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Abstract

Type I interferons (IFN-a/b) were originally discovered by their strong and direct antiviral activity [A. Isaacs, J. Lindenmann, Virus interference.
I. The interferon, Proc. R. Soc. Lond. B Biol. Sci. 147 (1957) 258e267]. (see review by J. Lindenmann on p. 719, in this issue). Nevertheless, only
very recently it was entirely realized that viruses would not succeed without efficient tools to undermine this potent host defense system. Current
investigations are revealing an astonishing variety of viral IFN antagonistic strategies targeting virtually all parts of the IFN system, often in a highly
specific manner. Viruses were found to interfere with induction of IFN synthesis, IFN-induced signaling events, the antiviral effector proteins, or
simply shut off the host cell macromolecule synthesis machinery to avoid booting of the antiviral host defense. Here, we will describe a few
well-characterized examples to illustrate the sophisticated and often multi-layered anti-IFN mechanisms employed by viruses.
� 2007 Elsevier Masson SAS. All rights reserved.
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1. Interference with interferon induction

In most nucleated body cells, viral infections activate tran-
scription of the ‘‘classic’’ IFN-b gene [1] by a signaling chain
which is initiated by the RNA sensors RIG-I and MDA-5,
which in turn act trough the adaptor IPS-1 and the kinases
TBK-1 and IKK-3 to activate the transcription factor IRF-3
(see reviews by P. Pitha and by T. Fujita on pages 744 and
754 this issue respectively). A parallel pathway involves the
dsRNA-binding kinase PKR, the TRAF adaptor molecules
and the NF-kB kinase IKKa/b (see review by Garcı́a et al.,
on p. 799 this issue). Most viruses investigated so far interfere
with one or several steps in these important signaling chains
[2e6]. Fig. 1 provides a schematic overview over the IFN in-
duction pathway and some selected viral counterparts.

Until very recently, it was thought that the only IFN-induc-
ing molecule which clearly distinguishes viruses from their
host (i.e. self vs. non-self) is double-stranded RNA (dsRNA).
Many RNA and DNA viruses therefore express proteins which
bind this key molecule to avoid both IFN induction and
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activation of dsRNA-dependent antiviral enzymes [7,8].
Well-investigated examples are the NS1 protein of influenza
A virus [9e12], the E3L protein of poxviruses [13,14], the
VP35 protein of Ebola virus [15,16], the sigma3 protein of
reoviruses [17], and the US11 protein of herpes simplex virus
[18,19]. The murine cytomegalovirus encodes two proteins,
m142 and m143 which together block dsRNA-mediated sig-
naling pathways [20,21]. However, in the case of the influenza
virus NS1 and the Ebola virus VP35 dsRNA-binding appears
only to contribute to the IFN antagonism without being essen-
tial [15,22,23]. In addition, we have recently shown that some
viruses do not produce detectable amounts of dsRNA at all
[24], indicating that in these cases other molecules IFN-elicit-
ing molecules are important. Indeed, viral ssRNAs bearing
a 50triphosphate group are a potent trigger of IFN induction,
acting through RIG-I [25,26]. In line with this, it was shown
that the NS1 of influenza A virus can bind ssRNA as well,
and is able to form complexes with RIG-I [26,27]. Similarly,
a dsRNA-binding defective VP35 mutant can still block IFN
induction [15], suggesting a similar mode of action. Thus,
RNA binding by these viral IFN antagonists appears to be con-
tributing to their IFN antagonism without being sufficient. An
IFN induction antagonist devoid of any RNA-binding activity
ed.
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is the V protein of the paramyxovirus SV5. This small protein
inhibits IFN induction by sequestering the RIG-I-related RNA
sensor MDA-5 [28,29], raising the question how SV5 deals
with the parallel RIG-I pathway. This paramyxovirus-specific
problem can be avoided by blocking components of the signal-
ing pathway which are situated further downstream and there-
fore needed by both RIG-I and MDA-5. The next in line, the
adaptor protein IPS-1, connects the RNA sensors with the IRF-
3 kinases TBK-1/IKK-3 and is specifically cleaved by the
NS3-4A protease of hepatitis C virus [30,31]. The activation
of IRF-3 by TBK-1 is prevented by the phosphoprotein P of
Rabies virus [32] and the G1 glycoprotein of the hantavirus
NY-1 [33]. IRF-3 itself is degraded by the NPro proteins of
classical swine fever virus and of bovine viral diarrhea virus
[34e37]. Also, the E6 protein of human papilloma virus 16
binds and inactivates IRF-3 [38], and human herpes virus 8
(HHV-8) expresses several IRF homologues, termed vIRFs,
which exert a dominant-negative effect [39e45].

Target-specific IFN-escape strategies are often pursued by
viruses causing persistent infections, e.g. herpes viruses. By
contrast, many viruses which lytically infect the host cell

Fig. 1. Viral inhibition of IFN induction. Intracellular recognition of 50-tri-
phosphorylated ssRNA and dsRNA by the intracellular receptors PKR, RIG-

I and MDA-5 leads to activation of the transcription factors NF-kB and

IRF-3 via several intermediate signaling factors. IRF-3 is phosphorylated by

the kinases TBK-1 and IKK3 which in turn are activated by RIG-I and

MDA5 via IPS-1. NF-kB is mainly activated by the PKR pathway. Examples

of viral IFN antagonists interfering with different steps in the IFN induction

pathways are the NS1 of influenza viruses, the V protein of paramyxoviruses,

the NS3-4A protein of hepatitis C virus, the P protein of Rabies virus, the G1

protein of hantavirus NY-1, the NPro protein of classical swine fever virus and

bovine viral diarrhea virus, the E6 protein of human papilloma virus 16, the

viral IRF homologs (vIRFs) of human herpes virus 8, the NSs proteins of bu-

nyaviruses, the M protein of vesicular stomatitis virus, and the proteases of

Picornaviruses.
simply impose a general block on host cell transcription and
translation. For example, the non-structural NSs proteins of
the Rift Valley Fever virus and Bunyamwera virus interfere
with the basic cellular transcription machinery [46e48]. Al-
though this strategy appears to be unspecific, in vivo experi-
ments clearly demonstrated that the biological purpose of
this broad-band shut-off is to inhibit IFN synthesis [49,50].
The matrix (M) protein of vesicular stomatitis virus (VSV)
is also a potent host cell shutoff factor which inhibits basal
transcription [51], impairs nuclear-cytoplasmic transport of
RNAs and proteins [52], and inactivates translation factors
[53]. As is the case with bunyavirus NSs, the biological signif-
icance of VSV M-mediated shutoff is to suppress IFN induc-
tion [54,55]. Also, proteinases of Picornaviruses (e.g. Foot
and Mouth disease virus, Theiler’s virus, Polio virus) and Pes-
tiviruses (e.g. Classical Swine fever virus) cause a shutoff-of
the host cell metabolism to interfere with the IFN response
[37,56e60].

Interestingly, the non-structural protein NS1 of influenza A
virus also impairs the post-transcriptional processing and nu-
clear export of cellular pre-mRNAs [61e63] in order to coun-
teract the antiviral host response [64,65]. Thus, NS1 is
a versatile protein with the ability to prevent IFN induction
both by IFN pathway-specific and by less specific means,
and recent studies suggest that there is a surprisingly great
strain-specific variation in these activities [66].

2. Interference with interferon-activated signaling

IFN-b and the multiple IFN-a subspecies activate a com-
mon type I IFN receptor (IFNAR) which signals to the nucleus
through the so-called JAK-STAT pathway (Fig. 2). The STAT
proteins are latent cytoplasmic transcription factors which be-
come phosphorylated by the Janus kinases JAK-1 and TYK-2
[67]. Phosphorylated STAT-1 and STAT-2 recruit a third factor,
IRF-9, to form a complex known as IFN-stimulated gene fac-
tor 3 (ISGF-3) which translocates to the nucleus and binds to
the IFN-stimulated response element (ISRE) in the promoter
region of interferon-stimulated genes (ISGs).

The IFN signal transduction pathway represents another
important target of viruses (Fig. 2). Members of the paramyxo-
virus family, which contains mainly important pathogens, en-
code two different (but genetically related) proteins named C
and V which interfere with STAT function. Depending on the
virus species, these IFN antagonists act either by binding the
STAT proteins, by inducing their degradation, or by inhibiting
the JAK kinases [68e82]. The P protein of Rabies virus binds
to activated STAT1 and STAT2 and retains them in the cyto-
plasm [83]. Thus, the paramyxoviral V protein as well as the
rabies virus P protein have a dual anti-IFN function as they
block both IFN induction (see above) and STAT signaling.
Ebola virus, by contrast uses a different protein, VP24, to
block nuclear import of STAT by interacting with the trans-
porter protein karyopherin alpha1 [84]. STAT signaling is
also disturbed by viruses causing persistent infections, such
as Hepatitis C virus [85,86], herpes simplex virus [87,88],
HHV-8 [41], or cytomegalovirus [89,90]. Poxviruses inhibit
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IFN-stimulated gene expression by a different strategy. They
express soluble IFN-binding proteins to neutralize secreted
IFN molecules [91e94].

3. Inhibition of with interferon effector proteins

The dsRNA-binding proteins mentioned above also serve
a second purpose, namely the inhibition of the dsRNA-acti-
vated antiviral enzymes. This has been demonstrated for the
influenza virus NS1 [11,12,95e99], the poxvirus E3L [97],
the reovirus sigma3 [100], the herpesvirus US11 [19,101],
and the dsRNA-binding proteins of human and murine cyto-
megaloviruses [20,21,102]. Importantly, also for this anti-
IFN effector function more that just dsRNA binding appears
to be necessary, since in many cases a direct interaction with
e.g. PKR has been demonstrated (reviewed in Ref. [7]). Se-
questering dsRNA may also inhibit the 2e5OAS pathway
and ADAR, although this has only been shown in a few cases
[12,14]. dsRNA-independent inhibition of the RNaseL system
is achieved by the ICP0 protein of herpes simplex virus [103]
and by upregulation of RLI, a cellular inhibitor of RNaseL, in
HIV- and Picornavirus-infected cells [104,105].

PKR is also attacked by other means. The g34.5 protein of
Herpes simplex virus triggers the dephosphorylation of eIF-
2a, thus reverting the translational block established by PKR

Fig. 2. Viral inhibition of IFN signaling. IFN-a and IFN-b binds to the type I

IFN receptor (IFNAR) and activate the expression of numerous IFN-stimulated

genes (ISGs) via the JAK/STAT pathway. Most viral signaling antagonists de-

scribed so far interfere on the level of either the JAK/TYK kinases or the

STATs. Prominent examples are the C and V proteins of paramyxoviruses,

the P protein of Rabies virus, and the VP24 protein of Ebola virus.
[106]. The E2 protein of Hepatitis C virus [107], the Tat protein
of HIV [108] and the K3L protein of Vaccinia virus [109] act as
pseudosubstrates for PKR. Another strategy is to encode small,
highly structured RNAs which compete with dsRNA and inac-
tivate PKR. This was demonstrated for adenoviruses [110],
Hepatitis C virus [111], Epstein-Barr virus [112], and HIV
[113]. However, for Epstein-Barr virus it was shown that the
PKR inhibition by the so-called EBER RNAs observed in vitro
does not occur in vivo [114], suggesting that EBERs are impor-
tant for other activities such as inhibition of apoptosis.

It is obvious from the listings above that viruses have
evolved multiple means to disrupt the IFN response. In some
cases, there are specialized anti-IFN factors such the non-struc-
tural proteins of influenza viruses. In many other cases, how-
ever, viral gene products with a defined function in virus
replication cycle can additionally acquire the ability to block
the IFN system. Important examples include the V, W and C
proteins of paramyxoviruses [79,115], the P protein of rabies vi-
rus [32,83] and the VP35 protein of Ebola virus [116], which
are regulators of the viral polymerase. Also, the matrix proteins
of Thogoto virus [117] and vesicular stomatitis virus [58], the
nucleoprotein of arenaviruses [118], and the glycoprotein of
hantaviruses [33] not only have structural functions, but are
IFN antagonists as well. Some viruses such as Dengue virus
or SARS-coronavirus encode a multitude of anti-IFN factors
which together may strongly contribute to an enhanced viru-
lence [119e121]. Apparently, modulating the IFN system can
be achieved either by ‘‘inventing’’ one or several specialized
factors or by expanding the function of existant gene products.

4. Outlook

Understanding the interplay between viruses and the IFN
response can help to design new strategies for prevention
and therapy. Viruses unable to counteract the IFN response
are excellent candidates for live virus vaccines. They can be
grown to high titers in IFN-deficient cell cultures but are atten-
uated in vivo since they elicit a robust innate and adaptive im-
mune responses. This concept has been proven for influenza
viruses [122e125], human parainfluenza virus type 1 [126],
human and bovine respiratory syncytial viruses [127e129],
and may likewise apply to other viruses.

Oncolytic viruses designed for the targeted destruction of
tumors is another promising application. Tumor cells often
eliminate one or several parts of the IFN system during the
transformation process [130e133]. For example, tumor cells
were shown to acquire specific mutations leading to resistance
of cellular translation to inhibition by PKR [134]. The payoff
is an increased susceptibility to infection [131,134,135], and
the tumor selectivity of viruses can be further increased by us-
ing mutants with defective IFN antagonists. The inability of
these mutant viruses to fight the IFN response is comple-
mented by the IFN-deficiency of the tumor cells. At the
same time, these viruses are unable to infect the IFN-compe-
tent body cells. This concept is proven by an IFN-inducing
VSV mutant [55] and a herpes simplex virus lacking the
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anti-PKR gene g34.5 [136,137] which specifically destroyed
tumors in immunocompetent hosts.

Thus, unravelling the strategies by which viruses counteract
the IFN system not only helps to better understand viral path-
ogenesis but can also result in novel vaccination strategies and
therapies.
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