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Abstract: In current research processes, mathematical learning has significantly impacted the brain’s
plasticity and cognitive functions. While biochemical changes in brain have been investigated
by magnetic resonance spectroscopy, our study attempts to identify non-math students by using
magnetic resonance imaging scans (MRIs). The proposed method crops the left middle front gyrus
(MFG) region from the MRI, resulting in a multi-instance classification problem. Then, subspace
enhanced contrastive learning is employed on all instances to learn robust deep features, followed
by an ensemble classifier based on multiple-layer-perceptron models for student identification.
The experiments were conducted on 123 MRIs taken from 72 math students and 51 non-math
students. The proposed method arrived at an accuracy of 73.7% for image classification and 91.8%
for student classification. Results show the proposed workflow successfully identifies the students
who lack mathematical education by using MRI data. This study provides insights into the impact of
mathematical education on brain development from structural imaging.

Keywords: brain science; neuroscience; contrastive learning; MRIs identification

1. Introduction

Education, always a significant activity in human development, has a long-term impact
on an individual’s career and life [1]. As one of the most concerning items, mathematical
education has been associated with many quality-of-life and development indices, including
financial stability, mental, and fertility [2]. Therefore, there has been significant interest
in the research on mathematical education and yielded a wide range of education discoveries
and educational tools from biological function to artificial intelligence (AI) [3–5]. As described
in [6], translational medicine (TM) is not only the application of research discoveries into
clinical practice but also the transformation of the entire medical model, which ultimately
improves the overall medical level and helps patients solve health problems. In the research of
mathematics education, a major objective is not simply to understand and recognize the brain
structure pattern or biomolecular process but to help people to have a clearer understanding
of themselves, find the field of interest, improve and enhance their quality of life. However,
the basic research on mathematics education is still in the exploratory stage. And it still
needs to use advanced data mining technology to mine knowledge from medical images and
biological molecular data to reveal the related mechanism of phenotype.

This paper summarized these related studies into biological analysis, psycholog-
ical measurement, and data information. The biological research aims to understand
the biochemical association between biology and education, e.g., the impact of education
on the brain, by using statistical analysis tools [3,7,8]. Brain et al., reviewed the stud-
ies of specific learning disabilities to understand the complex etiology, co-occurrences.
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Accordingly, they underpinned the training of teachers, school psychologists, and clini-
cians on the optimization of learning contexts for individual learners [9]. By investigating
27 studies on numerical cognition in the living brain, Korbinian et al., arrived that numerical
cognition is subserved by a frontoparietal network that connects the cortex, basal ganglia,
and thalamus [10]. Annie et al., explored the association between neural changes occurring
during adolescence and cognitive functions and behaviors, suggesting teachers could help
students remedy students’ misconceptions in science and mathematics [11]. While biologi-
cal analysis focuses on brain development, psychological measurement is to understand
the education process from sociality and mentality by seeking parameters for cognitive
models, e.g., item response theory [4,12]. Robert et al., explored the nature of the relations
among prior achievement, self-efficacy, outcome expectations, and interests in students’
choice and performance for mathematics-related college courses, showing the potential
effectiveness of the social cognitive theory [13]. Leslie reviewed the studies from 1901 to
the present and augmented that the mathematics curricula should be constructed following
children’s psychology [14]. Yupei et al., developed the model of item response theory to
predict student responses to the following questions by training the latent factor model
on response records [4,12]. Under popular data science and technology, [14,15], AI-aided
education tools and education discovery are becoming hot study fields, e.g., educational
data mining (EDM) and learning analytics (LA) [4,5,12,16]. Natalia et al., presents a study
of cognitive test anxiety and self-perception through questionnaires from over 2000 pri-
mary school students and 200 teachers, showing girls are more likely to experiment with
a negative attitude toward mathematics than boys in Spain [17]. Yue et al., proposed a self-
placed graph memory network to predict the student’s Grade Point Average (GPA) while
finding the abnormal student [16]. By investigating students’ knowledge state, Yupei et al.,
proposed a meta-knowledge learning model that aims to learn the latent meta knowledge
instead of the manual Q-matrix [4]. Among these research works, the investigation of
the neural substrates of mathematical cognition and education provides the biological
perspective to the impact of mathematical education [3].

In recent years, many works studied the impact of mathematical education on brain
regions via the technique of neuroimage [3,18]. Marie et al., employed quantitative meta-
analyses of fMRI studies to identify brain regions concordant among studies on number and
calculation, resulting in a topographical brain atlas of arithmetic [18]. Mariano et al., pre-
sented four specific cases in which neuroscience synergized with other disciplines to serve
the education and argued that the neuroscience method could broaden our understanding
of education [19]. Marie et al., showed brain activity in parietal and frontal cortices, core
areas related to mental-arithmetic, as well as brain regions, served for mathematical-related
problem-solving, leading to a topographical atlas of mathematical processes in children [20].
To investigate the impact of a lack of mathematical education on adolescent brain develop-
ment and future attainment, George et al., acquired fMRIs from more than 120 individuals
composed of math or non-math students [3]. They found the γ-aminobutyric acid (GABA)
concentration within the middle frontal gyrus (MFG) successfully classified math or non-
math students and the adverse effects on brain plasticity and cognitive functions due to
a lack of mathematical education. However, few studies investigated the impact of educa-
tion from structural images. Medical images could present the brain structure, which is
often used for disease diagnosis and therapy [21,22]. In addition, the quality of data labels
is essential for supervised models. Acquiring high-quality data labels requires experienced
experts to annotate the data in biomedical imaging. However, the quality of the data labels
usually needs further testing. Contrast learning is self-supervised learning, which learns
knowledge from unlabeled images and does not rely on labeled data.

In this paper, we made this attempt to identify non-math students from MRIs by
using the popular deep feature learning technique [5,22]. Since the region of MFG has
been associated with mathematic learning [3], we first cropped MFGs from MRIs to feed
our deep contrastive model that is to implement robust feature learning [23]. After the
feature learning, we built an ensemble classifier that is based on the multiple layer percep-
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tion (MLP) to identify math or non-math students due to its multi-instance setting [24].
On 123 MRIs that were acquired from adolescents in the United Kingdom [3], composed of
72 math students and 51 non-math students, our method achieved an accuracy of 73.7%
for image classification and 91.8% for student classification. On the image-level analyses
of classification results, MRI slices have various difficulties, showing different impacts of
math education in the MFG. Our study proves a path to understanding education by using
brain images.

2. Materials and Methods

This study aims to identify math or non-math adolescent students by using MRI data
to understand the impact of mathematical education on brain structure in the MFG region.
To this end, we have the following study workflow: (1) acquiring MRIs from adolescent
students that includes math students and non-math students and cropping all images
into the MFG region [3]; (2) designing a classification tool by contrastive learning and
ensemble learning [23,24], (3) evaluating the classification performance followed by several
experiment analyses.

2.1. MRI Data and Preprocessing

In the United Kingdom, 16-y-old adolescents can choose to stop studying math
as part of their advanced, i.e., A-level, subjects. Towards a single dependent variable
in the study, a math group consisted of 72 students who engaged in A-level maths. A non-
math group consisted of 51 students who were not engaged in A-level maths. The used
123 MRI data were acquired at the Oxford Centre for Function MRI of the Brain (FMRIB)
on 3T Siemens MAGNETOM Prisma MRI System equipped with a 32-channel receive-
only head coil. And anatomical high-resolution T1-weighted scans were acquired using
an MPRAGE sequence consisting of 192 slices, where repetition time TR = 1900 ms,
echo time TE = 3.97 ms, and voxel size = 1× 1× 1 mm. The voxels of interest (VOI)
of size 20× 20× 20 mm were manually centered in the MFG based on the individual’s
T1-weighted images while the participant was lying down in the MR scanner [3]. Slices
of the T1-weighted MRI and the left MFG region in three different directions were shown
in Figure 1.

(a) Sagittal slice (b) Coronal slice (c) Transverse slice

Figure 1. The T1-weighted MRI and the left MFG region. Three subplots are (a) a sagittal slice from
left to right, (b) a coronal slice from top to bottom, and (c) a transverse slice from back to front,
respectively.

2.2. The Proposed Method

The proposed method includes a feature learning stage and a classifier learning stage.
Feature learning is to capture the intrinsic image representation by using the popular frame-
work of contrastive learning, which is composed of ResNets and MLP [23]. The classifier
learning stage trains an MLP for a multi-instance classification task and then ensemble
all MLP results by simply voting. The main workflow of this study is shown in Figure 2.
To make a clear statement, we here define the three tasks in our proposed framework.
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Definition 1. Feature learning aims to transfer an MRI slice into a representation vector by
employing the popular framework of contrastive learning [23], shown in Figure 2. The contrastive
learning model gives rise to the mapping F for feature learning on MRI slices.

Definition 2. Image classification aims to identify an MRI slice into the math class or the non-math
class, implemented by training an MLP model shown in Figure 2. More specifically, the proposed
method trains 20 MLPs, where MLPi is for these MRI slices with No. i (i ∈ {1, 2, · · · , 20}).

Definition 3. Student classification aims to identify a student into the math class or the non-math
class implemented by considering all 20 results of MRI image classification shown in Figure 2. More
specifically, the 20 MLPs identify the 20 MRI slices and then vote for the student label.

T: Transforms
G: MLP (2048-2048-128)
F:  ResNet50 (1-64-256-512-1024-2048)

MFG

MFG1

Contrastive 
Loss

MFG2

T1

T2

F

F

G

G

MFG1 MFG2 MFG20

MFG

F

… …

Classification 
Loss

MLP

…

… … … … … ……

Math/Non-math

Ensemble Classifier

MLP Training

Contrastive Learning

Classification

Figure 2. Our workflow. There are three steps, i.e., contrastive learning for deep features, MLP
training for base classifiers, and Classification for combining multi-instance predictions.

2.2.1. Subspace-Enhanced Contrastive Learning

Contrastive learning (CL) is a recently proposed scheme for robust feature learning and
has been already used in many studies, e.g., image classification [23], text classification [25],
and medical image segmentation [26]. CL learns the intrinsic data representation by
training a representation model on two transformed versions of a data point to reduce
the difference between the outputs. SimCLR is a popular CL framework proposed recently,
which trains a ResNet for latent features and an MLP for contrastive-loss computation [22].
Denote by x an input image patch and y the label of math or non-math. SimCLR aims to
seek the optimal solution to

arg min
G,F
L0(G(F(T1(x))), G(F(T2(x)))) (1)

where G is the MLP; F is the ResNet; x is a sample; T1 and T2 are two-time operators using
the same family of augmentation; L0 is the contrastive loss function, which is defined as

L0(zi, zj) = −log
exp(sim(zi, zj)/τ)

∑2N
k=1 1[k 6=i]exp(sim(zi, zk)/τ)

(2)

where N is the number of data points; τ denotes a temperature parameter; 1 is an indicator
function; sim(u, v) where u and v are two input vectors [23]. However, the contrastive loss
in Equation (3) fails to consider the subspace structure. That is, we in this study encouraged
zi and zj to be in the same subspace such that the learned features are discriminative.
We minimized the l1-norm of the contrastive difference
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L1(zi, zj) = ‖zi − zj‖1 (3)

where ‖z‖1 returns the maximal element in vector z. Once the maximal element was
minimized in Equation (4), the zi and the zj have the most values on the exact coordinates
and thus inhabit the same subspace. Therefore, this study used the following contrastive
loss in our workflow,

L = L0 + ρL1 (4)

where ρ is a trade-off parameter.

2.2.2. Ensemble Classifier

After the stage of feature learning, we built an ensemble model to classify the images
into math and non-math. MLP was employed to map an image feature to its label, where
the image-slice label was given following the ground-truth label of the corresponding
student. The used MLP aims to minimize

1
N

N

∑
i=1
‖H(zi)− yi)‖2

2 (5)

where N is the number of samples; H denotes the MLP; z is the learned feature for x.
However, each student has 20 image patches, leading to 20 labels. It is a multi-instance
classification task. In this study, we considered all instances have the same importance to
the student. We used the ensemble strategy to ensemble the 20 labels and voted for the label
0 or 1. The final predicted label is set to 1 if sum20

k=1li > 10 else 0, where li is the predicted
label for the i-th image instance.

2.3. Model Setting and Evaluation

The detailed setting in our workflow is as follows. In contrastive learning, the ResNet
includes the layers by order: a convolutional layer with a kernel size of 3× 3 from 1 to
64 channels, a residual module of 3 bottleneck blocks from 64 to 256 channels, a residual
module of 4 bottleneck blocks from 256 to 512 channels, a residual module of 6 bottleneck
blocks from 512 to 1024 channels, a residual module of 3 bottleneck blocks from 1024
to 2048 channels, and a final average pooling layer; the MLP for G includes two fully
connected layers (2048-2048-128). The bottleneck block is composed of three convolutional
layers with kernel sizes of 1, 3, and 1. Note that batch normalization is used following each
convolutional layer and ReLU is used as the active function. In classifier training, the MLP
has three layers where the numbers of neurons are 128, 64, and 1, respectively, and the
activity function there is Sigmoid. These parameters of the used neural network model are
the same as the original SimCLR [23] for comparisons. For our model, we set the parameter
ρ = 0.01 in Equation (5) for all experiments. Note that there is no extra balance parameter
introduced into the used ensemble classifier.

In experiments, we partitioned the data into a training set and a test set by five-fold
cross-validation. Specifically, we randomly partitioned the raw data into five subsets of
roughly equal size. Four subsets were used as the training set, based on which we learned
model parameters by 2000 iterations for contrastive learning and 1000 iterations for MLP
learning. The remaining one subset was used as the test set, on which the learned classifier
yielded 20 labels per student, and then the final result was reached by voting. The training
and testing process was repeated five times such that each subset was used exactly once for
validation. Accordingly, results are calculated on all 123 predictions.

This study evaluates the experiment results by calculating ACC, F1-score (F1), and AUC.
From the confusion matrix, we first calculated the four metrics, i.e., True Positive (TP), False
Positive (FP), False Negative (FN), and True Negative (TN). Then ACC and F1 are achieved by

ACC =
TP + FN

TP + FP + TN + FN
(6)
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Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 = 2× Precision× Recall
Precision + Recall

(9)

and AUC is defined as the area under the ROC curve that is plotted using TP and FN as
the axis [27]. Besides, the two-tailed t-test for statistic significant test are also adopted to
convince the classification result [28].

3. Results
3.1. Feature Visualization

Figure 3 visualizes the image representations for 2D image patches, where the learned
2048 features are reduced into 50-dimensionality PCA subspace and then reduced into 2D
t-SNE subspace. While implementing the t-SNE algorithm, we called the “TSNE” function
in the “sklearn” package and set the perplexity value as 30.0, the default value. There are
in total 2460 image representations, including 1440 images from math students (class 0) and
1020 images from non-math students (class 1). As is shown, the used Subspace-enhanced
Simple framework for Contrastive Learning of visual Representations (SeSimCLR) yields
more discriminative image representations than the original Simple framework for Con-
trastive Learning of visual Representations (SimCLR). We employed a one-layer perception
to classify math students or non-math students on these 2D image representations, leading
to an accuracy of 55.2% for SimCLR and 63.7% for the proposed method, respectively.

(a) SimCLR (b) Subspace Enhanced SimCLR

Figure 3. Visualization. 2D image features from SimCLR and the proposed Subspace Enhanced
SimCLR are scattered in two subplots, respectively.

3.2. Overall Evaluation

Table 1 shows the evaluation results for image classification and student classification
in accuracy (ACC), Precision, Recall, F1-score, and Area Under the Curve (AUC) of the Re-
ceiver Operating Characteristic (ROC) curve. We compared the two Contrastive learning
(CL) models, i.e., SimCLR and SeSimCLR in Table 1 , to validate the positive impact of
the subspace enhancement on feature learning. On all metrics, SeSimCLR achieves sig-
nificant improvements (p-values < 0.01) compared to SimCLR. These results show a low
performance on the image classification, but the student classification arrived at high
accuracy. This observation means that some image slices potentially suffer small impacts
of math education and are thus hard to classify. It is possible to identify non-math students
from math students using brain MRIs.
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Table 1. Five evaluation indexes were calculated on all 123 students to compare the classification per-
formance of SimCLR with SeSimCLR. Note that SeSimCLR is the used subspace-enhanced SimCLR.

Images Students

SimCLR SeSimCLR SimCLR SeSimCLR

ACC 0.667 0.737 0.870 0.918
Precision 0.693 0.788 0.806 0.972

Recall 0.609 0.626 0.542 0.619
F1 0.648 0.698 0.648 0.757

AUC – – 0.947 0.961

Figure 4 displays the ROC curves for student classifications on the 123 students by
using SimCLR and SeSimCLR. For each student, we calculated the probability of the correct
category by Nc/20, where Nc is the number of correctly classified images for the target
student. Then, using the ROCs in Figure 4, the AUCs in Table 1 were obtained. Both
methods achieve decent AUCs, while SeSimCLR gains 0.14 improvement on AUC than
SimCLR benefits from the subspace enhancement.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2
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0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

SimCLR
SeSimCLR

Figure 4. ROC curves. The ROC curves show the classification performance by the proposed
workflow with SimCLR or SeSimCLR.

3.3. Detail Evaluation

Figure 5 shows the number of students against the probability of students lacking math
studying. This histogram distribution in Figure 5 shows the classification margin between
the two categories, i.e., the math and non-math classes. Concretely, a student would be
identified to the non-math class if the student had a greater than 0.5 probability. Otherwise,
the student would be in the math class. On the one hand, from the statistical results
in Figure 5, SimCLR identifies more math students with a greater than 0.3 probability than
SeSimCLR, and meanwhile more non-math students with a less than 0.7 probability than
SeSimCLR. On the other hand, for SimCLR, 35 of 72 students are classified as math class
with a less than 0.3 probability. And 22 of 51 students are identified as a non-math class with
a greater than 0.7 probability. While, for SeSimCLR, 51 of 72 students are identified as math
students with a less than 0.3 probability. And 26 of 51 students are identified as non-math
students with a greater than 0.7 probability. Therefore, the proposed SeSimCLR has a more
considerable classification margin than SimCLR. Then the workflow with SeSimCLR yields
a better classification performance in identifying non-math students from MRIs.
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(a) Math Students (b) Non-math Students

Figure 5. Histograms of classification probabilities. The number of students counts the students with
the corresponding probability of belonging to class 1.

Figure 6 shows the image classification accuracy for each slice, where the slice ID
varies from 1 to 20. This accuracy was calculated by the rate of corrected predicted images
in all 123 images for each slice ID. As shown, there is high classification performance
on the image slices from ID 13 to ID 19, while there is low accuracy on image slices ID 1, 2,
9, and 20. Besides, SeSimCLR achieves better classification performance than SimCLR on
all slice IDs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Slice ID
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SimCLR
SeSimCLR

Figure 6. Classification accuracy on per image ID. The slice ID indicates the image id number of
the 20 slices for each student. The negative probabilities were set to plot bars.

4. Discussion and Conclusions

In this paper, we attempted to identify whether a student lacks math education by
using a machine learning model and student’s MRIs, where each student has 20 MRI
image slices. Towards student classification, the proposed workflow consists of a CL
model for feature learning, a MLP for MRI slice classification, and an ensemble voting for
student classification. To improve the performance of SimCLR [23], we proposed to add
a regularization item of subspace enhancement. That is to regularize the two representations
of a sample into the same representation space.

The experiments were conducted on 123 students’ MRIs, including 51 math students
and 72 non-math students. The commonly used metrics were employed to evaluate classifi-
cation results at the level of image slices and the level of students, respectively. The results
show that both SimCLR and SeSimCLR could yield favorable classification performance,
resulting in an accuracy of about 70% for MRI slice classification and about 90% for student
classification. Nevertheless, compared to SimCLR, SeSimCLR gains 7% and 5% improve-
ments on MRI slice classification and student classification, respectively. Furthermore,
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the same conclusions could be reached regarding Precision, Recall, F1, and AUC. Hence,
SeSimCLR could benefit from the strategy of subspace enhancement and achieve higher
classification performance.

To further investigate the improvement from the use of SeSimCLR, we trained a classi-
cal CNN model [29] and the popular Residual Network (ResNet) model [30] on the raw
3D MRIs of size 20× 20× 20. To gain insight into the gains from the ensemble strategy,
we obtained the features from SeSimCLR. We then concatenated the 20 feature vectors, train-
ing the CNN and the ResNet on the jointed features. With the same experiment settings,
the student classification results by the four methods are listed in Table 2. From the results
in Table 2, the classification performance benefits greatly from our workflow with SeSim-
CLR by comparing SeSimCLR with other methods. The ensemble strategy contributes
significant improvements by comparing SeSimCLR with CNN(joint) and ResNet(joint).

Table 2. Classification results with the classical CNN model and the popular ResNet model trained
on the 3D raw MRIs and the jointed features. All results were calculated on all 123 students.

Methods
Student Classification

ACC AUC

SeSimCLR 0.918 0.961
CNN (3D) 0.772 0.857

ResNet (3D) 0.824 0.891
CNN (joint) 0.809 0.887

ResNet (joint) 0.849 0.923

To further investigate the sensitivity of the balance parameter, we conducted our
experiments by varying ρ ∈ {0.0, 0.01, 0.02, 01, 0.3, 0.5}. Figure 7 shows student classifica-
tion accuracy against the parameter ρ in Equation (4). The results show that SeSimCLR
achieves a relatively high accuracy (ACC) at nearby 0.01. The performance of SeSimCLR is
consistently outperforming SimCLR when ρ lies in the range from 0 to 0.5. Hence, we set
ρ = 0.01 through all experiments.
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Figure 7. Accuracy against ρ. The classification results in terms of accuracy for various ρ.

From Figures 5 and 6, two observations are worthy of mention. (1) The MRI slice
classification has low performance due to the weak supervision from student labels. Still,
the student classification is then successful by considering these classification results on
20 MRI slices per student. This observation means the ensemble classifier could lead
to a better performance based on these weak base classifiers [24]. (2) The image slices
have different classification accuracy, where several slices are easy in image classification.
The observations potentially mean that the image slices of ID 13–19 were more impacted by
math education. Besides, the subspace enhancement is effective for self-supervised deep
feature learning in contrastive models.



Brain Sci. 2022, 12, 908 10 of 12

Studies have shown that mathematics education is associated with IPS and MFG
regions [3]. In our previous work [31], we proposed MiCL to study the influence of the in-
traparietal Sulcus (IPS) region on mathematics education. This work analyzes how the MFG
area affects students’ mathematics education. The differences between the two methods
are as follows. (1) In the MiCL method, we performed Non-math student prediction only
on the level of students. The SeSimCLR method performs Non-math student prediction
at both the student and image levels. (2) In the MiCL method, each student corresponds
to a bag. There are 20 instances in a bag (i.e., 20 image slices corresponding to a student).
Only the bag’s label is used to predict Non-math students without considering the label
of each instance. In the SeSimCLR method, we use image slices to train 20 classification
models. And an ensemble classifier is realized via voting for non-math student prediction.
In general, the SeSimCLR method improves on the shortcomings of the MiCL method
in non-math student prediction.

Some limitations of the proposed model and our study have not been reached. (i) In
addition to the MFG region, other brain regions impact mathematics education. However,
this study only uses the image data of the MFG region to identify non-math students.
(ii) The pattern structure presented by the brain images can be explained by changes
in the related molecules, so this study lacks such association analysis.

The future works would include: (1) integrating multi-region of the brain image data
and employing the biomolecular data to reveal the internal mechanism of brain structure
patterns that affect mathematics education. (2) learning the weight for each slice to improve
the classification performance, since the image slices have various importance; (3) probing
the open problem in deep-model parameter selection; (4) selecting the significant features by
the promising DeepFeature model recently proposed by Alok et al. [32]; (5) integrating more
brain region, like the intraparietal sulcus (IPS) [3]. In addition, the 3D deep classification
model [21], and more data validation are also our future considerations.

Author Contributions: Conceptualization, S.L. and Y.Z.; Data curation, S.L.; Formal analysis, S.L. and
J.P.; Funding acquisition, Y.Z. and X.S.; Investigation, S.L.; Methodology, S.L., Y.Z. and T.W.; Software,
S.L. and Y.Z.; Supervision, Y.Z. and X.S.; Validation, T.W.; Visualization, S.L.; Writing—original draft,
S.L.; Writing—review & editing, Y.Z. and J.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This study was funded in part by the National Natural Science Foundation of China (61802313,
U1811262, 61772426), the Key Research and Development Program of China (2020AAA0108500), the Ref-
ormation Research on Education and Teaching at Northwestern Polytechnical University (2021JGY31),
the Higher Research Funding on International Talent cultivation at Northwestern Polytechnical University
(GJGZZD202202).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: See https://github.com/ypzhaang/clr for the used codes and data
(accessed on 24 June 2022).

Acknowledgments: All authors thank the editors and the reviewers for their helpful comments.

Conflicts of Interest: The authors declare that they have no competing interests.

References
1. Psacharopoulos, G.; Woodhall, M. Education for Development; Oxford University Press: Oxford, UK, 1993.
2. Beddington, J.; Cooper, C.L.; Field, J.; Goswami, U.; Huppert, F.A.; Jenkins, R.; Jones, H.S.; Kirkwood, T.B.; Sahakian, B.J.; Thomas,

S.M. The mental wealth of nations. Nature 2008, 455, 1057–1060. [CrossRef] [PubMed]
3. Zacharopoulos, G.; Sella, F.; Kadosh, R.C. The impact of a lack of mathematical education on brain development and future

attainment. Proc. Natl. Acad. Sci. USA 2021, 118, e2013155118. [CrossRef] [PubMed]
4. Zhang, Y.; Dai, H.; Yun, Y.; Liu, S.; Lan, A.; Shang, X. Meta-knowledge dictionary learning on 1-bit response data for student

knowledge diagnosis. Knowl.-Based Syst. 2020, 205, 106290. [CrossRef]

https://github.com/ypzhaang/clr
http://doi.org/10.1038/4551057a
http://www.ncbi.nlm.nih.gov/pubmed/18948946
http://dx.doi.org/10.1073/pnas.2013155118
http://www.ncbi.nlm.nih.gov/pubmed/34099561
http://dx.doi.org/10.1016/j.knosys.2020.106290


Brain Sci. 2022, 12, 908 11 of 12

5. Zhang, Y.; An, R.; Cui, J.; Shang, X. Undergraduate grade prediction in Chinese higher education using convolutional neural
networks. In Proceedings of the LAK21: 11th International Learning Analytics and Knowledge Conference, Irvine, CA, USA,
12–16 April 2021; pp. 462–468.

6. Mediouni, M.; Schlatterer, D.R.; Madry, H.; Cucchiarini, M.; Rai, B. A review of translational medicine. The future paradigm:
How can we connect the orthopedic dots better? Curr. Med Res. Opin. 2018, 34, 1217–1229. [CrossRef]

7. Liu, S.; Zhang, Y.; Shang, X.; Zhang, Z. ProTICS reveals prognostic impact of tumor infiltrating immune cells in different
molecular subtypes. Briefings Bioinform. 2021, 22, bbab164. [CrossRef] [PubMed]

8. Peng, J.; Xue, H.; Wei, Z.; Tuncali, I.; Hao, J.; Shang, X. Integrating multi-network topology for gene function prediction using
deep neural networks. Briefings Bioinform. 2021, 22, 2096–2105. [CrossRef]

9. Butterworth, B.; Kovas, Y. Understanding neurocognitive developmental disorders can improve education for all. Science 2013,
340, 300–305. [CrossRef]

10. Moeller, K.; Willmes, K.; Klein, E. A review on functional and structural brain connectivity in numerical cognition. Front. Hum.
Neurosci. 2015, 9, 227. [CrossRef]

11. Brookman-Byrne, A.; Dumontheil, I. Brain and cognitive development during adolescence: Implications for science and mathematics
education. In The ‘BrainCanDo’ Handbook of Teaching and Learning; David Fulton Publishers: London, UK, 2020; pp. 205–221.

12. Zhang, Y.; Dai, H.; Yun, Y.; Shang, X. Student Knowledge Diagnosis on Response Data via the Model of Sparse Factor Learning.
In Proceedings of the 12th International Conference on Educational Data Mining (EDM 2019), Montreal, QC, Canada, 2–5 July 2019.

13. Lent, R.W.; Lopez, F.G.; Bieschke, K.J. Predicting mathematics-related choice and success behaviors: Test of an expanded social
cognitive model. J. Vocat. Behav. 1993, 42, 223–236. [CrossRef]

14. Steffe, L.P. Psychology in Mathematics Education: Past, Present, and Future. In North American Chapter of the International Group
for the Psychology of Mathematics Education; Hoosier Association of Mathematics Teacher Educators: Indianapolis, IN, USA, 2017.

15. Zhang, Y.; Liu, S. Integrated Sparse Coding with Graph Learning for Robust Data Representation. IEEE Access 2020, 8, 161245–161260.
[CrossRef]

16. Yun, Y.; Dai, H.; Cao, R.; Zhang, Y.; Shang, X. Self-paced Graph Memory Network for Student GPA Prediction and Abnormal
Student Detection. In International Conference on Artificial Intelligence in Education; Springer: Berlin/Heidelberg, Germany, 2021;
pp. 417–421.

17. Ayuso, N.; Fillola, E.; Masiá, B.; Murillo, A.C.; Trillo-Lado, R.; Baldassarri, S.; Cerezo, E.; Ruberte, L.; Mariscal, M.D.; Villarroya-
Gaudó, M. Gender Gap in STEM: A Cross-Sectional Study of Primary School Students’ Self-Perception and Test Anxiety
in Mathematics. IEEE Trans. Educ. 2020, 64, 40–49. [CrossRef]

18. Arsalidou, M.; Taylor, M.J. Is 2 + 2= 4? Meta-analyses of brain areas needed for numbers and calculations. Neuroimage 2011,
54, 2382–2393. [CrossRef] [PubMed]

19. Sigman, M.; Peña, M.; Goldin, A.P.; Ribeiro, S. Neuroscience and education: Prime time to build the bridge. Nat. Neurosci. 2014,
17, 497–502. [CrossRef] [PubMed]

20. Arsalidou, M.; Pawliw-Levac, M.; Sadeghi, M.; Pascual-Leone, J. Brain areas associated with numbers and calculations in children:
Meta-analyses of fMRI studies. Dev. Cogn. Neurosci. 2018, 30, 239–250. [CrossRef]

21. Zhang, Y.; He, X.; Tian, Z.; Jeong, J.J.; Lei, Y.; Wang, T.; Zeng, Q.; Jani, A.B.; Curran, W.J.; Patel, P.; et al. Multi-needle detection
in 3D ultrasound images using unsupervised order-graph regularized sparse dictionary learning. IEEE Trans. Med. Imaging 2020,
39, 2302–2315. [CrossRef] [PubMed]

22. Zhang, Y.; Lei, Y.; Lin, M.; Curran, W.; Liu, T.; Yang, X. Region of interest discovery using discriminative concrete autoencoder for
COVID-19 lung CT images. In Medical Imaging 2021: Computer-Aided Diagnosis; International Society for Optics and Photonics:
Bellingham, WA, USA, 2021; Volume 11597, p. 115970U.

23. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations.
In Proceedings of the International conference on machine learning, PMLR, Virtual Event, 13–18 July 2020; pp. 1597–1607.

24. Lee, K.; Laskin, M.; Srinivas, A.; Abbeel, P. Sunrise: A simple unified framework for ensemble learning in deep reinforcement learning.
In Proceedings of the International Conference on Machine Learning, PMLR, Virtual Event, 18–24 July 2021; pp. 6131–6141.

25. Gao, T.; Yao, X.; Chen, D. SimCSE: Simple Contrastive Learning of Sentence Embeddings. arXiv 2021, arXiv:2104.08821.
26. Chaitanya, K.; Erdil, E.; Karani, N.; Konukoglu, E. Contrastive learning of global and local features for medical image segmentation

with limited annotations. arXiv 2020, arXiv:2006.10511.
27. Huang, J.; Ling, C.X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17, 299–310.

[CrossRef]
28. Zhang, Y.; Xiang, M.; Yang, B. Hierarchical sparse coding from a Bayesian perspective. Neurocomputing 2018, 272, 279–293.

[CrossRef]
29. Zhang, Y.; An, R.; Liu, S.; Cui, J.; Shang, X. Predicting and Understanding Student Learning Performance Using Multi-source

Sparse Attention Convolutional Neural Networks. IEEE Trans. Big Data 2021. [CrossRef]
30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

http://dx.doi.org/10.1080/03007995.2017.1385450
http://dx.doi.org/10.1093/bib/bbab164
http://www.ncbi.nlm.nih.gov/pubmed/33963834
http://dx.doi.org/10.1093/bib/bbaa036
http://dx.doi.org/10.1126/science.1231022
http://dx.doi.org/10.3389/fnhum.2015.00227
http://dx.doi.org/10.1006/jvbe.1993.1016
http://dx.doi.org/10.1109/ACCESS.2020.3021081
http://dx.doi.org/10.1109/TE.2020.3004075
http://dx.doi.org/10.1016/j.neuroimage.2010.10.009
http://www.ncbi.nlm.nih.gov/pubmed/20946958
http://dx.doi.org/10.1038/nn.3672
http://www.ncbi.nlm.nih.gov/pubmed/24671066
http://dx.doi.org/10.1016/j.dcn.2017.08.002
http://dx.doi.org/10.1109/TMI.2020.2968770
http://www.ncbi.nlm.nih.gov/pubmed/31985414
http://dx.doi.org/10.1109/TKDE.2005.50
http://dx.doi.org/10.1016/j.neucom.2017.06.076
http://dx.doi.org/10.1109/TBDATA.2021.3125204


Brain Sci. 2022, 12, 908 12 of 12

31. Zhang, Y.; Liu, S.; Shang, X. An MRI Study on Effects of Math Education on Brain Development Using Multi-Instance Contrastive
Learning. Front. Psychol. 2021, 12, 765754. [CrossRef] [PubMed]

32. Sharma, A.; Lysenko, A.; Boroevich, K.A.; Vans, E.; Tsunoda, T. DeepFeature: Feature selection in nonimage data using
convolutional neural network. Briefings Bioinform. 2021, 22, bbab297. [CrossRef] [PubMed]

http://dx.doi.org/10.3389/fpsyg.2021.765754
http://www.ncbi.nlm.nih.gov/pubmed/34899510
http://dx.doi.org/10.1093/bib/bbab297
http://www.ncbi.nlm.nih.gov/pubmed/34368836

	Introduction
	Materials and Methods
	MRI Data and Preprocessing
	The Proposed Method
	Subspace-Enhanced Contrastive Learning
	Ensemble Classifier

	Model Setting and Evaluation

	Results
	Feature Visualization
	Overall Evaluation
	Detail Evaluation

	Discussion and Conclusions
	References

