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Abstract: Kahweol is a diterpene present in coffee. Until now, several studies have shown that
kahweol has anti-inflammatory and anti-angiogenic functions. Due to the limited research available
about skin protection, this study aims to discern the potential abilities of kahweol and the possible
regulation targets. First, the cytotoxicity of kahweol was checked by 3-4-5-dimethylthiazol-2-yl)-
2-5-diphenyltetrazolium bromide assay, while 2,20-azino-bis (3ethylbenzothiazoline-6-sulphonic
acid) diammonium salt and 1-diphenyl-2-picryl-hydrazyl were used to examine the radical scav-
enging ability. Polymerase chain reaction analysis was performed to explore the proper time
points and doses affecting skin hydration and barrier-related genes. Luciferase assay and West-
ern blotting were used to explore the possible transcription factors. Finally, fludarabine (a STAT1
inhibitor) was chosen to discern the relationship between skin-moisturizing factors and STAT1.
We found that HaCaT cells experienced no toxicity from kahweol, and kahweol displayed moderate
radical scavenging ability. Moreover, kahweol increased the outcome of HAS1, HAS2, occludin,
and TGM-1 from six hours in a dose-dependent manner as well as the activation of STAT1 from
six hours. Additionally, kahweol recovered the suppression of HAS2, STAT1-mediated luciferase ac-
tivity, and HA secretion, which was all downregulated by fludarabine. In this study, we demonstrated
that kahweol promotes skin-moisturizing activities by upregulating STAT1.

Keywords: kahweol; moisturizing factors; skin; STAT1

1. Introduction

Skin is a basic and complex barrier as the first protective wall of the human body,
which includes tight junctions and the stratum corneum [1,2]. There are two ways to
prevent water loss from the stratum corneum: one is to ensure an abundant water level,
such as by using hyaluronic acid (HA), also known as hyaluronan, and the other is to
form strong cross-links, such as by using transglutaminase 1 (TGM-1), occludin, and claudin
between the structural proteins. HA synthase (HAS) is responsible for HA synthesis in
skin moisturizing. Three types of HAS (HAS1, HAS2, and HAS3) control three different
lengths of HA [3]. Among them, the expression level of HAS2 is approximately 900 times
higher than those of other HAS isoforms, suggesting that HAS2 plays a significant role
in hyaluronan secretion [4]. The obvious downregulation of HAS1 and HAS3 results
in skin damage, such as juvenile hyaline fibromatosis [5]. Besides these, hydrolysis of
hyaluronan is also a major way to weaken hyaluronan viscosity. There are five different
hyaluronidases (HYALs) in humans: HYAL-1, -2, -3, -4, and -5. Although hyaluronidases
are applied in anesthetics for medical purposes [6], they are harmful to the skin when
applied in excess. There is a positive correlation between HYAL and HA: the lower HYAL
concentration, the higher induction of HAS and HA [7]. TGM-1 is also a very important
protein with structural function in skin cells, and it plays a key role in preventing water loss.

Int. J. Mol. Sci. 2021, 22, 8864. https://doi.org/10.3390/ijms22168864 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-9627-8012
https://orcid.org/0000-0001-8141-9927
https://doi.org/10.3390/ijms22168864
https://doi.org/10.3390/ijms22168864
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22168864
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22168864?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 8864 2 of 13

The cornified cell envelope is a wall protecting the body from the outside environment.
Mutation of the TGM-1 gene leads to a lack of TGM-1 enzyme, which results in a type of
congenital ichthyosis known as mellar ichthyosis [8,9].

Nowadays, coffee is one of the most commonly consumed drinks around the world.
Coffee’s most famous function is its anti-fatigue effect; additionally, however, other research
has documented an inverse association between coffee consumption and Parkinson’s dis-
ease morbidity [10] as well as the incidence of Alzheimer’s disease [11]. With moderate
coffee consumption, the possibility of coronary heart disease might also be reduced [12]. In
fact, various compounds, like caffeine, antioxidants, and diterpenes, are naturally present
in coffee. Cafestol and kahweol are the majority diterpenes found in coffee oil, and there is
~4 mg of diterpenes present in unfiltered coffee [13]. Cafestol and kahweol are sensitive to
acids, heat, and light. Meanwhile, kahweol is highly unstable in purified form. Previously,
mixtures of both have been studied traditionally. Nowadays, using advanced purification
and extraction technology, kahweol alone demonstrated anti-angiogenic properties [14],
inhibition of osteoclast differentiation [15], amelioration of liver inflammation [16], suppres-
sion of macrophage-mediated inflammation [17], increase of anti-oxidative properties [18],
stimulation of autophagy [18], and the induction of apoptosis in human lung adeno-
carcinoma [19]. However, few studies about its role in skin protection, especially skin
moisturization, exist. The present study therefore aims to explore the possible functions
of kahweol in skin protection, especially in preventing water loss from the skin stratum
corneum, as well as its putative regulation mechanisms (see Figure 2A for schematic
study design).

2. Results
2.1. Skin-Protective Effect of Kahweol

Kahweol, derived from Coffea arabica beans, is a diterpenoid molecule. It is relevant
to cafestol on a structural level, as the structure of the latter lacks an extra double bond
(Figure 1).
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find the antioxidant effects of kahweol, 2,20-azino-bis (3ethylbenzothiazoline-6-sulphonic 
acid) diammonium salt (ABTS) and 1-diphenyl-2-picryl-hydrazyl (DPPH) assays were 
performed. In this experiment, ascorbic acid (AA) was chosen to be the positive control 
given its high capacity for radical scavenging [20]. In the DPPH assay, kahweol showed 
DPPH scavenging activity from 12.5 μM, or ~10%, while AA showed a greater ability to 
clear DPPH of almost 50% (Figure 2C). In the ABTS assay, ABTS was cleared by kahweol 
in a dose-dependent manner (Figure 2D). Especially at 200 μM, the scavenging influence 
was largely the same as that of the AA group. Additionally, the half-maximal inhibitory 

Figure 1. The structure of kahweol.

The cytotoxicity of kahweol was evaluated by setting four different doses (1.5625,
3.125, 6.25, and 12.5 µM) using the 3-4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium
bromide (MTT) assay. Until 12.5 µM, cell viabilities were ~110% in HaCaT cells, which
demonstrated that kahweol showed no harm to human skin cells (Figure 2B). In order to
find the antioxidant effects of kahweol, 2,20-azino-bis (3ethylbenzothiazoline-6-sulphonic
acid) diammonium salt (ABTS) and 1-diphenyl-2-picryl-hydrazyl (DPPH) assays were
performed. In this experiment, ascorbic acid (AA) was chosen to be the positive control
given its high capacity for radical scavenging [20]. In the DPPH assay, kahweol showed
DPPH scavenging activity from 12.5 µM, or ~10%, while AA showed a greater ability to
clear DPPH of almost 50% (Figure 2C). In the ABTS assay, ABTS was cleared by kahweol
in a dose-dependent manner (Figure 2D). Especially at 200 µM, the scavenging influence
was largely the same as that of the AA group. Additionally, the half-maximal inhibitory
concentration (IC50) values were > 200 µM and 84.45 µM in the DPPH and ABTS assay,
respectively. These data suggest the possible ability of kahweol in clearing radicals. To
explore the skin-protective abilities of kahweol in HaCaT cells, several genes in charge
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of moisturizing conditions, like skin hydration efficacy relevant gene (HAS1 and HAS2),
skin barrier-associated molecules (FLG, TGM-1, claudin, involucrin, and occludin), and skin
hyaluronan-degrading hyaluronidase 4 (HYAL-4), were measured at the RNA level. Retinol,
also known as vitamin A1, was chosen to be a positive control as retinol leads to the high
expression of HA. HA is the key molecule linked to wrinkle formation reduction and skin
moisturization [21]. First, we chose 12.5 µM to test time points. As Figure 2E,G shows, the
expression levels of HAS1, HAS2, and TGM-1 were strongly increased after treatment with
kahweol for six hours, meaning that their expression levels were induced to a peak within
six hours. The outcome of HYAL-4 during kahweol-treated conditions was lower than
normal groups only at 6 h. Consequently, different doses of kahweol were then examined
under six-hour induction conditions. As shown in Figure 2F,H, the expression levels of
HAS1, HAS2, occludin, and TGM-1 in the retinol group were dramatically higher than
those in the normal group. What is more, kahweol dose-dependently upregulated the
expression levels of HAS1, HAS2, occludin, and TGM-1, especially at 12.5 µM. As HYAL-4,
which in charge of degrading hyaluronan, was inhibited by kahweol in dose-dependent
manner (Figure 2F,H), the levels of secreted HA into media and its cellular contents were
also examined. Figure 2I,J showed that kahweol is able to promote HA production both in
secretion and contents.
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Figure 2. Skin-protective effects of kahweol. (A) Schematic design of this study. (B) Viability of HaCaT cells and HEK293T
cells treated with different concentrations of kahweol was evaluated by MTT assay. (C,D) The radical-scavenging effects
of kahweol (12.5, 25, 50, 100, and 200 µM) and AA (500 µM) were assessed by (C) DPPH assay and (D) ABTS assay.
(E,F) After treatment of kahweol with indicated concentrations, HaCaT cells were collected at different time points. Then,
the expression levels of HAS1, HAS2, TGM-1, occludin, claudin, involucrin and HYAL-4 were measured by RT-PCR. (G,H)
The relative intensities of mRNA levels of HAS1, HAS2, TGM-1, occludin, claudin, involucrin and HYAL-4 were measured by
ImageJ. (I,J) After treatment with 12.5 µM of kahweol for 6 h in HaCaT cells, the (I) secretion and (J) contents of HA were
measured by HA assay. * p < 0.05 and ** p < 0.01 compared to normal group.
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2.2. Effect of Kahweol on Transcription Factor Regulation

HAS1 and HAS2 are known to be regulated by several signaling pathways, such
as AP-1, NF-κB, CREB, STAT3, and STAT1 [22]. Therefore, five transcriptional factor-
mediated luciferase assays were performed to explore the potential pathways regulated
by kahweol treated for 12 h. Interestingly, retinol upregulated all five transcriptional
factors (AP-1, NF-κB, CREB, STAT3, and STAT1) (Figure 3A–E). However, kahweol failed to
increase four transcriptional factor-mediated luciferase activities excepting STAT1 (Figure
3E). Kahweol increased STAT1 luciferase activity in a dose-dependent manner, particularly
in the 12.5 µM group. Thus, we directly checked the expression of STAT1 at the protein
level with kahweol treatment at different time points. Similarly, among four different
time points, the expression of p-STAT1 was clearly increased only at six hours, which
suggested that kahweol modulated STAT1 in an early time frame (Figure 3F). To further
confirm whether STAT1 was the target influenced by kahweol, a specific inhibitor of STAT1,
fludarabine, was used to conduct a luciferase assay. Fludarabine, a nucleoside analog,
achieves inhibition of STAT1 activation induced by cytokines as well as STAT1-dependent
gene transcription [23]. After checking MTT, fludarabine showed no cytotoxicity in both
HaCaT and HEK293T cell lines up to 48 h (Figure 3G). As we expected, fludarabine
largely blocked STAT1 activity, but the suppression caused by fludarabine was reversed
by kahweol (Figure 3H), which supported the previous Western blot results. To explore
the regulation mechanism of kahweol between moisturizing factors (HAS1, HAS2, and
TGM-1) and STAT1, we also used fludarabine to conduct polymerase chain reaction (PCR).
As seen in Figure 3I,J, the outcome of HAS2 was higher in the kahweol group, while it
was strongly blocked due to fludarabine administration. Obviously, with the presence of
fludarabine, the HYAL-4 expression level was almost two-fold higher than that in normal
group, while this increase was significantly blocked due to kahweol pretreatment. After
pretreatment with kahweol for 30 min, the expression level of HAS2 and occludin recovered,
despite the presence of fludarabine, which suggested that kahweol regulates HAS2 and
occludin through STAT1. Furthermore, the secretion of HA became less than that in normal
group after treating fludarabine, and kahweol upregulated this decrease after 6 h treatment
(Figure 3K). However, HA contents showed no difference between fludarabine group
and kahweol/fludarabine-co-treatment group (Figure 3L). These data suggested kahweol
played a more significant role in promoting HA secretion instead of increase of its contents
in the cells through STAT1 regulation.
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3. Discussion

Skin aging is a biological process, including both intrinsic and extrinsic aging. Though
these two types of aging are independent processes, there are many similar molecular
mechanisms between them [24]. First, reactive oxygen species (ROS) are responsible for
both extrinsic or intrinsic skin aging [25]. Therefore, we checked on the radical scavenging
ability of kahweol by using ABTS and DPPH assays. Ultimately, the radical scavenging
ability of kahweol in DPPH assay was weaker than that of AA, while this was the opposite
in the ABTS assay. Figure 2C,D presents IC50 values of1141 µM and 84.45 µM in DPPH
and ABTS assays, respectively.

Second, a lack of water in the skin plays a major role in skin aging. The characteristic
molecule in this context is HA, synthesized by HAS. HA is the majority component of skin
layer, existing in the extracellular matrix. HA is associated with a variety of functions, like
hydration, joint lubrication, and the ability of filling space [26]. Thus, we examined three
different types of HAS; however, only HAS1 and HAS2 were induced by kahweol. This
compound most significantly affected gene expression early on (six hours) relative to at
other time points (Figure 2E,G), suggesting its impact is quick to occur but not persistent.
In fact, the dynamic turnover rate of HA is short, and the half-life is one day within the
skin [27]. Under ultraviolet B irradiation conditions, the expression peaks of HAS2 occurred
at eight and 36 h [28]. Under six-hour treatment conditions, the proper doses of kahweol
were checked by PCR as well. Using 12.5 µM of kahweol, the expression of skin hydration
and barrier genes was largely induced, especially HAS1 and HAS2, whose expression
was almost similar to that in the retinol group (Figure 2E,G). Correspondingly, HYAL-4
expression was blocked as well (Figure 2E,F). Moreover, the production of HA was also
higher when kahweol was treated, regardless of secretion or contents (Figure 2I,J). It was
reported that skin dryness was largely decreased in dorsal skin through HA oral injection
to hairless mice under UV conditions [29]. In clinical study, skin hydration and elasticity
as well as stratum corneum water content was dramatically increased after hyaluronan
solution oral administration [30,31]. With stronger pursuit of beauty, HA is largely used in
surgical techniques to prevent facial aging, especially in lower areas of the face [32].
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HAS is regulated by various signaling pathways. Lee et al. reported that HA pro-
duction is increased via the EGFR and AMPK signaling pathways [33]. Additionally,
skin barrier function and hydration are affected by Src/AKT/NF-κB and MAPK signal-
ing [34,35]. The proximal promoter of HAS2 has transcription factor-binding sites for
the JAK2/STAT3 pathway [36]. Rauhala et al. found that the active purinergic P2Y2
receptor largely promotes HAS2 expression and several signaling pathways are associated
with HAS2 regulation, such as Ca2+/calmodulin-dependent protein kinase II (CaMKII),
calcium-activated PKC, calcium response element-binding protein (CREB), and MAP ki-
nase cascades [28]. Saavalainen et al. observed that the novel STAT-RE played a role in
activating EGFR on the HAS2 promoter [37]. Monslow et al. identified that Sp1 and Sp3
control constitutive HAS2 transcription [38]. After analyzing several transcriptional factors
by luciferase reporter assay, we finally found that STAT1 might be the target of kahweol
(Figure 3E). Subsequently, Western blot analysis (Figure 3F) confirmed that kahweol had an
influence on STAT1 upregulation at six hours as well. What is more, we used fludarabine to
verify that the suppression of STAT1 luciferase activity caused by this drug was recovered
after treatment with kahweol (Figure 3H). These three experiments, in fact, support a
possibility that STAT1 was the target during the modulation of kahweol. Additionally,
we also demonstrated that the upregulation of HAS2 and occludin mRNA levels, and HA
secretion as well as downregulation of HYAL-4 in the presence of kahweol, were restored
by fludarabine, implying that STAT1 might play a central role in these events (Figure 3H–L).
Interestingly, as an anti-inflammatory component, kahweol triggered the suppression of
nitric oxide and prostaglandin E2 through the NF-κB/STAT-1 pathway [17]. This fact
is consistent with our findings. What is more, kahweol showed inhibition of the tumor
necrosis factor α-induced JAK2–PI3K pathway [39]. As we know, JAK2 is an upstream
kinase of STAT1 [40]. Many cytokines, including interleukin (IL)-2, IL3, IL-12, and IL-22,
finish signal transduction through the JAK–STAT axis [41]. These studies showed that
kahweol may have a possible effect on JAK2 as well. However, whether JAK2 is involved
in kahweol regulation requires further exploration.

4. Materials and Methods
4.1. Materials and Drug Preparation

Kahweol was purchased from Santa Cruz Biotechnology, Inc. (Dallas, TX, USA). Kah-
weol powder was dissolved with dimethyl sulfoxide to create a stock solution (100 mM).
The HEK293T and HaCaT cell lines were purchased from the American Type Culture Col-
lection (Manassas, VA, USA). Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine
serum (FBS), phosphate-buffered saline (PBS), reduced serum medium (Opti-MEM), and
TRIzol reagent were acquired from Gibco (Grand Island, NY, USA). MTT, retinol, dimethyl
sulfoxide, ABTS, polyethyleneimine, DPPH, and Borax were acquired from Sigma-Aldrich
Corporation (St. Louis, MO, USA). Fludarabine was purchased from Selleckchem (Houston,
TX, USA). Carbazole, H2SO4, and ethanol were obtained from DAEJUNG (Seoul, Korea).
Antibodies specific for β-actin, rabbit immunoglobulin G, mouse immunoglobulin G, and
the phosphorylated and total forms of STAT1 were acquired from Cell Signaling Technology
(Danvers, MA, USA).

4.2. Cell Culture

HaCaT cells (a human keratinocyte cell line) were cultured in DMEM combined
with 1% antibiotics (penicillin and streptomycin) and 10% FBS. HEK293T cells (a human
embryonic kidney cell line) were cultured in DMEM combined with 1% antibiotics and 5%
FBS. All cell lines were cultured at 37 ◦C in a 5% CO2 incubator.

4.3. Cell Viability Assay

To evaluate the cytotoxicity of kahweol and fludarabine, HaCaT and HEK293T cells
were seeded into 96-well plates at 2 × 104 cells/well and 6 × 104 cells/well, respectively,



Int. J. Mol. Sci. 2021, 22, 8864 9 of 13

using corresponding culture medium with different doses of kahweol or fludarabine. Cell
viability was tested with the MTT assay.

4.4. DPPH Decolorimetric Assay

To determine the oxidant scavenging ability of kahweol, a DPPH decolorimetric assay
was performed as previously reported [42]. The DPPH scavenging activity was calculated
as a percentage using the following Equation (1):

DPPH scavenging effect (%) = (A0 − A1)/A0 × 100 (1)

where A0 is the absorbance of DPPH alone and A1 is the absorbance of the sample (kahweol
or AA).

4.5. ABTS Assay

To determine the oxidant scavenging ability of kahweol, an ABTS scavenging assay
was performed as previously reported [42]. The ABTS scavenging activity was calculated
as a percentage using the following Equation (2):

ABTS scavenging effect (%) = (A0 − A1)/A0 × 100 (2)

where A0 is the absorbance of ABTS alone and A1 is the absorbance of the sample (kahweol
or AA).

4.6. Luciferase Reporter Gene Assay

HEK293T cells were plated in 1.25 × 105 cells/well density in 24-well plates. Then,
plasmids expressing β-galactosidase, AP-1-, NF-κB-, CREB-, STAT3-, and STAT1-luciferase
and polyethyleneimine were transfected into cells for 36 h. Then, cells were treated with
3.125, 6.25, and 12.5 µM of kahweol or 10 µg/mL of retinol for a further 12 h. The activity
of luciferase expressed was determined by a luminometer, as reported previously [43].

4.7. Evaluation of Messenger RNA Levels through Reverse Transcriptase PCR

To analyze messenger RNA expression, HaCaT cells were plated in six-well plates with
a 2.0 × 105 cells/mL cell density. HaCaT cells were treated with 3.125, 6.25, and 12.5 µM of
kahweol for 6, 9, 12, and 24 h. After discarding the supernatant, total RNA was isolated
with TRIzol reagent. The PCR reaction was conducted under the following conditions:
five minutes at 98 ◦C for preliminary denaturation, 15 s at 98 ◦C for denaturation, 15 s
at 56 ◦C to 61 ◦C for annealing, one minute at 72 ◦C for extension, and five minutes at
72 ◦C for the last extension, as reported previously [44]. The lists for the primer sequences,
annealing temperatures, and running cycles may be found in Tables 1 and 2, respectively.

Table 1. Sequences of PCR primers used in this study.

Target Direction Sequences (5′ to 3′)

HAS1 Forward
Reverse

CCACCCAGTACAGCGTCAAC
CATGGTGCTTCTGTCGCTCT

HAS2 Forward
Reverse

TGACAGGCATCTCACGAACC
TGGCGGGAAGTAAACTCGAC

TGM-1 Forward
Reverse

GAAATGCGGCAGATGACGAC
AACTCCCCAGCGTCTGATTG

Claudin Forward
Reverse

TTGGGCTTCATTCTCGCCTT
GAGGATGCCAACCACCATCA

Occludin Forward
Reverse

GGAGTGAACCCAACTGCTCA
CCTGGGGATCCACAACACAG

Involucrin Forward
Reverse

TCCTCCTCCAGTCAATACCCA
TGCTCAGGCAGTCCCTTTAC

HYAL-4 Forward
Reverse

TGAGCTCTCTTGGCTCTGGA
AGGCAGCACTTTCTCCTATGG

GAPDH Forward
Reverse

GGTCACCAGGGCTGCTTTTA
GATGGCATGGACTGTGGTCA
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Table 2. Annealing temperatures and running cycles adopted in this study.

Name Annealing Temperature (◦C) Running Cycle

HAS1, TGM-1 56 38
HAS2 61 38

occludin, claudin, involucrin 56 35
HYAL-4 58 34
GAPDH 55 34

4.8. Total Cell Lysate Preparation

HaCaT cells were plated onto a 35 mm culture plate at 0.4 × 105 cells/mL using fresh
complete culture medium. Cells were treated with 12.5 µM of kahweol in different time
points. Cells were collected by cold PBS. After adding lysis buffer, cells were incubated
on ice for 15 min. Then, the mixture was spun down at 12,000 rpm for five minutes to
obtain supernatant.

4.9. Immunoblotting

To prepare the loading sample, the absorbance of protein was detected at 570 nm using
the spectrophotometer. Every loading sample contained 40 µg of proteins. Immunoblotting
was performed as described previously [45,46].

4.10. Hyaluronan (HA) Quantification

To determine HA secretion, supernatant media was filtered by 0.2 µM syringe filter.
To detect HA contents, HaCaT cells were washed by PBS and then centrifuged to remove
PBS and get dry cell pellet. 25 mM Borax/H2SO4 reagent was mixed with cell pellet and
15 µL filtered media, separately. After 5 min incubation in room temperature, 50 µL 0.1%
Carbazole/EtOH reagent was added to each tube. After vortexing, samples were kept in
95 ◦C for 10 min and then kept at room temperature around 15 min to cool down. Reactant
was distributed in 96-well plates with 100 µL per well, and the absorbance was detected
at 550 nM.

4.11. Statistical Analysis

Mean ± standard deviation values were used to demonstrate the data carried out at
least three samples in this research. For statistical comparisons, the results were analyzed
using Mann–Whitney test. A p-value < 0.05 was considered statistically significant. All
statistical tests were carried out using SPSS (version 26.0, 2019, IBM Corp., Armonk, NY,
USA). Similar experimental data were also observed using an additional independent set
of experiments conducted using the same numbers of samples.

5. Conclusions

In this research, we demonstrated that the promotion of the skin-moisturizing activities
of kahweol was upregulated through STAT1 (Figure 4). Kahweol showed a good ability to
enhance the expression levels of skin hydration, skin barrier, and skin moisture retention
factors as well as HA production, implying that kahweol might be an effective component
in skin-protective cosmetics.
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