. There were no signifi-
cant findings for the hippocampus and IFG total volumes.

3.3. VBM results

In contrast to the ROI-based analyses in SPSS, there were no signifi-
cant effects in any of the ROIs in the VBM analyses after family-wise
error correction. There was a marginal interaction effect in the ACC
(Table 2b), in which a similar pattern was observed as for the ACC in
the ROI based analyses (figures not shown). To a lesser extent, this
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Table 1
Baseline characteristics.

HT − MDD −
N = 92

HT − MDD +
N = 111

HT + MDD −
N = 41

HT + MDD +
N = 41

p

Age (SD) 36.5 (9.3) 35.0 (10.1) 41.1 (9.8) 42.6 (9.5) b.001
Female (%) 74 (80%) 82 (74%) 18 (44%) 19 (46%) b.001
Education years (SD) 13.7 (2.9) 12.3 (3.0) 13.2 (3.5) 12.1 (3.1) .003
Scan location (%AMC/LUMC/UMCG) 28/41/30 28/41/31 34/39/27 32/32/37 .92
Handedness (% left-handed) 7 (7.6%) 10 (9.0%) 3 (7.3%) 2 (4.9%) .87
SSRI/SNRI (%) 12 (13%) 39 (35%) 9 (22%) 17 (42%) .001
Current anxiety disorder (%) 46 (50%) 64 (58%) 20 (49%) 23 (56%) .64
Systolic blood pressure (SD) 124 (9) 123 (10) 152 (12) 146 (13) b.001
Diastolic blood pressure (SD) 76 (7) 75 (8) 90 (10) 88 (8) b.001
Self-reported treatment for hypertension (%) – – 12 (29%) 10 (24%) .62
Age at onset of depression – 22 (10) – 29 (12) b.001
Age at onset of hypertension – – 38 (10) 38 (7) .95
Diabetes (%) 0 (0.0%) 3 (2.7%) 1 (2.4%) 3 (7.3%) .09
Body mass index (SD) 24.0 (4.1) 24.8 (4.2) 25.7 (5.1) 27.4 (5.1) .001
Metabolic syndrome (%) 3 (3.3%) 6 (5.5%) 7 (17.1%) 13 (31.7%) b.001
Ankle-brachial index ≤0.9 (%) 1 (1.1%) 4 (3.6%) 2 (5%) 1 (2.5%) .60
Current smoker (%) 23 (25%) 39 (35%) 16 (39%) 17 (42%) .18
Depression severity IDS score (SD) 13.1 (11.7) 29.7 (10.6) 15.5 (13.2) 34.5 (11.3) b.001

Cognitive–mood factor (SD) 3.8 (4.0) 9.6 (3.1) 4.7 (4.5) 10.3 (3.1) b.001
Anxiety–arousal factor (SD) 3.3 (2.6) 6.1 (2.0) 3.5 (3.0) 6.4 (2.0) b.001

HT = hypertension; MDD= major depressive disorder; SD = standard deviation; AMC = Amsterdam Medical Center; LUMC = Leiden University Medical Center UMCG= University
Medical Center Groningen; SSRI/SNRI = selective serotonin/norepinephrine re-uptake inhibitors (SSRI/SNRI); IDS =inventory of depressive symptomatology. p-Values are based on F-
test and chi square.

Table 2A
SPSS ANOVA results of total ROI volumes for GM; regions of interest tested: bilateral ante-
rior cingulate cortex, inferior frontal gyrus, and hippocampus.

Anterior cingulate cortex F p

HT− = HT+ .008 .930
MDD− N MDD+ 6.3 .012
HT ∗ MDD 5.5 .020

HT = hypertension; MDD= major depressive disorder.
Comparisons in the analyses: the main effects of HT and MDD and interaction effects of
HT ∗MDDwere tested in 1model and adjusted for scan location, age, sex, anxiety disorder,
and whole brain volume (df: 1, 276).

82 M. Meurs et al. / NeuroImage: Clinical 8 (2015) 79–86
was also the case for the hippocampus (Table 2b). Only subthreshold
explorations at p b 0.005 uncorrected in the ROIs, suggested that MDD
was associated with lower GM volume in clusters in the IFG and ACC
(Table 2b).

Furthermore, whole-brain voxel-based analyses (Table 2b) revealed
significant interaction effects in the posterior mid-cingulate cortex
(MCC) (k = 2247; F = 25.1; pFWE = 0.01) and in the cerebellum
(k = 2138; F = 13.6; pFWE = 0.01) (Fig. 2 and Table 2b). Fig. 3A
shows a similar pattern for the MCC as was found for the ACC, in
which MDD in the presence, but not in the absence of hypertension
Fig. 1. Location ROI anterior cingulate cortex and total GMvolumes per group (inml). Post-hoc s
to be significantly associated with reduced GM volume in the ACC (F = 7.1; p= 0.01), but no
shows a lower GM volume. Stratifying the effect of MDD on the pres-
ence and absence of hypertension, confirmed this observation. Namely,
MDD in the presence of hypertension was associated with significantly
less GMvolume in clusters located in theMCC (pFWE=0.003; k=3526;
T=4.55); there was no effect of depression in the absence of hyperten-
sion (pFWE = 0.93), neither a subthreshold effect (cluster level
puncorr N 0.05). Furthermore, Fig. 3A shows that the comorbid group
was associated with the lowest MCC volume of all groups.

For the cerebellum, a different pattern was observed (Fig. 3B); MDD
in the presence of hypertension seemed to be associated with an in-
creased volume in the cerebellum, while MDD in the absence of hyper-
tension seemed to be associated with a decreased volume. Stratifying
the effect of MDD on the presence and absence of hypertension showed
only subthreshold effects. MDD in the presence of hypertension was as-
sociatedwith subthreshold increasedGMvolume (cluster level puncorr=
0.05; k=727; T=3.01), and MDD in the absence of hypertension was
associated with subthreshold decreased GM volume (cluster level
puncorr = 0.01; k=1202; T=3.44). Whole-brain voxel-based analyses
did not reveal significant main effects for hypertension, nor for MDD.

Furthermore, participants with hypertension were on average
6 years older compared to participants without hypertension. In order
to exclude the possibility of a confounding effect of age, we age-
matched the hypertension and non-hypertension groups by randomly
tratification analyses on hypertension showed that onlyMDDwith hypertension appeared
t MDD without hypertension (p = 0.83).



Fig. 2.Whole brain interaction effects of hypertension and MDD in A. the posterior mid-
cingulate cortex (MCC) and B. the cerebellum. Images are presented in neurological con-
vention. Color intensities reflect F-values.
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excluding 60 younger individuals from the non-hypertension groups.
However, this did not substantially affect the results (data not shown).

4. Discussion

In this structural imaging studywe examinedwhether hypertension
and MDD are associated with volumetric differences in overlapping
brain areas, and whether effects are independent or interactive. There
were no independent effects for hypertension and MDD for gray and
white matter volumes. However, we did observe an interaction effect
for GM volumes in areas implicated in the regulation of emotional and
autonomic functions: the ACC and in the posteriorMCC. This interaction
indicated that only depression in the presence, but not in the absence of
hypertension was associated with lower volumes. Persons with comor-
bid hypertension andMDD had the lowest GM in these areas compared
Table 2B
Results for SPMwhole brain analyses for gray andwhite matter volumes; and for small volume
ter correction.

MNI-coordinate peak

Comparison Region k x y

Whole brain
HT ∗ MDD MCC 2247 9 −31
HT ∗ MDD Cerebellum 2138 −28 −69

Small volume corrected
MDD− N MDD+ IFG 56 −52 27
MDD− N MDD+ 31 54 17
MDD− N MDD+ ACC 241 −2 38
HT ∗ MDD 467 −3 36
HT ∗ MDD Hippocampus 13 −14 −4

FWE-cluster corrected p b .05 at initial threshold p b .005; k N 50. GM=graymatter; HT= hype
frontal gyrus; ACC= anterior cingulate cortex; k=cluster size;MNI-coordinate= coordinates
rological Institute). Comparisons in the analyses: main effects of HT andMDDand interaction ef
effect; MDD− N MDD+ = lower GM for participants with MDD.
to the other groups. Furthermore, an interaction effect for GMvolume in
the cerebellum was observed, which showed the opposite pattern; de-
pression in the presence of hypertensionwas associated withmarginal-
ly higher volumes, whereas depression in the absence of hypertension
was associated with marginally lower volumes. These findings suggest
that MDD is differently associated with brain volumes in the presence
or absence of hypertension.

4.1. Interaction effects

Themost important finding of this studywas the interaction effect of
hypertension and MDD on GM volumes in the ACC andMCC. Brain vol-
umes in these areas have previously been associated with hypertension
and depression in studies examining these conditions separately
(Arnone et al., 2012; Beauchet et al., 2013; Bora et al., 2012; Du et al.,
2012; Gianaros et al., 2006; Jennings et al., 2012; Jennings and Zanstra,
2009; Lai, 2013; Maillard et al., 2012; Raz et al., 2003). The ACC and
MCC were previously found to be involved in a variety of emotional
and cognitive processes, but also in autonomic functions such as cardio-
vascular modulation (Critchley et al., 2011; Gasquoine, 2013; Parvizi
et al., 2013;Williamson et al., 2006). Stressor-evoked blood pressure re-
activity has been associated with lower gray matter volume and in-
creased activation in the ACC (Gianaros et al., 2008). The ACC is part of
the central autonomic network (CAN), in which the sympathetic output
is under tonic inhibitory control (Thayer and Lane, 2007). Disruption of
this inhibitory pathway may result in increased heart rate and de-
creased HRV, as well as hypertension (Thayer and Lane, 2007).

According to the allostatic load theory (McEwen, 2006), prolonged
periods of psychosocial stress (often occurring in depression) can lead
to chronic frontal hypoactivity and sympathetic disinhibition, increas-
ing the risk for cardiovascular diseases. In line with this, prolonged
stress has been associated with damage to brain structures including
the ACC (Baune et al., 2012; Brotman et al., 2007; Grippo and Johnson,
2002; Harrison et al., 2013). Besides the cardiovascular system, the
ACC is also part of the emotional and stress networks (Gianaros et al.,
2005; Phillips et al., 2003). Considering its role in emotion, the ACC
has been implicated in monitoring emotional salience (pleasant/
averseness) and initiating changes in behavior in reaction to challenging
physical and cognitive states (Gasquoine, 2013; Parvizi et al., 2013).
Taken together, findings of previous studies and the current findings
of the interaction effect of depression and hypertension on cingulate
cortex volumes, support the hypothesis that abnormalities in these re-
gions may be one of the explanatory factors for the comorbidity of car-
diovascular problems and depression (Gilbert et al., 2010). Multimodal
neuroimaging, examining structure and function concurrently, may
give more insight into the mechanisms underlying the previous and
current findings for the ACC. Although this cross-sectional study
corrected ROIs, which passed the initial threshold, but were not significant after FWE-clus-

p-Value
FWE-cluster corrected

z F-peak Z-peak

45 25.1 4.75 .011
−50 13.6 3.37 .014

30 12.07 3.24 .740
0 9.44 2.83 .811

10 11.07 3.09 .370
10 13.58 3.45 .163

−21 9.29 2.80 .868

rtension;MDD=major depressive disorder; MCC=mid-cingulate cortex; IFG= inferior
of the voxel showing peak significance inmeanMNI-space (defined by theMontreal Neu-
fects of HT ∗MDD, adjusted for scan location, sex, age and anxiety. HT ∗MDD= interaction



Fig. 3. Pairwise comparison of voxel-based GM volumes in the posterior MCC (A) and cerebellum (B). HT= hypertension;MDD=major depressive disorder. **: significantly different in
the FWE-corrected t-test; *: significantly different in uncorrected t-test; ns: not significant.
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precludes inferences regarding causality, it may be that the identified
brain volumetric differences are predisposed toMDD and hypertension,
whether or not due to prolonged stress exposure.

Interestingly, the current study also showed an interaction effect of
hypertension and depression in the cerebellum. The cerebellum is not
only involved in motor coordination but is also suggested to play a
role in cognitive and emotional functioning (Baumann and Mattingley,
2012). However, the current findingsmay be spurious, as the unexpect-
ed pattern of increased volume of the cerebellum that was observed for
MDD in the presence of hypertension, and decreased volume for MDD
without hypertension, were no longer statistically significant after ad-
justment for multiple testing. Nevertheless, as the cluster size was sub-
stantial, we cannot as yet discard this finding.
4.2. Integrating findings with existing theories on depression subtypes

In linewith existing theories (Kendler et al., 2009; Alexopoulos et al.,
1997; Ormel and de Jonge, 2011), persons with comorbid depression
and hypertension differed on a number of characteristics with respect
to the comparison groups. The comorbid group had a higher age of de-
pression onset, and a higher severity of depressive symptoms than the
group of depressed participants without hypertension. This could not
explain the GM findings in the cingulate cortex, since depression sever-
ity was not associated with GM volumes, whereas a higher age of de-
pression onset was associated with larger instead of smaller volumes
(van Tol et al., 2010). On the other hand, the comorbid group was asso-
ciated with a lower average systolic blood pressure compared to hyper-
tension without depression, despite the observed lower GM volume for
this group. Furthermore,metabolic syndromewas twicemore prevalent
in the comorbid group compared to thehypertension groupwithout de-
pression. Including metabolic syndrome as an additional covariate did
not substantially change the results. Nonetheless, GMvolumetric abnor-
malities may predispose towards a broader array of cardiovascular and
metabolic alterations, surpassing hypertension (Onyewuenyi et al.,
2014). Thus, our findings support the idea that the presence of comor-
bidity between depression and hypertensionmay indicate a vulnerabil-
ity that can be visualized in specific brain structures.

Another possibility is that persons with comorbid hypertension and
MDD are more vulnerable to develop regional brain abnormalities than
personswith either one condition. Thismight explainwhy in this young
subclinical sample associations were only visible in patients with co-
morbid MDD and hypertension, and not (yet) in patients with hyper-
tension or MDD only. In addition, the findings are consistent with the
vascular depression hypothesis, in which a subtype of depression is
postulated with specific structural brain alterations in areas of emotion
regulation, as a result of vascular pathology (Alexopoulos et al., 1997;
Thomas et al., 2002). Thus, the current findings are in line with several
theories, which do not have to be mutually exclusive.
4.3. Absence of independent effects

We hypothesized to find lower brain volumes for hypertension and
MDD in overlapping brain regions. Unexpectedly, the current study
found no independent effects for either hypertension or MDD. The cur-
rent sample may differ from previous hypertension samples, because
participants with systolic blood pressure N180 mm Hg and/or diastolic
blood pressure N120 mm Hg and participants using beta-blockers po-
tentially influencing brain hemodynamics were excluded from the cur-
rent study. Also, the relatively young age (mean age = 42) of the
participants with hypertension in this sample, and the short duration
of the self-reported hypertension (mean age at onset= 38)may be rel-
evant factors, as GM volume reductions observed in participants with
high blood pressure may aggravate with increasing age (Beauchet
et al., 2013). Nevertheless, in another large study of young individ-
uals (mean age = 39), high blood pressure was correlated with
lower GM volumes in the temporal lobe (Maillard et al., 2012). Con-
sidering the current tentative findings, future research should focus
on the nature of volumetric differences in early and prodromal
stages of disease.

As previous studies on hypertension and MDD independently re-
ported lower brain volumes in frontal-limbic brain areas, we selected
the hippocampus, ACC and IFG as ROIs. We only observed significant ef-
fects of MDD in the ACC. Of note, a previous study in the same sample
found that depression was associated with lower volumes in clusters
in the IFG and ACC, compared to healthy controls (van Tol et al.,
2010). However, in our analyses we used a more stringent threshold,
patients with anxiety without comorbid MDD were pooled within the
control group, and anxiety was taken into account by including it as co-
variate instead of analyzing it as an isolated group. Since anxiety was
equally distributed across the four groups in the present study, it
could not influence the interaction findings. Nevertheless, in the FWE-
uncorrected analyses, MDD was associated with clusters of reduced
GM volume in the IFG and ACC.

The current study found no main or interaction effects for depres-
sion and hypertension for WM volume analyses. So far, the association
betweenWMvolumes and depression has not been studied extensively
and results have been inconsistent (Abe et al., 2010; Kim et al., 2008;
Steingard et al., 2002). One volumetric MRI study found that blood
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pressure did not correlate with regional WM volumes (Gianaros et al.,
2006). Furthermore, research on the effect of hypertension on WM
has focused predominantly on WM lesions and WM integrity instead
of WM volumes. One study found that after 50 years of age, but not be-
fore, comorbid hypertension, obesity, and diabetes mellitus were asso-
ciated with significantly larger WM lesion volumes compared to an
age matched group without these conditions (King et al., 2014).

4.4. Strengths and limitations

Our findings should be considered in light of the following strengths
and limitations. The firstmajor strength is that this is the first study that
examined the neural correlates of hypertension and depression in one
sample. Another strength of this study is that the size of the sample
was sufficient to test for interaction effects of hypertension and MDD.
Furthermore, a strength is the use of a diagnostic interview to assess de-
pression. A limitation is that blood pressure was onlymeasured twice at
one visit, whichmight not indicate chronic high blood pressure. Anoth-
er limitation is that the use of particular types of beta-blockers, which
are commonly used in the treatment of hypertension, was an exclusion
criterion, making the findings potentially less generalizable to a more
clinical population.

5. Conclusion

In the current study hypertension and MDDwere not independent-
ly, but only interactively associated with altered GM volumes. The re-
sults suggest that in a relatively young sample, the combination of
MDDand hypertension is uniquely associatedwith lower brain volumes
in areas implicated in the regulation of emotional and autonomic func-
tions. The observed interaction effect implies that future volumetric
neuroimaging studies in depression should take into account the pres-
ence of comorbid hypertension. Moreover, further research should be
undertaken to replicate these findings in a sample with more advanced
vascular disease. In addition, longitudinal research is needed to clarify
whether comorbid vascular disease and MDD may be a subgroup with
specific brain abnormalities, and/or whether hypertension andMDD re-
inforce each other3s impact on brain volumes.
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