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Abstract

Virus proliferation involves gene replication inside infected cells and transmission to new target

cells. Once positive-strand RNA virus has infected a cell, the viral genome serves as a tem-

plate for copying (“stay-strategy”) or is packaged into a progeny virion that will be released

extracellularly (“leave-strategy”). The balance between genome replication and virion release

determines virus production and transmission efficacy. The ensuing trade-off has not yet been

well characterized. In this study, we use hepatitis C virus (HCV) as a model system to study

the balance of the two strategies. Combining viral infection cell culture assays with mathemati-

cal modeling, we characterize the dynamics of two different HCV strains (JFH-1, a clinical iso-

late, and Jc1-n, a laboratory strain), which have different viral release characteristics. We

found that 0.63% and 1.70% of JFH-1 and Jc1-n intracellular viral RNAs, respectively, are

used for producing and releasing progeny virions. Analysis of the Malthusian parameter of the

HCV genome (i.e., initial proliferation rate) and the number of de novo infections (i.e., initial

transmissibility) suggests that the leave-strategy provides a higher level of initial transmission

for Jc1-n, whereas, in contrast, the stay-strategy provides a higher initial proliferation rate for

JFH-1. Thus, theoretical-experimental analysis of viral dynamics enables us to better under-

stand the proliferation strategies of viruses, which contributes to the efficient control of virus

transmission. Ours is the first study to analyze the stay-leave trade-off during the viral life cycle

and the significance of the replication-release switching mechanism for viral proliferation.
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Introduction

Hepatitis C virus (HCV) is an RNA virus specifically infecting liver cells. HCV produces prog-

eny viruses rapidly, with approximately 1012 copies sometimes observed in patients [1]. Fol-

lowing virus entry into target cells, viral genomic RNA produces structural proteins (S

proteins) and nonstructural proteins (NS proteins) (Fig 1A). Using the genomic RNA as a tem-

plate, the viral NS proteins amplify HCV RNA (“RNA replication”). Genomic RNA can also

be assembled with viral S proteins into progeny virions to be egressed outside of cells, creating

the opportunity for transmission (in this study, we call the process including particle assembly

and egress “release”). Thus, a single HCV genomic RNA molecule can be used either for RNA

replication or for release, and the balance between these processes governs viral proliferation.

The molecular mechanisms underlying each event in the viral life cycle have been extensively

investigated [2,3], yet the replication-release trade-off and its significance for viral proliferation

remain poorly understood.

HCV JFH-1 is a genotype 2a strain isolated by our group from a patient with fulminant

hepatitis [4]. JFH-1 has been a standard strain used for experiments to characterize HCV

infection, virus-host interactions, and immune responses against HCV [4]. In addition, Jc1

or J6/JFH (a chimeric strain in which a region of the JFH-1 genome from the core to NS2

was replaced by sequences from another genotype 2a virus, the J6 strain) was developed as a

laboratory strain to improve virus production. Jc1 is used for development of antiviral

agents and vaccines, which requires large amounts of virus [5,6]. In spite of their high

sequence similarity (97% identity over the whole genome), these two viruses have different

virological characteristics especially in terms of the release process: whereas JFH-1 particles

assemble on lipid droplet membranes, particle assembly of J6/JFH-1-chimeric laboratory

strains is associated with endoplasmic reticulum–derived membranes [2,3]. Thus, these two

related strains are a useful reference set to compare the dynamics of release and RNA

replication.

In this study, we used a cell culture model of infection with these two HCV reference strains

and measured the time course of viral production (including HCV RNA inside cells and viri-

ons produced outside of the cells), infectivity of progeny HCV, and infected cell numbers. We

also developed a multiscale mathematical model to describe intra- and intercellular HCV

dynamics. This interdisciplinary approach suggests that different strategies exist for viral pro-

liferation: the stay-at-home strategy (JFH-1) and the leaving-home strategy (Jc1-n, a J6/JFH-

1-chimeric strain). We discuss the relevance of these strategies for viral proliferation, while

referring to [7] for wider evolutionary context.

Results

Age-structured multiscale modeling of HCV infection

To describe the intracellular replication dynamics of HCV viral RNA, we used the following

mathematical model:

dRðaÞ
da
¼ kR að Þ � mþ rð ÞR að Þ; ð1Þ

where R(a) is the amount of intracellular viral RNA in cells that have been infected for time a.

The intracellular viral RNA replicates at rate k per day, degrades at rate μ per day, and is

released to extracellular space at rate ρ per day (Fig 1B). Note that if viruses have small or large

ρ, then they tend to stay inside or leave the cell, respectively (see later). In our virus experi-

ments (see Methods), the released viruses could infect other target cells. To describe
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multiround virus transmission (i.e., de novo infection), we needed to couple intracellular viral

replication with a standard mathematical model for intercellular virus infection in cell culture

[8,9] (Fig 1C). In S1 Text, we derived the following multiscale ordinary differential equation

(ODE) model for HCV infection from the corresponding age-structured partial differential

Fig 1. Schematic representation of multiscale HCV infection and mathematical model. (A) Schematic representation of intracellular HCV life cycle and trade-off

between viral replication and release of intracellular viral RNA. Viral RNA in cells is translated to produce S and NS proteins. Viral RNA is either amplified through the

functions of NS proteins through replication or is assembled with S proteins and released as a progeny virus. If the balance between viral replication and release leans

toward replication, intracellular viral RNAs will accumulate. In contrast, high rates of intracellular RNA release will create opportunities for transmission to new cells

but will deplete viral RNA in the cell. (B) Modeling the intracellular virus life cycle. Intracellular viral RNA either replicates inside the cell at rate k, is degraded at rate μ,

or assembles with viral proteins to be released within HCV virions at rate ρ. (C) Multiscale modeling of intracellular replication and intercellular infection. Target cells

are infected by infectious viruses at rate β. HCV, hepatitis C virus; NS protein, nonstructural protein; S protein, structural protein.

https://doi.org/10.1371/journal.pbio.3000562.g001
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equation (PDE) model [10,11]:

dTðtÞ
dt
¼ gT tð Þ 1 �

TðtÞ þ IðtÞ
K

� �

� byT tð ÞVy tð Þ; ð2Þ

dIðtÞ
dt
¼ gI tð Þ 1 �

TðtÞ þ IðtÞ
K

� �

þ byT tð ÞVy tð Þ; ð3Þ

dAðtÞ
dt
¼ byT tð ÞVy tð Þ þ k � m � rð ÞA tð Þ; ð4Þ

dVyðtÞ
dt

¼ fyrA tð Þ � rVy tð Þ � cVy tð Þ; ð5Þ

dVðtÞ
dt
¼ rA tð Þ � cV tð Þ: ð6Þ

Here, the intercellular variables T(t) and I(t) represent the numbers of uninfected and infected

target cells (cells/well), respectively, and V(t) and Vθ(t) represent the total amount of extracellu-

lar viral RNA (copies/well) and the extracellular viral infectious titer expressed (focus formation

unit [ffu]/well), respectively. The intracellular variable A(t) represents the total amount of intra-

cellular viral RNA. The parameters g and K represent the growth rate (per day) and the carrying

capacity of target cells, respectively, and βθ and fθ are the converted infection rate constant ([ffu/

well•day]-1) and the fraction of infectious virus (RNA copies•ffu-1), respectively. Note that we

assume no cellular loss induced by infection because HCV is a noncytopathic virus [4]. We

assumed that progeny viruses were cleared at rate c per day via degradation at rate cRNA per day

and washing at rate cw per day (i.e., c = cRNA+cw), and that infectious virions lose infectivity at

rate r. Because of the different RNA sequence and the resulting different RNA modification sta-

tus as well as the different physical property of virions, specific stability/degradation rate of each

virus strain is expected. Separately, we directly estimated g, K, c, μ, and r for both HCV JFH-1

and Jc1-n in S1 Fig. Detailed explanations of Eqs 2–6 are given in S1 Text.

To assess the variability of kinetic parameters and model predictions, we performed Bayes-

ian estimation for the whole dataset using Markov chain Monte Carlo (MCMC) sampling (see

Methods). Simultaneously, we fitted Eqs 2–6 to the experimentally determined numbers of

uninfected and infected cells (cells/well), extracellular viral RNA (copies/well) and infectious

titer (ffu/well), and intracellular viral RNA (copies/well). These figures were derived from

infection experiments using different numbers of plated cells for either HCV JFH-1 or Jc1-n as

described previously [8,9,12,13]. The remaining free model parameters (i.e., βθ, k, ρ, fθ) along

with initial values for variables (i.e., T(0), I(0), A(0), Vθ(t), V(0)) were estimated from the

MCMC sampling. Experimental measurements below the detection limit were excluded in the

fitting. The estimated parameters and initial values are listed in Table 1 and S1 Table. The typi-

cal behavior of the model using these best-fit parameter estimates is shown together with the

data in Fig 2 for HCV JFH-1 (orange) and Jc1-n (green) (see Methods for HCV strains) and

indicated that Eqs 2–6 described the in vitro data very well. The shadowed regions corre-

sponded to 95% posterior predictive intervals, the solid and dashed lines gave the best-fit solu-

tion (mean) for Eqs 2–6, and the orange circles and green triangles showed the experimental

datasets.

Using the estimated parameters shared between the original PDE model in S1 Text and the

transformed ODE model (i.e., Eqs 2–6), we successfully reconstructed age information for
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intracellular viral RNA in infected cells of infection age a, which cannot be obtained through

conventional experiments alone (S2A Fig). S2B Fig shows the differences in intracellular JFH-

1 and Jc1-n viral RNA levels in cells of infection age a. At the beginning of the experiment,

intracellular viral RNA increased faster under Jc1-n infection than under JFH-1 infection

(shown in green). However, intracellular JFH-1 viral RNA gradually accumulated to higher

levels than Jc1-n at later time points after infection (shown in yellow to brown). These data

illustrated the different dynamics of these two strains and the impact of these dynamics on

intracellular viral RNA production, all resulting from different strategies to transmit the viral

genome (see below).

Dynamics of HCV JFH-1 and Jc1-n strain replication

Our model (Eqs 2–6) applied to time-course experimental data allowed us to extract the fol-

lowing kinetic parameters: the distribution of the rate constant for infection, βθ; the release

rate of intracellular viral RNA, ρ; the converted fraction of infectious viral RNA, fθ; and the

replication rate of intracellular viral RNA, k (Fig 3 and Table 1). Comparing these parameters

for JFH-1 and Jc1-n showed a significant difference between the rate constant for infections,

βθ, of JFH-1 (1.26×10−4 [ffu/well•day]-1, 95% CI 0.788–1.89×10−4 [ffu/well•day]-1) and Jc1-n

(2.29×10−4 [ffu/well•day]-1, 95% CI 1.32–3.64×10−4 [ffu/well•day]-1) (p = 1.48×10−4 by

repeated bootstrap t test) (Fig 3A). In addition, the release rates of intracellular viral RNA, ρ,

for JFH-1 and Jc1-n were 2.36×10−2 per day (95% CI 1.73–3.15×10−2) and 6.38×10−2 per day

(95% CI 4.20–9.34×10−2), respectively (p<0.01 by repeated bootstrap t test) (Fig 3B). These

estimates indicated that Jc1-n infects cells 1.82 times faster and produces progeny viruses from

infected cells 2.70 times faster than JFH-1. The estimate was further validated by independent

experiments, in which Jc1-n entry and virus production were indeed significantly higher than

those of JFH-1, although early replication was similar for the two strains (S2 Text and S3A–

S3C Fig). The cell line used in our in vitro model was deficient in interferon induction by

HCV infection (S3D Fig), as reported previously [14]. No significant difference was apparent

in the converted fraction of infectious virus, fθ (Fig 3C). Because JFH-1 and Jc1-n have identi-

cal nonstructural regions essential for RNA replication (NS3–NS5B), we estimated the same

Table 1. Parameter values estimated from the cell culture infection experiment.

Parameter Name Symbol Unit HCV JFH-1 HCV Jc1

Value 95% CI Value 95% CI

Fitted parameters from separate experiments

Rate of virion infectivity loss r day-1 1.52 ― 2.16 ―
Degradation rate of extracellular viral RNA cRNA day-1 7.55×10−2 (0.238–1.99)×10−1 0.240 0.238–0.469

Clearance rate of extracellular viral RNA due to washing cw day-1 1.18 ― 1.82 ―
Degradation rate of intracellular viral RNA μ day-1 2.54 2.14–3.01 2.75 2.21–3.43

Estimated parameters from in vitro total cell growth data

Proliferation rate of Huh-7 cells g day-1 0.670 ― 0.665 ―
Carrying capacity of Huh-7 cells K cells 4.12×104 ― 3.75×104 ―
Parameters obtained from simultaneous fitting of full in vitro dataset

Rate constant for infections βθ (ffu/well•day)-1 1.26×10−4 (0.788–1.89)×10−4 2.29×10−4 (1.32–3.64)×10−4

Replication rate of intracellular viral RNA k day-1 3.75 3.64–3.86 3.75 3.64–3.86

Release rate of intracellular viral RNA ρ day-1 2.36×10−2 (1.73–3.15)×10−2 6.38×10−2 (4.20–9.34)×10−2

Converted fraction of infectious viral RNA fθ RNA copies•ffu-1 1.19×10−3 (0.970–1.44)×10−3 1.08×10−3 (0.773–1.48)×10−3

Abbreviations: ffu, focus formation unit; HCV, hepatitis C virus

https://doi.org/10.1371/journal.pbio.3000562.t001
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viral RNA replication rate, k, for these two viruses (Fig 3D). Hence, our parameter estimation

captured the characteristics of the two strains well and was able to quantitatively describe viral

infection dynamics.

In our multiscale model (Eqs 2–6), the accumulation rate of intracellular viral RNA was

defined as the difference between the replication rate and the sum of the degradation rate and

the release rate (i.e., k−μ−ρ). The distributions of calculated intracellular RNA accumulation

rates for JFH-1 (1.19 per day, 95% CI 1.07–1.30) and Jc1-n (0.936 per day, 95% CI 0.819–1.05)

are shown in Fig 3E (p = 8×10−6 by bootstrap t test) (Table 1). The preferential accumulation

Fig 2. Dynamics of HCV JFH-1 and Jc1-n infection in cell culture. Fitting of the mathematical model to the experimental data of HCV JFH-1 and Jc1-n infection in

cell culture. Three different numbers of Huh-7 cells infected with either HCV JFH-1 or Jc1-n 1 day after inoculation were seeded (experiment A: 1,000, experiment B:

2,000, and experiment C: 4,000 cells per well) and chased to detect the following values at days 0, 1, 2, 3, and 4 post seeding (log10 scale): numbers of uninfected and

infected cells, amount of intracellular and extracellular viral RNA (copies/well), and extracellular viral infectivity (ffu/well) (orange circle: JFH-1, green triangle: Jc1-n).

The shadowed regions correspond to 95% posterior intervals and the solid curves give the best-fit solution (mean) for Eqs 2–6 to the time-course dataset. All data for

each strain were fitted simultaneously. The underlying data for this figure can be found in S1 Data. ffu, focus formation unit.

https://doi.org/10.1371/journal.pbio.3000562.g002
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Fig 3. Characterization of viral dynamics of HCV JFH-1 and Jc1-n. The distributions of the rate constant for infection, βθ; the release rate of intracellular viral RNA, ρ;

the converted fraction of infectious viral RNA, fθ; and the replication rate of intracellular viral RNA, k, inferred by MCMC computations are shown in (A), (B), (C) and

(D), respectively, for HCV JFH-1 (orange) and Jc1-n (green). Parameters βθ and ρ for Jc1-n were significantly larger than for JFH-1, whereas there was no significant
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of JFH-1 RNA inside cells was consistent with its tendency toward gradual increased levels of

intracellular RNA at later time points (S2B Fig). The difference in the site of virion assembly

and the trafficking pathway as well as in the viral genome RNA stability may explain the higher

accumulation of JFH-1 RNA in the cells. To further evaluate the total viral RNA level consider-

ing multiround virus transmission, the Malthusian parameter, M, was used as an indicator of

the initial growth rate of intracellular viral RNA for each HCV strain [8,12,15]. Here, the Mal-

thusian parameter was given by

M ¼
k � m � r � r � cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk � m � rþ r þ cÞ2 þ 4byKfyr
q

2
ð7Þ

(see S3 Text for derivation of the Malthusian parameter). The Malthusian parameters for JFH-

1 and Jc1-n were calculated as 1.19 (95% CI 1.07–1.30) and 0.936 (95% CI 0.819–1.05), respec-

tively, and were significantly different from one another (p = 8×10−6 by bootstrap t test) (Fig

3F and Table 1). Interestingly, even if Jc1-n had a larger infection rate, βθ, and release rate, ρ,

compared with JFH-1, the initial growth rate of total JFH-1 RNA was higher than that of

Jc1-n. This result demonstrated that the capacity to accumulate viral RNA inside cells predom-

inantly determines the initial growth rate rather than release of progeny viruses.

Stay-at-home strategy or leaving-home strategy for “optimizing” HCV

proliferation

We investigated how differences between the two strains, JFH-1 and Jc1-n, might be inter-

preted in an evolutionary perspective. As mentioned above, we considered two opposing strat-

egies: the “stay-at-home strategy” and the “leaving-home strategy”: if viruses have smaller ρ,

they preferentially stay inside the cell, but if they have larger ρ, they leave the cell. To quantita-

tively characterize these different strategies, we defined the fraction of viral RNA remaining in

the cells ((k−μ−ρ)/k), released from the cells (ρ/k), and degraded in the cells (μ/k) within the

total intracellular viral RNA produced (Fig 4A). Using all accepted MCMC parameter esti-

mates from the time-course experimental datasets, we calculated that the fractions of viral

RNA remaining were 31.6% and 25.0%, the fractions of viral RNA degraded were 67.7% and

73.3%, and the fractions of viral RNA released were 0.629% and 1.70% for JFH-1 and Jc1-n,

respectively (Fig 4B). Comparing the lattermost fractions, Jc1-n used intracellular viral RNA

2.70 times more for virus release than JFH-1, explaining the rapid transmission of Jc1-n (S2B

Fig). These results indicate the preferential “leaving-home” strategy of Jc1-n as compared with

JFH-1, which adopts a “stay-at-home” strategy.

To further investigate these two opposing strategies, we addressed the relevance of viral

RNA release rates for viral proliferation using in silico analysis. With various values of the

release rate of intracellular viral RNA, ρ, we calculated the Malthusian parameter (Eq 7) for

each strain as an indicator of viral fitness (Fig 4C). Each curve shows Malthusian parameters

calculated using 100 parameter sets sampled from MCMC parameter estimates as functions of

ρ, and each gray vertical line is the corresponding estimated release rate. Interestingly, the

smaller the release rate, the larger the Malthusian parameter HCV achieves. This is because

intracellular viral RNAs can be amplified faster compared with viral RNAs outside of cells that

difference in fθ between the two strains as assessed by repeated bootstrap t test. JFH-1 and Jc1-n stains had identical viral RNA replication rates. The distributions of

accumulation rates of intracellular viral RNA, k−μ−ρ, and the Malthusian parameter, M, calculated from all accepted MCMC parameter estimates are shown in (E) and

(F), respectively, for HCV JFH-1 (orange) and Jc1-n (green). These indices were significantly larger for JFH-1 than for Jc1-n as assessed by the repeated bootstrap t test.

The underlying data for this Figure can be found in S2 Data. HCV, hepatitis C virus; MCMC, Markov chain Monte Carlo.

https://doi.org/10.1371/journal.pbio.3000562.g003
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Fig 4. Different strategies adopted by JFH-1 and Jc1-n for viral proliferation. (A) Schematic representation of the

fate of replicated intracellular viral RNA. Viral RNA is used either for driving RNA replication in cells or for producing
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are degraded or enter new cells. This result showed that the JFH-1 strain is more optimized in

terms of its Malthusian parameter compared with Jc1-n because of the smaller estimated val-

ues of ρ. That is, HCV JFH-1 adopts the stay-at-home strategy for acquiring a higher initial

growth rate.

Next, we defined the cumulative number of newly infected cells at time t to evaluate viral

transmissibility:

Z t

0

bTðtÞVðtÞdt ¼
Z t

0

byTðtÞVyðtÞdt: ð8Þ

We also calculated the cumulative number of newly infected cells for each strain using the

means of the estimated parameters as functions of ρ (Fig 4D). Each curve shows the calculated

cumulative numbers of infected cells until 3, 5, 7, 9, and 11 days post infection, and the gray

vertical line represents the mean release rate estimated from the infection experiment. The

value of the release rate, which maximized the cumulative number of newly infected cells, was

between 0.1 and 0.5. This is because an intermediate release rate effectively increases extracel-

lular viral RNA for new infection: lower release rates do not effectively produce new infections,

whereas higher release rates decrease intracellular viral RNA levels and thus diminish future

new infections. Thus, it appears that Jc1-n is more optimized for producing newly infected

cells. This implies that HCV Jc1-n adopts the leaving-home strategy to acquire an advantage in

producing newly infected cells.

Taken together, our theoretical investigation based on viral infection experiments revealed

that the JFH-1 strain optimizes its initial growth rate, but the Jc1-n strain optimizes de novo

infection. Ours is the first report to quantitatively evaluate these opposing evolutionary strate-

gies and to show their significance for virus proliferation at the intracellular and intercellular

levels.

Discussion

To understand the replication mechanisms of HCV and to develop effective drugs for the

treatment of HCV, many mathematical modeling studies have been conducted. A mathemati-

cal model describing the intracellular dynamics of HCV replication in detail provided a frame-

work to investigate HCV replication dynamics using the well-established HCV replicon

system [16]. Another study combined data obtained from the HCV replicon system with an

expanded mathematical model and revealed that the replication compartment and unknown

host factors played important roles in the maintenance and control of viral RNAs in cells [17].

Another expanded and modified model using data from an HCV cell culture system enabled

predictions of the dynamics of HCV infection and viral protein mechanisms [18]. A multiscale

model was applied to data from patients treated with several drugs, based on a basic

progeny viruses for release outside cells or is degraded. (B) Percentage of replicated intracellular HCV JFH-1 and Jc1-n

viral RNA that remains inside cells, is released outside cells, and is degraded. (C) Change in the Malthusian parameter

(Eq 7) with various release rates of intracellular viral RNA. The orange and green curves show Malthusian parameters

calculated using 100 parameter sets sampled from MCMC parameter estimates as functions of ρ for JFH-1 and Jc1-n,

respectively. The gray vertical lines are the corresponding release rates estimated from the actual experimental data. (D)

Change in the cumulative number of newly infected cells with the various release rates (Eq 8). (Left panels) The orange

and green curves represent the cumulative numbers of newly infected cells until 3, 5, 7, 9, and 11 days post infection

calculated using the means of estimated parameters as a function of ρ for JFH-1 and Jc1-n, respectively. The gray vertical

line represents the mean release rate estimated from the experimental data. (Right panels) Enlarged views of the gray

zones in left panels. Finely calculated cumulative numbers of newly infected cells are shown. The underlying data for

this figure can be found in S3 Data. HCV, hepatitis C virus; MCMC, Markov chain Monte Carlo.

https://doi.org/10.1371/journal.pbio.3000562.g004
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mathematical model of viral dynamics with age structures of HCV replication; this work pro-

vided new insights into viral decay dynamics and the mechanisms of action of anti-HCV

drugs [19,20]. Other multiscale models, combining the detailed intracellular replication

dynamics and basic infection dynamics, also explained the dynamics of viral loads in vivo [21].

In this study, through a combined experimental-theoretical approach, we analyzed the

dynamics of the HCV life cycle using two related HCV strains, JFH-1 and Jc1-n, employing

different particle assembly/release strategies. We quantified the intra- and intercellular viral

dynamics of these strains by applying an age-structured multiscale model to time-course

experimental data from an HCV infection cell culture assay (Fig 2 and Table 1): as in [10,11],

we transformed the multiscale model formulated by PDEs to an identical multiscale ODE

model (i.e., Eqs 2–6), and we estimated parameters shared between the PDE and ODE models.

It is technically challenging to obtain experimental measurements with age information, but

thanks to the estimated values of these common parameters, we managed to reconstruct age

information for intracellular viral RNA (S2 Fig). We also derived values for standard parame-

ters as previously reported. For example, the numbers of viruses produced per cell per day in

our multiscale model, which correspond to ρA(t)/I(t) in Eqs 2–6, were 102–103 and 103–104

for JFH-1 and Jc1-n, respectively. These values are relatively high compared with previously

estimated values [1], potentially because of the high efficiency of viral replication in our

Huh7.5.1 cell culture system. Note that values of ρ for JFH-1 and Jc1-n were both estimated as

small compared with previous estimates [19], although we confirmed these estimated viral

release rates using independent single-cycle infection experiments. This discrepancy is likely

due to differences among experimental systems or mathematical models of intracellular viral

replication dynamics. Interestingly, comparing the calculated Malthusian parameters (i.e., Eq

7) and the cumulative number of newly infected cells (i.e., Eq 8) between the two strains (Fig

3E and 3F), we found that the JFH-1 strain had a higher initial growth rate but that Jc1 pro-

duced more de novo infections.

Based on our results, we propose two opposing strategies for viral proliferation: the “stay-

at-home strategy” and the “leaving-home strategy.” From an evolutionary perspective, JFH-1

adopts a stay-at-home strategy and preferentially uses viral genomic RNA for increasing intra-

cellular replication. In contrast, adopting a leaving-home strategy, Jc1-n uses more viral geno-

mic RNA for producing progeny virions capable of new transmission events to increase the

number of infected cells (Fig 4). Thus, Jc1-n infects cells 1.82 times faster and produces viral

RNA from infected cells 2.70 times faster than JFH-1. In the context of the replication-release

trade-off, a previous theoretical study indicated that allocation and reallocation of intracellular

viral RNA toward translation and replication rather than virus release induced higher viral

production [22]. Although our model did not describe intracellular dynamics in detail, the

“stay-at-home strategy” of JFH-1, resulting in more efficient accumulation of viruses by

remaining in cells, was partially consistent with the results of previous work. Our group and

others reported that JFH-1 assembled progeny virions on the membranes of hepatic lipid

droplets, whereas J6/JFH-1 chimeric strains mainly used endoplasmic reticulum–derived

membranes for particle production [2,3]. Although the molecular aspects of this difference

have been analyzed, its significance for viral proliferation and dynamics is not completely

understood. Our results raise the possibility that different subcellular locations for particle

assembly and subsequent differential intracellular trafficking impact the rates of particle

assembly and release, which in turn determine virus proliferation. Further analysis might shed

light on why one HCV strain has to be assembled on the lipid droplet membrane whereas

another assembles in association with the endoplasmic reticulum.

We confirmed that the replication rate and release rate can be approximated as constant

regardless of infection age using independent single-cycle experiments. Thus, we assumed the
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kinetic parameters of intracellular replication were constant, which is a potential limitation of

our study. To further validate this assumption, we confirmed that the numerical solution of

the multiscale model with time-dependent intracellular kinetic parameters coincided well with

that of our multiscale model (i.e., constant kinetic parameters). In addition, by comparison

with previous models describing the HCV replicon, HCV cell culture systems, or in vivo data

[16–18,21], we excluded the detailed biological processes of HCV replication to enable simple

and robust parameter estimation. Thus, our tightly designed multicycle infection experiments

and multiscale mathematical model enabled us to evaluate intracellular strategies of HCV

strains on the basis of various aspects such as viral fitness and transmissibility, which together

reflected the entire infection process.

The choice of replication strategy not only determines virus proliferation but also affects

the pathogenic features of the virus: JFH-1, which preferentially amplifies intracellular RNA,

caused fulminant hepatitis with rapid viral replication and severe inflammation. By contrast,

J6, the original strain encoding the Jc1-n structural region, was isolated from a patient with

chronic hepatitis and generally replicates more moderately, with robust spread of infected cells

used as a longer-term strategy to establish persistent infection. Characterization of the prolifer-

ation strategies of viruses is of significant importance when trying to understand their clinical

as well as evolutionary properties.

Methods

Cell culture and HCV infection

Huh-7.5.1 (kindly provided by Dr. Francis Chisari, The Scripps Research Institute) and Huh7-

25 cells were cultured in Dulbecco’s Modified Eagle’s Medium (Invitrogen) supplemented

with 10% fetal bovine serum (Sigma), 10 units/mL penicillin, 10 mg/mL streptomycin, 0.1 mM

nonessential amino acids (Invitrogen), 1 mM sodium pyruvate, and 10 mM HEPES (pH 7.4)

at 37˚C under a humidified atmosphere containing 5% CO2. We used HCV strains JFH-1, a

genotype 2a clinical isolate from a patient with fulminant hepatitis [4], and Jc1-n, a J6/JFH-1

chimeric laboratory strain [13]. JFH-1 and Jc1-n have 96.7% amino acid identity over the

whole genome. HCV inoculum for infection experiments was recovered from the culture

supernatants of Huh-7.5.1 cells transfected with the corresponding HCV RNA as described

[4]. Huh-7.5.1 cells were inoculated with JFH-1 or Jc1-n at a multiplicity of infection (MOI) of

0.05 for 4 hours and then passaged to seed a new 96-well plate at different cell densities (1,000,

2,000, or 4,000 cells/well). Under these conditions, the starting number of HCV-infected cells

varied. At days 0, 1, 2, 3, and 4 post seeding, culture supernatants and cell lysates were recov-

ered to quantify HCV RNA by real-time RT-PCR as previously described [13]. The infectivity

of HCV in culture supernatants was measured using a focus-forming assay as described [13].

To quantify the number of uninfected and infected cells, cells were fixed and stained with anti-

HCV core antibody by immunofluorescence assay as described [13]. We prepared three repli-

cate samples for these experiments and used the average values of replicates for analysis.

Data fitting and parameter estimation

The parameters g and K were separately estimated (see S4 Text) and fixed at 0.670 per day and

4.12×104 cells, respectively, for the JFH-1 strain and 0.665 per day and 3.75×104 cells, respec-

tively, for the Jc1-n strain. A statistical model adopted from Bayesian inference assumed that

measurement error followed a normal distribution with mean zero and constant variance

(error variance). The noninformative prior distributions with upper and lower limits were

used as the prior distributions of parameters. The posterior predictive parameter distribution

as an output of MCMC computation represented parameter variability. Distributions of model
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parameters (i.e., βθ, k, ρ, fθ) and initial values (i.e., T(0), I(0), A(0), Vθ(t), V(0)) in Eqs 2–6 were

inferred directly by MCMC computations. We also tested structural identifiability for all

parameter estimates by calculating profile likelihood [23,24] using package dMod [25] in R

Statistical Software [26]. All parameter estimates were confirmed to be structural identifiable

(see S4 Fig). Distributions of derived quantities were calculated from the inferred parameter

sets (Fig 3E and 3F for graphical representation). A set of computations for Eqs 2–6 with esti-

mated parameter sets gives a distribution of outputs (the number of cells and the intra- and

extracellular viral loads) as model predictions. To investigate variation in model predictions,

global sensitivity analyses were performed. The ranges of possible variation are shown in Fig 2

as 95% posterior predictive intervals. Technical details of MCMC computations are summa-

rized below.

Statistical analysis

Package FME [27] in R Statistical Software [26] was used to infer posterior predictive parame-

ter distributions. The delayed rejection and Metropolis method [28] was used as a default com-

putation scheme for FME to perform MCMC computations. MCMC computations for

parameter inference were implemented using the predefined function modMCMC() in pack-

age FME as introduced in Methods. Convergence of Markov chains to a stationary distribu-

tion was required to ensure parameter sets were sampled from a posterior distribution. Only

the last 90,000 of 100,000 chains were used as burn-in. The convergence of the last 90,000

chains was manually checked with figures produced by package coda [29], a collection of diag-

nostic tools for MCMC computation. The 95% posterior predictive intervals shown as a shad-

owed region in each panel of Fig 2 were produced from 100 randomly chosen inferred

parameter sets and corresponding model predictions. We employed a bootstrap t test [30] to

quantitatively characterize differences in parameters and derived quantities between HCV

JFH-1 and Jc1-n. In total, 100,000 parameter sets were sampled with replacement from the

posterior predictive distributions to calculate the bootstrap t-statistics. To avoid potential sam-

pling bias, the bootstrap t test was performed 100 times repeatedly. The averages of the com-

puted p-values were used as indicators of differences.

Supporting information

S1 Fig. Parameter estimations from separate experiments. (A) Decay of extracellular HCV

was estimated. HCV JFH-1 and Jc1-n were incubated in medium without cells and recovered

at days 0, 1, 2, 3, 4, and 5 to quantify viral RNA and infectivity. Linear regressions yielded a

rate of RNA degradation and a loss of virion infectivity per day. (B) Effect of changing medium

on the clearance of extracellular viral RNA was estimated. Changing medium reduced viral

RNA by 69.1% and 83.7% for JFH-1 and Jc1-n, respectively, and these losses were modeled by

approximating the sampling of virus as a continuous exponential decay (S1 Protocol and S5

Text). (C) Decay kinetics of intracellular viral RNA was investigated upon complete inhibition

of RNA replication/release by antiviral treatment with 2 μM SOF + 1 μM LDV. By applying

linear regressions, the degradation rates of intracellular viral RNA for JFH-1 and Jc1-n were

estimated. (D) By counting total Huh7.5.1 cells on days 0, 1, 2, 3, 4 in experiments A, B, and C,

the growth kinetics of the cells were estimated. The underlying data for this figure can be

found in S4 Data. HCV, hepatitis C virus; LDV, ledipasvir; SOF, sofosbuvir.

(DOCX)

S2 Fig. Parameter estimations from separate experiments. (A) Dynamics of the distribu-

tions of intracellular viral RNA according to infection age, a. The distributions were calculated
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using the original multiscale PDE model (Eq S2–6 in S1 Text) using the means of parameter

estimates for HCV JFH-1 and Jc1-n. The colored bars represent amounts of intracellular viral

RNA. (B) Differences in the distribution of intracellular viral RNA in total infected cells of

infection age, a, between HCV JFH-1 and Jc1-n. The colored bar shows the difference in the

amount of intracellular viral RNA (green: intracellular viral RNA during Jc1-n infection is

more abundant than during JFH-1 infection; yellow-red-brown: intracellular viral RNA is

more abundant for JFH-1 than for Jc1-n; gray: no new infection occurs owing to depletion of

target cells). The underlying data for this figure can be found in S5 Data. HCV, hepatitis C

virus; PDE, partial differential equation.

(DOCX)

S3 Fig. Validation of differences in viral entry and release between JFH-1 and Jc1-n. (A)

Difference in viral entry mediated by the envelopes of JFH-1 and J6 (structural region of

Jc1-n). HCVtcp prepared with an HCV E1/E2 derived from JFH-1 and J6 were used to inocu-

late Huh7.5.1 cells. At 72 hours post inoculation, luciferase activity was measured to evaluate

differences in viral entry between JFH-1 and Jc1-n according to previous work [31]. (B) A sin-

gle-cycle virus production assay was performed by transfecting Huh7-25 cells with JFH-1 or

Jc1-n RNA. Huh7-25 cells are deficient for an HCV receptor, CD81, and do not support rein-

fection [32]. HCV RNA produced in the culture supernatant at 72 hours post transfection was

quantified by real-time RT-PCR to evaluate viral production. (C) Single-cycle virus production

assay for examining early HCV replication. Production of HCV core and NS5A proteins acted

as an internal control and was detected by immunoblotting of Huh7-25 cells transfected with

RNA derived from either JFH-1 or Jc1-n at early time points (16, 20, 25, and 30 hours post

transfection). (D) Host IFN response against infection by JFH-1 and Jc1-n. Huh7.5.1 cells

were infected with either JFH-1 or Jc1-n, and induction of IFN-stimulated genes (MxA, and

ISG56) and expression of HCV core, NS5A, and actin proteins were assessed by immunoblot-

ting. Exogenous IFN-α was used as a positive control for ISG induction. (E) Expression of host

factors regulating HCV particle assembly switching in JFH-1- and Jc1-n-infected cells at differ-

ent infection ages. YTHDF1, 2, 3, and METTL14 as well as actin were detected in JFH-1- and

Jc1-n-infected cells at infection ages of 3, 5, and 7 days by immunoblotting. The underlying

data for this figure can be found in S6 Data. E, envelope; HCV, hepatitis C virus; HCVtcp,

trans-complemented HCV particles; IFN, interferon; ISG, interferon stimulated genes;

METTL14, methyltransferase Like 14; RT-PCR, reverse transcription PCR.

(DOCX)

S4 Fig. Profile likelihood of estimated parameters for identifiability analysis. All estimated

parameters were confirmed to be structurally identifiable by calculation of profile likelihood

[23–25].

(DOCX)

S1 Table. Fitted initial (t = 0) values for the in vitro experiment.

(DOCX)

S1 Data. Original numerical values for Fig 2.

(XLSX)

S2 Data. Original numerical values for Fig 3.

(XLSX)

S3 Data. Original numerical values for Fig 4.

(XLSX)
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