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1  | INTRODUC TION

Seasonal influenza outbreaks in the United States cause 140 000-
710 000 hospitalizations and 12 000-56 000 deaths annually.1 
These epidemics regularly recur during winter, but outbreak char-
acteristics, such as peak timing and intensity, vary considerably. 
These year-to-year differences make timely healthcare prepared-
ness measures, including resource allocations, hospital staffing, and 
dissemination of alerts, challenging. As a result, influenza outbreaks 

can cause serious strain on healthcare infrastructure and person-
nel, which lowers quality of patient care. A study reported increases 
in physician and emergency department (ED) visits for respiratory 
illnesses during influenza outbreak peak weeks of 7% and 9%, re-
spectively.2 An increase in emergency medical services diversion, 
an indicator of ED overcrowding, was also reported during peak 
influenza periods.3 Furthermore, Schilling et al found increased in-
hospital mortality due to ED overcrowding during high-influenza 
periods.4

 

Received: 12 February 2018  |  Accepted: 11 July 2018
DOI: 10.1111/irv.12594

O R I G I N A L  A R T I C L E

Influenza forecast optimization when using different 
surveillance data types and geographic scale

Haruka Morita1  | Sarah Kramer1 | Alexandra Heaney1 | Harold Gil2 |  
Jeffrey Shaman1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2018 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

1Department of Environmental Health 
Sciences, Mailman School of Public 
Health, Columbia University, New York City, 
New York
2Marion County Public Health Department, 
Indianapolis, Indiana

Correspondence: Haruka Morita, Mailman 
School of Public Health, Columbia 
University, 722 West 168th Street, Suite 
1104, New York, NY (hm2487@cumc.
columbia.edu).

Funding information
This work was supported by The Defense 
Threat Reduction Agency contract 
HDTRA1-15-C-0018 (H.M., S.K., A.H., 
J.S.); US National Institutes of Health grant 
GM110748 (H.M., A.H., J.S.); and National 
Institute of Environmental Health Sciences 
Center Grant ES009089 (J.S.). The funders 
had no role in study design, data collection 
and analysis, decision to publish, or 
preparation of the manuscript.

Background: Advance warning of influenza incidence levels from skillful forecasts 
could help public health officials and healthcare providers implement more timely 
preparedness and intervention measures to combat outbreaks. Compared to influ-
enza predictions generated at regional and national levels, those generated at finer 
scales could offer greater value in determining locally appropriate measures; how-
ever, to date, the various influenza surveillance data that are collected by state and 
county departments of health have not been well utilized in influenza prediction.
Objectives: To assess whether an influenza forecast model system can be optimized 
to generate accurate forecasts using novel surveillance data streams.
Methods: Here, we generate retrospective influenza forecasts with a dynamic, com-
partmental model-inference system using surveillance data for influenza-like illness 
(ILI), laboratory-confirmed cases, and pneumonia and influenza mortality at state and 
county levels. We evaluate how specification of 3 system inputs—scaling, observa-
tional error variance (OEV), and filter divergence (lambda)—affects forecast accuracy.
Results: In retrospective forecasts, and across data types, there were no clear opti-
mal combinations for the 3 system inputs; however, scaling was most critical to fore-
cast accuracy, whereas OEV and lambda were not.
Conclusions: Forecasts using new data streams should be tested to determine an ap-
propriate scaling value using historical data and analyzed for forecast accuracy.
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Real-time influenza forecasts can help planning for patient 
surges and could reduce associated costs, patient morbidity, and 
patient mortality. These forecasts provide 12-week or more lead 
predictions of future influenza incidence including predictions of 
peak timing and magnitude estimates for the ongoing outbreak. 
Earlier knowledge of outbreak dynamics can give healthcare pro-
viders more time to enact preparedness measures to combat ED 
overcrowding, as well as resource and staff shortages.5,6 Whereas 
these predictions have great potential to lessen influenza mortality 
and morbidity, high-quality and accurate influenza surveillance data 
are needed to generate skillful forecasts.

Many existing influenza forecasting systems rely upon data from 
the US Centers for Disease Control and Prevention (CDC). CDC pro-
vides national-, regional-, and, just recently, state-level syndromic 
surveillance data for influenza-like illness (ILI), as well as laboratory-
confirmed cases of influenza, including specific strains.7 ILI is a non-
specific metric that includes persons who present to an outpatient 
clinic with a fever of 37.8°C or greater and a cough and/or sore 
throat.8 Although CDC provides these datasets publicly, their geo-
graphic scale is limited to the United States overall, large US regions, 
and states. Forecasts generated at a finer geographic scale could po-
tentially provide more relevant localized information for influenza 
outbreak preparedness.

Google Flu Trends (GFT) was an alternate source of influenza 
surveillance data that produced estimates of ILI at state and city 
spatial resolutions. Until July 2015, Google produced GFT, which 
used an algorithm to estimate daily ILI based on Google online 
search activity and autoregressive terms.9 GFT was produced in 
real time, unlike CDC ILI, which is published weekly with a 6- to 12-
day delay. During its period of real-time publication, the GFT data 
stream was used to generate accurate predictions of future influ-
enza incidence and outbreak dynamics.10-13 Nsoesie et al used GFT 
to forecast influenza peak timing in Seattle, Washington, 5-6 weeks 
before the peak.14 Additionally, Shaman and Karspeck developed a 
real-time seasonal influenza forecast for New York City using GFT 
and generated skillful predictions of peak timing 7 weeks before the 
true peak.15

However, GFT had well-documented limitations: The algorithm 
did not capture the first wave of the 2009 A/H1N1 influenza pan-
demic9,16 and inflated the magnitude of the A/H3N2 epidemic during 
the 2012-13 season.9 Recently, several studies have presented new 
algorithms using online search queries,12,17 tweets,18,19 Wikipedia 
access logs,20,21 or other public generated content;22-24 however, as 
these algorithms are all trained to estimate CDC ILI, which until fall 
2017 was only available at national and regional geographic scales, 
forecast of more local influenza activity is often difficult.

Influenza surveillance data are collected by local health depart-
ments across the United States in many different forms, such as 
cases of ILI, ED visits for influenza, and influenza-related deaths. 
Some of these data are provided to CDC as part of national influenza 
surveillance, and many local health departments post weekly influ-
enza reports online to provide information on the current influenza 
burden to health professionals and to the general public. Despite 

widespread existence of these local data and their potential for pro-
ducing local influenza forecasts, relatively few studies have used 
surveillance data from state, county, or city departments of health 
for modeling influenza outbreaks.25 A recent study generated ac-
curate forecasts of influenza peak timing in Melbourne, Australia, 
using a range of local syndromic and laboratory-confirmed data 
streams.26 However, we are unaware of analogous studies in the 
United States.

Given that hospital and public health decision-making in re-
sponse to influenza is often made at local geographic scales, it is im-
portant that accurate, operational, real-time forecasting systems be 
developed and validated at those scales. Different surveillance data 
(eg, hospitalizations, virology, ILI, and mortality) provide different 
estimates of influenza activity and outbreak dynamics. For example, 
increases in ILI may signal the start of an epidemic, whereas upticks 
in hospitalizations and mortality may be an indicator of activity and 
virulence of circulating strains. Predictions, in turn, may represent 
dynamics specific to a particular surveillance data type, which delin-
eates how those predictions might be used to inform interventions. 
More work is thus needed to investigate differences in forecast ac-
curacy and utility when incorporating different local surveillance 
data types.

Here, we investigate these issues by testing an influenza fore-
cast model using 6 types of surveillance data from state and county 
departments of health in Arizona and Indiana. Overall, this work 
aims to determine the feasibility of using local influenza surveil-
lance data to generate accurate real-time forecasts. Specifically, 
we sought to answer the following research questions: (a) Does 
our real-time influenza forecasting model perform equally well 
using different types of local surveillance data? (b) Does model 
specification need to be adjusted for different types of local sur-
veillance data? and (c) Which model specifications perform best 
for different types of local surveillance data? Understanding the 
differential utility of local surveillance data types will allow re-
searchers to intelligently use these data streams in forecasting 
efforts, improving public health and medical response to influenza 
outbreaks at local scales.

2  | METHODS

This study employed a humidity-driven model-inference influenza 
forecast system. There are 3 main components of this system: (a) 
real-time observations of influenza incidence; (b) a dynamic state-
space model describing the propagation of influenza through a 
population; and (c) a data assimilation method. The system uses real-
time observations and a data assimilation method to iteratively up-
date dynamic model state variables and parameters to better match 
ongoing outbreak dynamics. This process optimizes model state 
space, enables inference of critical epidemiological parameters, and 
facilitates generation of accurate real-time ensemble forecasts. The 
form and function of each system component are further described 
below.
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2.1 | Influenza surveillance data

Six distinct influenza surveillance time series from two states, 
Indiana and Arizona, were used (Table 1). Indiana data were ob-
tained from the Marion County Public Health Department and the 
Indiana State Department of Health. Arizona data were obtained 
from the Maricopa County Department of Public Health. Data 
streams are described further below, and methods used to pro-
cess ILI data specifically, and to process all data are available in 
Supporting information.

2.1.1 | Indiana

Influenza-like illness data were obtained at two geographic scales in 
Indiana: (a) ILI data of Marion County residents seen at Marion County 
hospitals, and (b) outpatient ILI data from clinics enrolled in the US 
Outpatient Influenza-like Illness Surveillance Network (ILINet).

2.1.2 | Maricopa County, Arizona

The Maricopa County Department of Public Health provided 4 dif-
ferent influenza surveillance data streams: (a) weekly ILI cases ag-
gregated from sentinel site clinics across the county; (b) weekly ILI 
cases from EDs; (c) weekly laboratory-confirmed cases of influenza, 
comprised of patients who were tested and confirmed to have influ-
enza; and (d) records of pneumonia and influenza (P&I) deaths.

2.2 | SIRS model

The dynamic, compartmentalized model was a susceptible-infected-
recovered-susceptible construct with absolute humidity forcing that 
describes influenza transmission in a perfectly mixed population.15 
Model equations and details can be found in Supporting information.

2.3 | Model-data assimilation methods

The data assimilation method used is the ensemble adjustment 
Kalman filter (EAKF).27 The SIRS model was initiated at the beginning 

of the flu season, integrated forward in time, and trained with the 
influenza surveillance observations using the EAKF algorithm up to 
the week of forecast initiation. Further details on EAKF can be found 
in Supporting information.

2.4 | Retrospective forecasts

The humidity-forced SIRS-EAKF model was used to generate forecasts 
for each available influenza season, excluding 2008-2009 and 2009-
2010 pandemic years to focus our predictions on seasonal influenza. 
The model was initiated early in October (MMWR Week 40) before in-
fluenza activity typically starts with a random selection of model state 
variables (S and I) and parameters (L, D, R0 max, R0 min). For each season, 
the model was run 10 times using a 300-member ensemble. Each week, 
influenza data were assimilated using the EAKF algorithm and a new 
posterior ensemble was generated, which was then propagated to the 
next weekly observation at which point the assimilation process was 
repeated. This iterative optimization was repeated up to the point of 
forecast initiation (MMWR Week 45), after which the posterior ensem-
ble was propagated into the future to the end of the season without 
further training, thus generating a forecast. For each subsequent week 
during the season (ie, through Week 65), the entire process was re-
peated with assimilation until each week of forecast initiation (eg, 46, 
47) followed by ensemble forecast generation. A plot depicting compo-
nents of a forecast in a given week can be found in (Figure S1).

Each ensemble member was initiated with a random set of state 
variables and parameters selected using a Latin hypercube sampling 
strategy from a predetermined range of each variable and parameter, 
similar to Shaman and Karspeck.15 Parameter ranges were 2 ≤ L ≤ 10, 
2 ≤ D ≤ 7, 1.3 ≤ R0 max ≤ 4, and 0.8 ≤ L ≤ 1.3.

2.5 | Varying relevant system inputs

An objective of this study was to determine how optimal system 
input values vary in accordance with different surveillance data 
types. We focused on 3 system inputs: observational error variance 
(OEV), scaling factor, and inflation (details below). These parameters 
must be specified by the forecaster, whereas other parameters, such 

TABLE  1 Details of surveillance data and parameter values used for forecasts

Geographic scale
Seasons (excluding 
2008-10)

Surveillance 
type Scaling values used OEV Lambda

Arizona County 2004-2014 Sentinel ILI 0.8, 1, 2, 3, 4, 5, 10 0, 1, 2 1.00, 1.01, 1.02, 1.03

Emergency Dept. 
ILI

0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7

Laboratory-
confirmed

100, 250, 500, 750, 
1000, 1250, 1500

P&I Deaths 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7

Indiana State 2002-2015 ILI 0.5, 1, 1.5, 2.0

County 2005-2014 ILI 15, 20, 25, 30, 35, 40

P&I, pneumonia and influenza.
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as the basic reproductive number, infectious period, and average du-
ration of immunity, are estimated objectively using data assimilation. 
Each parameter was assigned several possible values, and retro-
spective forecasts were generated using all possible combinations of 
these parameter values. This analysis was executed for each surveil-
lance data type, and results were evaluated as explained later in this 
section. Table 1 shows parameter values used for each data stream.

2.5.1 | Observational error variance

Observational error variance is an input for the EAKF algorithm that 
represents the error associated with observations. Given the varia-
tion in the collection and measurement of different data types, we 
can reasonably expect error variance differences as well. Shaman 
et al13 represented OEV for ILI+ (GFT ILI multiplied by CDC influenza 
positive proportions) observations at week k as: 

Here, ILIj is the influenza estimate for week j. OEV in this struc-
ture fluctuates in proportion to the sum of the prior 3 weeks of ob-
servations. To test different OEV structures for our data types, we 
maintained the same OEV structure but divided the total variance by 
10x (Equation 2). We tested x = 0, 1, and 2.

2.5.2 | Multiplicative inflation factor

One potential challenge associated with use of the EAKF algorithm is 
filter divergence, which can cause model estimates to stray from the 
true trajectory. This occurs when prior ensemble spread becomes 
spuriously small so that ensemble prior moments receive too much 
weight relative to observations. To counteract filter divergence, we 
applied a multiplicative inflation, λ, to the variance of the observed 
state variable, influenza incidence, before each weekly observation. 
Optimal values of λ may differ between data types. Hence, we varied 
this parameter from 1.00 to 1.03.

2.5.3 | Scaling of influenza data

Another challenge related to the EAKF system is that influenza sur-
veillance data do not map directly to the SIRS model output. The 
SIRS model simulates per capita incidence; however, the ILI surveil-
lance data capture incidence among people seeking medical care for 
Maricopa County and Indiana State and among the total population 
for Marion County, laboratory data capture positive cases among 

the total population of Phoenix, and deaths capture numbers of P&I 
deaths among those who died of all causes. To account for these dif-
ferences, observations were mapped into per capita incidence using 
a scaling factor γ, per Shaman et al13 Specifically, by Bayes’ theorem

p (i) is the probability of having influenza, that is, incidence as esti-
mated by the SIRS model; p (i|m) is the probability of having influenza 
among those seeking medical attention, which is estimated by ob-
servations; p (m)is the probability of seeking medical attention; and 
p (m|i) is the probability of seeking medical attention given one has 
influenza. We define the scaling term, � = p(m)

p(m|i), so that γ represents 
the probability of seeking medical care divided by the probability of 
seeking medical care given you are infected with influenza. In this 
equation, p (i) remains the same regardless of data type; however, 
probabilities of seeking medical care and testing positive for influ-
enza will likely differ based on type of care being sought and type 
of diagnosis.13 Hence, scaling factors will vary depending on type of 
surveillance data used. Given the varied data types employed, a wide 
range of scaling values were tested, ranging from 0.1 to 750.

2.6 | Evaluation of retrospective forecasts

For each data type, the model system was run using combinations 
of OEV, inflation factor, and scaling listed in Table 1. Results were 
evaluated using several metrics to determine which parameter com-
binations generated the most accurate forecasts for each individ-
ual data stream. Methods used for forecast evaluation were peak 
timing accuracy, peak intensity accuracy, root mean square error 
(RMSE), mean absolute percentage error (MAPE), and correlation 
of forecasted incidence with observations. In calculating each of 
these metrics, forecasted values were compared to observations 
of the corresponding data stream. Accurate forecasted peak timing 
was defined as being within ±1 week of the observed peak timing.28 
Accurate forecasted peak intensity was defined as within 25 percent 
(±12.5%) of the observed peak intensity. Lower values of RMSE and 
MAPE, and higher correlations, indicated more accurate forecasts. 
Information on how RMSE and MAPE were calculated can be found 
in Supporting information.

Initial assessment of parameters yielding the most accurate 
forecasts was performed by visual inspection. Specifically, box-
plots were generated for RMSE, MAPE, correlations, and errors 
in peak week and intensity predictions. These were used to de-
termine ranges of scaling, lambda, and OEV that appeared to be 
most accurate. These ranges were chosen separately for each data 
stream. Then, for these ranges of parameters, accuracy propor-
tions (proportion of accurate ensemble forecasts) for peak tim-
ing and intensity were compared using a chi-square test of equal 
proportions. RMSE, MAPE, and correlation were compared using 
ANOVA, and Tukey’s honestly significant difference (HSD) test 
with a Bonferroni correction. This test was used to test all pairwise 

(1)OEVk=
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comparisons of means and allowed us to, within each data type, 
compare error measures calculated for each parameter set against 
one another. In most cases, this reduced the number of parameter 
sets considered to be best for a given data type. However, it did 
not necessarily yield a single optimal parameter set for each data 
type for two reasons: first, because several datasets that did not 
yield statistically significantly differences in a single accuracy met-
ric were considered to be equally “optimal,” and second, because 
parameter set or sets best forecasting influenza by one metric 
were not necessarily the same as those sets yielding the most ac-
curate forecasts by other metrics. Finally, a similar approach was 
used to evaluate differences in forecast accuracy by data type. 
That is, after optimal parameter sets were chosen for each individ-
ual data type, forecasts using each data type’s respective optimal 
parameter set were compared using the peak timing and intensity 
accuracy metrics.

Peak timing and intensity accuracy were also compared between 
parameter sets averaged over the course of the epidemic, as well as 
using 3-week lead time bins. Specifically, metrics were compared for 
forecasts predicted to be 6 and 4 weeks before the epidemic peak, 
between 3 and 1 week before the peak, and between the peak itself 
and 2 weeks after the peak.

Historical expectance and likelihood were calculated to deter-
mine whether forecasts generated with SIRS-EAKF model-inference 

system outperform those estimated from historical data (methods in 
Supporting information). Finally, leave-one-out cross-validation was 
carried out to determine whether optimal parameter sets were consis-
tent across seasons (methods and results in Supporting information).

3  | RESULTS

3.1 | Description of observations

Observations of each data stream are plotted in Figure 1. Timing of 
epidemic peaks lines up fairly well for all data types from a given 
region (Pearson’s correlation coefficient for peak week by sea-
son ranging from 0.68 to 0.94 for all Maricopa County data types; 
Pearson’s correlation coefficient 0.95 for the two Indiana data 
types); however, timing between locations varies. This is not unex-
pected given that influenza outbreaks do not peak simultaneously 
across the United States.29 Further, intensity of the peaks and extent 
of noise in the data varied substantially, both within and between 
locations. Maricopa County mortality data were particularly noisy, 
fluctuating widely throughout the year (lag-one autocorrelation 
0.560, compared to >0.85 for all other data types); although sea-
sonal outbreak peaks are still visible, the signal is much weaker. In 
addition, background, or summer, levels differ greatly between data 
types and locations.

F IGURE  1  Influenza observations from 6 data streams Plot A, shows two data streams from Indiana: Indiana State and Marion County; 
plot B, shows 4 data streams from Maricopa County: confirmed cases, emergency department (ED) ILI, pneumonia and influenza (P/I) 
deaths, and sentinel ILI; and plot C, shows two data streams with the lowest case counts from A and B. 2008-2010 pandemic flu seasons are 
excluded
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3.2 | Optimal parameter values

Optimal parameter values for each data and error type are listed in 
Table 2. Forecast accuracy varied significantly based on the values 
chosen for scaling, OEV, and inflation factor, and different parameter 
combinations yielded optimal forecasts for each data type (Table 3). 
In particular, optimal scaling values varied substantially between data 
types, ranging from 0.2 to 0.3 for Maricopa County emergency de-
partment ILI to 250-750 for Maricopa County laboratory-confirmed 
cases. OEV and lambda were less sensitive to data type, as several 
different OEV and lambda values often performed similarly.

In addition to varying by data type, optimal parameter values 
were found to differ by accuracy metric assessed (RMSE, correla-
tion, peak timing error, and peak intensity error). Of the 6 data 
types, only Maricopa County ED ILI, Maricopa County P&I deaths, 
and Marion County ILI yielded a single combination of parameter 
values that performed best according to all accuracy metrics (scaling 

0.3, OEV 2, and lambda 1.01 for emergency department ILI; scaling 
0.4, OEV 1, and lambda 1.01 for P&I deaths; scaling 30, OEV 0, and 
lambda 1.00 and 1.01 for Marion County ILI; Table 2). For all other 
data types, different parameter combinations performed best for 
different accuracy metrics.

3.3 | Forecast accuracy by data type

Data type(s) yielding the most accurate forecasts depended on the 
accuracy metric examined. MAPE over the forecasting period was 
significantly higher for Maricopa ED ILI and sentinel ILI than all other 
data types (P < 5e-8, Tukey’s HSD; Figure 2a,b). Correlations be-
tween observed and forecasted values yielded similar results, with 
correlations being highest for Marion County data and for Maricopa 
County laboratory-confirmed case data (P < 0.0005, Tukey’s HSD; 
Figure 2c). Proportion of forecasts predicting peak timing within 
1 week of the true value was also highest for Maricopa County 

Data stream Error type OEV Lambda Scaling

Indiana State ILI RMSE 0 1, 1.01 0.5

MAPE 0 1, 1.01, 1.02 0.5

Correlation 0 1, 1.01, 1.02 0.5

Peak timing 0, 1, 2 1, 1.01, 1.02, 1.03 0.5

Peak intensity 1, 2 1, 1.01 0.5

Marion County ILI RMSE 0 1, 1.01 30

MAPE 0 1, 1.01 30

Correlation 0 1, 1.01 30

Peak timing 0, 1, 2 1, 1.01, 1.02, 1.03 30

Peak intensity 0 1, 1.01 30

Maricopa ED ILI RMSE 2 1.01, 1.02, 1.03 0.3

MAPE 2 1.01, 1.02, 1.03 0.3

Correlation 2 1.01, 1.02, 1.03 0.2, 0.3

Peak timing 2 1.01, 1.02, 1.03 0.2, 0.3

Peak intensity 2 1.01, 1.02 0.2, 0.3

Maricopa sentinel ILI RMSE 0 1 2, 3

MAPE 0, 1 1, 1.01, 1.02, 1.03 2, 3

Correlation 0, 1 1, 1.01, 1.02, 1.03 1, 2, 3

Peak timing 1 1, 1.01, 1.02 1

Peak intensity 1 1, 1.01, 1.02, 1.03 1

Maricopa lab RMSE 0, 1 1 500, 750

MAPE 0, 1 1 500, 750

Correlation 2 1 250

Peak timing 1, 2 1 250

Peak intensity 2 1 750

Maricopa deaths RMSE 1 1.01, 0.4

MAPE 1 1.01, 1.02 0.4

Correlation 1, 2 1.01, 1.02 0.3, 0.4

Peak timing 1, 2 1.01, 1.02 0.3, 0.4

Peak intensity 1 1.01 0.4

TABLE  2 Optimal parameter values for 
each data and error type
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laboratory-confirmed cases (P < 7.5e-7, chi-square test of equal 
proportions; Table 3). Proportion of forecasts accurately predict-
ing peak intensity, however, was highest for Maricopa County P&I 
deaths (P < 2e-15, chi-square test of equal proportions).

No significant association (by Spearman’s rank correlation) was 
observed between lag-one autocorrelation of a data stream (a mea-
sure of signal smoothness) and overall forecast accuracy for any of 
the 4 metrics used here. However, we note that, excluding Maricopa 
County P&I deaths, all data contained very little noise (lag-one auto-
correlation > 0.85), perhaps obscuring potential significant relation-
ships between signal clarity and forecast accuracy.

4  | DISCUSSION

In this study, we assess how data type and the associated use of 3 
system inputs, namely, scaling, OEV, and an inflation factor against 
filter divergence, impact forecast accuracy. We compared results 
across a variety of data types (ILI on multiple spatial scales, mortality, 
and laboratory-confirmed cases) over several influenza outbreaks. 
Overall, we found that forecast accuracy differed significantly both 
by data type and by choice of input values, particularly scaling; how-
ever, no clear, overarching patterns were observed between input 
value choices and accuracy. We conclude that making input choices 
in the absence of retrospective forecast and calibration is unintui-
tive. Specifically, without guidance gained through prior analysis on 
past seasonal data, scaling parameters in particular are less likely to 
be chosen appropriately.

Whereas both lambda and OEV were found to influence fore-
cast accuracy, their impacts were relatively small and inconsistent. 
Scaling, meanwhile, was much more critical to forecast accuracy and 
varied by data type, ranging from 0.2 to 0.3 (for Maricopa ED ILI) to 
100-200 (for Maricopa laboratory-confirmed cases). These results 
are consistent with those of Moss et al, who found that the range of 
observation probabilities (analogous to our scaling values) that yield 
optimal forecasts differs by data type.26 A range of factors influence 
appropriate choice of scaling, including overall number of people di-
agnosed and health-seeking behavior for both influenza-related and 
non-influenza-related illnesses. Past work suggests that forecasts 
are most accurate when data are scaled such that between 15% and 
50% of a model population of size (100 000) are infected over the 
course of an epidemic. However, in a real-time forecast, eventual 
attack rate of the current epidemic will not be known. In this case, 
appropriate scaling values must be chosen based on results from 
past retrospective forecasts using the same data stream, with input 
of experienced modelers, who possess requisite knowledge of the 
model, its assumptions, and its outputs. Uninformed scaling choices 
can potentially lead to public health actions that are not optimized 
at best and harmful at worst, negatively impacting both population 
health and public trust. This risk is particularly high in the case of 
novel data streams for which little previous knowledge of appropri-
ate scaling values exists. A parallel case where experts are necessary 
for forecast quality control is described in Supporting information.TA
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Previous studies have shown that in skillful forecasts, accuracy 
of forecast outcome increases as lead time decreases. Early in the in-
fluenza season, the model does not forecast outcomes well and con-
tains high uncertainty on timing and intensity of the peak. However, 
as the model is trained with more influenza observations, forecast 
uncertainty decreases.13,15 As expected, this pattern is observed 
here across spatial scales and data types (Table 3). However, overall 
forecast accuracy, as well as accuracy over time, was found to differ 
significantly by data type, although which data type performed best 
was inconsistent across different measures of forecast accuracy. 
Discussion on potential effects of noisy data on forecast accuracy is 
available in Supporting information.

We also explored the role of outcome metric of interest on ideal 
system input choice (ie, scaling/OEV/lambda), but found no consis-
tent patterns. The current study suggests that system inputs are un-
likely to systematically increase the accuracy of one forecast metric 
(eg, peak timing) at the expense of another. However, given that dif-
ferent individuals and organizations may place more value on certain 
outcome metrics over others, any role played by choice of scaling, 
lambda, or OEV should be identified so that modelers can preferen-
tially enhance forecast accuracy of the desired metric.

We acknowledge there are several important limitations. First, 
we have data from only two locations. This may have hindered our 
ability to identify overarching patterns in forecast accuracy by data 
type and outcome metric, and to generalize results found here to 
other locations. However, we note that locations included in this 
study do not possess any obvious characteristics that would make 
the present results ungeneralizable. Future work should consider 
data from a much larger range of sources not only to increase the 
chances of identifying any consistent influence the user-specified 
parameters have on forecast accuracy, but also to elucidate geo-
graphic resolutions at which forecasts can be generated and oper-
ationalized. A geographic resolution that is too fine may not exhibit 
an epidemic curve that can be modeled and forecasted. However, 
forecasts generated at larger spatial scales, while potentially critical 
for responses at these larger scales, may not be useful at the local 
level. Therefore, continued work testing the feasibility of param-
eter choice and generating forecasts using a variety of local data 
streams is needed.

We are also limited in that we cannot know the trajectory of the 
true influenza outbreaks in our states and counties of interest, and 
therefore must compare our forecasts to observed data. A forecast 

F IGURE  2 Boxplots of correlation and MAPE Plot A, shows correlations and pots B and C, show mean absolute percentage error (MAPE) 
between the posterior distribution and the observed data for each parameter combination used to run the forecast
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may thus be considered accurate while misrepresenting true influ-
enza dynamics if the data streams themselves do not accurately re-
flect the “true” situation. Unfortunately, no gold standard estimate 
of the “true” epidemic exists, and combining different data to pro-
duce an aggregate estimate may actually lead to less accurate fore-
casts.26 However, in this study, all tested data streams were relatively 
smooth, and data streams from the same locations tended to peak 
at or around the same week, indicating that none of the data types 
was particularly noisy or obviously differentiated from the other data 
types. Furthermore, we emphasize that a forecast does not have to 
accurately represent the true influenza outbreak trajectory to be 
useful. A system accurately forecasting the number of hospitalized 
cases, for example, could be of great value to medical professionals, 
even if it underestimates the true, total number of influenza cases.

The present study finds that producing accurate forecasts is 
achievable using a variety of data types. Additionally, no consistent 
patterns in roles played by scaling, lambda, and OEV choice on forecast 
accuracy were observed by data type or outcome measure. Whereas 
the effects of lambda and OEV were found to be small, an appropriate 
scaling value is critical to forecast accuracy. We therefore recommend 
that forecasts using novel data streams be generated with a range of 
realistic scaling values informed by retrospective forecasts of past in-
fluenza seasons. Additionally, experienced modelers should be heavily 
involved not only with the choice of an appropriate range of scaling 
values, but also with overall forecast development and analysis.
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