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Abstract: Variational quantitative binding–conformational analysis for a series of anti-HIV 

pyrimidine-based ligands is advanced at the individual molecular level. This was achieved 

by employing ligand-receptor docking algorithms for each molecule in the 1,3-disubstituted 

uracil derivative series that was studied. Such computational algorithms were employed for 

analyzing both genuine molecular cases and their simplified molecular input line entry 

system (SMILES) transformations, which were created via the controlled breaking of 

chemical bonds, so as to generate the longest SMILES molecular chain (LoSMoC) and 

Branching SMILES (BraS) conformations. The study identified the most active anti-HIV 

molecules, and analyzed their special and relevant bonding fragments (chemical alerts), 

and the recorded energetic and geometric docking results (i.e., binding and affinity energies, 

and the surface area and volume of bonding, respectively). Clear computational evidence 

was also produced concerning the ligand-receptor pocket binding efficacies of the LoSMoc 

and BraS conformation types, thus confirming their earlier presence (as suggested by 

variational quantitative structure-activity relationship, variational-QSAR) as active 

intermediates for the molecule-to-cell transduction process. 
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1. Introduction 

1.1. The General Anti-HIV Context 

One of the preeminent challenges in molecular biology in the 21st century still remains in finding 

the weak spot of HIV’s infection. This is because the chemical binding mechanism of such fusion 

(producing a pore by which the virus discharged its capsid into cells’ nucleus, so infecting it forever) 

has not been elucidated [1]. 

The general mechanism of HIV’s invasive strategy is currently known, through the virus critical 

gp120 protein binding with the helper T cell’s receptors—the CD4 protein and its co-receptors 

CCR5/CXCR4. However, despite the virus crystal structure published back by 1998 [2] revealing the 

hydrophobic cavity at the gp120 center, the way the virus evades the immune system was a continuing 

open issue: the discovered pocket had some volume—thus allowing phenylalanine residue on CD4 but 

also for greater alkylating agents to fit into the cavity of gp120. 

Then, the interaction between CD4 and gp120 was somehow blocked by the discovery of so-called 

NBD-556/557 [3], yet it was soon found it also enhanced the viral entry [4]. In order to prevent such 

adverse effects, the strategy was changed into mapping the amino acids, contributing to CD4-gp120 

binding and to conformational changes when gp120 further binds with the T cell’s coreceptor, while 

selecting from the amino acids contributed to both phenomena than those involved in binding alone [5]. 

New inhibitors of HIV-1 viral entry were subsequently formulated by applying the molecular 

region/moiety strategy, by trial and error. Small molecules were derived from NBD-556 (e.g., guanidinium 

group mimicking the arginine residue on CD4): they do not elicit the conformational change in gp120, 

yet possessing some surprising mis-bindings on gp120 to the methionine residue, as revealed by the 

crystal structures of these compounds (called as JRC-II-191, (+)-DMJ-I-228/II-121) [6]. 

The passage to drug delivery was also made by further combining the DMJ compound with certain 

easily-elicited antibodies which, otherwise, are on their own ineffective to HIV infection, yet enhance 

their blocking feature this way complementing the vaccines [7]. 

Eventually, the antiretroviral prodrugs that bind directly to the virus, so preventing the binding with 

CD4 of T cells, were developed (the so-called BMS-663068 compound) and have already entered in the 

Phase IIb clinical trials [8]. 

Every year about 1.5–2 millions of people die from AIDS but a vaccine or a microbicide to prevent 

the infection is still yet to be found [9]. For the treatment of HIV infection, the targets for therapeutic 

intervention are one of the stages of the replicative cycle of HIV. In the last 30 years 26 compounds 

have been approved and classified according to the target they should inhibit: (i) Nucleoside reverse 

transcriptase inhibitors (NRTIs); (ii) Nucleotide reverse transcriptase inhibitors (NtRTIs); (iii)  

Non-nucleoside reverse transcriptase inhibitors (NNRTIs); (iv) Protease inhibitors (PIs); (v) Viral entry 

inhibitors (including coreceptor inhibitors [CRIs] and fusion inhibitors [FIs]); and (vi) Integrase 

inhibitors (INIs) [9–11]. 
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1.2. The Anti-HIV Pyrimidine Derivatives 

Among the compounds approved by the FDA for clinical use, almost half of them are pyrimidine 

derivatives (see Figure 1) [9–11]. 

 

 

Figure 1. Pyrimidine derivatives used in the treatment of HIV/AIDS; the emphasized 

molecular fragments—also represented in the color red—are studied in this work. 

Pyrimidine derivatives occupy a leading position among the compounds investigated and/or  

approved in the treatment of HIV infection. AZT-zidovudine, the oldest drug used to treat HIV infection,  

was discovered serendipitously. It has its central core pyrimidine nucleus, and belongs to the class of 

NRTI inhibitors [9,10]. Most pyrimidine derivatives are from the NRTI class, namely [12–19] AZT, 

didanosine-ddI, zalcitabine-ddC, stavudine-d4T, lamivudine-3TC, abacavir-ABC, and emtricitabine-(−)-FTC. 

Similarly, pyrimidine derivatives in other classes include: 

 The NtRTI is a pyrimidine derivative investigated in microbicide preparations, e.g., tenofovir 

(TFV) and specifically its precursor—the tenofovir disoproxil fumarate (TDF, PMPA) [12–19]; 

 The second-generation of NNRTI inhibitors: etravirine (ETR, TMC125) and rilpivirine (RPV, 

TMC278) [12–22]; 

 The PI inhibitor: lopinavir (ABT-378) [12–15,18,19,23]; 

 The INI inhibitor: raltegravir (RAL, MK-0518) [12–15,17–19,24] (see Figure 1) [9–14,25–29]. 
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New compounds are designed from the need for formulating derivatives with better anti-HIV 

activity that are active against various mutations of the virus with high selectivity, no side effects, 

and reduced toxicity. 

Some pyrimidine derivatives are in different stages of clinical testing. 

Dapivirine (TMC 120) was initially tested as a NNRTI inhibitor (close analogs etravirine and 

rilpivirine having been so approved), but is now in clinical trials as a microbicide in combination with 

TFV. Although emivirine (MKC-442, I-EBU) has passed all testing phases, it has still not been approved 

for marketing. 

The CRI inhibitor (SCH-D, SCH-417690) behaves like a CCR5 antagonist but another CRI inhibitor 

INCB-9471 acts like an uncompetitive allosteric antagonist of CCR5 (Figure 2) [10–16,25–29]. 

 

 

Figure 2. Pyrimidine derivatives which have been tested or have reached in different stages 

of clinical trials for treatment of HIV/AIDS; the emphasized molecular fragments—also 

represented in the color red—are studied in this work. 

Many INI inhibitors are in various stages of research. Examples of some pyrimidine-diketoacids  

(PY-DKA) are: 

 The 4-(1,3-dibenzyl-1,2,3,4-tetrahydro-2,4-dioxopyrimidin-5-yl)-2-hydroxy-4-oxo-but-2-enoic acid. 

It corresponds to compound I in Figure 2 being a diketo acid bearing a nucleobase scaffold, which 

opened a new research direction in the chemistry of INI derivatives) [17,18]; 

 The 5-hydroxy-6-oxo-1,6-dihydropyrimidine-4-carboxamide analog: N-(4-fluorobenzyl)-2- 

(4-fluorophenyl)-5-hydroxy-6-oxo-1,6-dihydropyrimidine-4-carboxamide corresponding with 

compound II in Figure 2 [19]. 

On the other side, among the RT and IN dual inhibitors one may list compound III in Figure 2,  

the (Z)-4-(3-(4-(((6-(3,5-dimethylbenzyl)-5-ethyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)methoxy) 

methyl)benzyl) phenyl)-2-hydroxy-4-oxobut-2-enoic acid, which was obtained from rational design of 

RT/IN dual inhibitors based on HEPT NNRTI and DKA IN inhibitors [20], and the N-3 hydroxylated 

pyrimidine-2,4-diones illustrated as compounds IV and V in the Figure 2, respectively [21,22]. 
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1.3. The Anti-HIV Mechanisms of Action 

The most attractive target in anti-HIV chemotherapy is reverse transcriptase (RT) because of  

its key role in virus replication. The HIV-1 RT is a asymmetric heterodimer with enzymatic  

activity, made out of two subunits: p66 subunit with 560 amino acids and p51 subunit with 440 amino 

acids [12,13,23,24,30,31]. 

The p51 subunit contains the same subdomains as the p66 subunit but adapts a different spatial 

arrangement from the p66 subunit and has no catalytic function. The p51 subunit plays only a role in 

maintaining the entire structure of the RT [12,13,23,24,30–33]. 

HIV-RT structure looks like a right hand, with the subunit p66 containing both the polymerase and 

RNase H (ribonuclease family H) active sites. The residues 1–85 form the fingers, residues 86–117 and 

156–237 form the palm and residues 238–318 occupy the thumb regions. The connection region contains 

residues 319–426 and the RNase H subdomains host the residues 427–560 [12,13,23,24,30–33].  

Finger and thumb domains are little flexible. However, palm and thumb domains form a nucleic acid 

binding cleft where the active site of HIV-RT is located [12,13,23,24,30–32]. The palm subdomain  

of RT contains the polymerase active site by the catalytic triad Asp110, Asp185 and Asp186.  

The NNRTI-binding pocket (NNBP) is located in p66 subunit, at 10 Å away from the catalytic site of 

the palm subdomain. 

Nevertheless, the NNRTI-binding pocket exists only when an inhibitor is bound to the enzyme and 

consists of aromatic and aliphatic hydrophobic residues such as Tyr181, Tyr188, Phe227, Trp 229, 

Tyr232 and Pro59, Leu100, Val106, Val179, Leu234, and Pro236. It is also comprised of five 

hydrophilic residues namely Lys101, Lys103, Ser105, Asp132, and Glu224. The additional residues that 

belong to the p51 subunit are Ile135, Glu1138, and Thr139 [23,24,31–36]. 

The NNBP has been described to feature three channels designated as the entrance, groove,  

and tunnel [37–40]: 

 The protein/solvent interface is close to Pro236, Val106 and Leu234; 

 The largely open region in front of Lys101, Lys103, Glu138, and Val179 is considered to form the 

entrance channel for the NNRTI binding site; 

 The tunnel is lined by Tyr181, Tyr188, Trp229, and Phe227, which leads towards the polymerase 

active site; 

 The groove is lined by Phe227, Tyr318, Pro225, Pro236. 

The polymerase activity of the HIV RT has similar features to most DNA polymerases with a higher 

affinity to RNA as a template, while the RNase H activity catalyze the degradation of the template RNA 

in the RNA/DNA hybrid during the reverse transcription [12]. 

The NNRTI and N(t)RTI inhibitors are targeting the reverse transcriptase (RT). N(t)RTI are  

substrate competitive inhibitors, which are analogues of natural deoxynucleotide required for viral DNA 

synthesis [10,11,13,25–27]. In order to be activated, they must be phosphorylated to the triphosphate 

form and, because they lack the 3ʹ-hydroxyl on desoxyribose, they do not allow the incorporation of the 

next deoxynucleotide, thus stopping the synthesis of viral DNA [10,11,13,25–27]. Yet, the big advantage 

is that they are active against both HIV-1 and HIV-2 [10,11,13,25–27]. 
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The NNRTIs are uncompetitive inhibitors that act by allosteric inhibition of DNA polymerization. 

They inhibit RT by binding to a deep hydrophobic pocket different from the NRTI and not far from the 

active site of the p66 subunit, i.e., in the palm subdomain adjacent to the base of the thumb subdomain, 

referred to as the NNRTI binding pocket–NNIBP [10–13,23–27,30,31]. During the binding of NNRTI 

a local conformational change of opening the NNIBP occurs and, after the binding, it changes its 

conformation again, closing the pocket [24,30,31,41]. The NNBP presents different conformations 

depending on the type of compound NNRTI bound [12,24,31,34]. The first generation of NNRTI 

derivatives have more rigid structures, shapes similar to a butterfly, with a hydrophilic body and 

wings formed of hydrophobic groups. The second generation of NNRTI inhibitors have more 

flexible structures, shapes similar to a horseshoe, with polar center and hydrophobic side wings  

(e.g., ripivirine) [24,31,34]. The NNRTIs are highly specific, causing fewer side effects but they 

cannot be used in the treatment of HIV-2 since the resistance to them develops rather quickly by 

moving the entry in NNIBP, therefore casing the loss/change of the hydrophobic interactions and of 

steric hindrance [23,24,30,31,34–36]. 

When NNRTIs bind to their pocket (NNBP) in the HIV-1 RT some conformations are changing with 

structural-functional consequences [10,12,13,23,24,30–33,42–44]: 

 The restriction of thumb mobility; 

 Distortion of the catalytic triad; 

 Repositioning of the primer grip; 

 and loosening the thumb and fingers clamp. 

These changes will lead to the formation of the NNBP whose volume is more than twice than that 

occupied by most of NNRTIs (620–720 Å3) [10,12,13,23,24,30–33,42–44]. The Tyr181 and Tyr188, 

despite originally pointing to the hydrophobic center of the pocket, will rotate towards the direction of 

the catalytic site. Due to this rotation, the catalytic residues will shift their position around 2 Å; therefore, 

the entry in the pocket is flanked by Pro225 and Pro236 which are located on flexible chains.  

At the interface between p66 (surrounded by Leu100, Lys101, Lys103 Val179 and Tyr181) and p51 

(surrounded by Glu1138 and Thr1139) a solvent accessible area is formed [10,12,13,23,24,30,31]. The 

flexibility is crucial for allowing opening and closing “the mouth” for the entrance of the NNRTI [12]. 

The overall shape of the pocket does not vary significantly even with chemically very different NNRTI 

derivatives [23]. In addition to the hinge movement of the thumb, the p66 connection and RNase H 

subdomains are also distorted from the normal position in an unbound enzyme [12]. Although NNRTIs 

bind to RT around 60 Å away from the RNase H active site, several studies have demonstrated that they 

can either partially inhibit or accelerate RNaseH activity [23,45,46]. 

1.4. The NNRTIs–RT Basic Interactions 

Some interactions are crucial and play an important role in binding NNRTIs to  

RT [10,12,13,23,24,30,31]. 

Very important are the hydrophobic π–π interactions present between π-electron containing components 

of the inhibitors and the aromatic residues in RT (Tyr181, Tyr188, Trp229) [10,12,13,23,24,30,31]. 

Equally important are the van de Waals interactions of the inhibitor with various positions in RT 
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(Leu100, Val106, Val179, Leu234) which may increase their affinity to the enzyme, while interactions 

with Lys101, Lys103 and Glu1138 ensure the possibility of catching electrostatic interactions. Likewise, 

the H-bonds between NNRTIs and the enzyme can be an important anchor for them [10,12,13,23,24,30,31]. 

Loss of some key interactions will significantly reduce the potency of the inhibitor. 

Many NNRTIs are active against HIV-1 RT and inactive to HIV-2 RT. This fact can be explained by 

structural differences between the RT HIV-1 and HIV-2. Namely, the HIV-1 RT has a tyrosine residue 

in the 181 position that plays an important role in interacting with many NNRTIs, while HIV-2 RT has 

an isoleucine residue in the 181 position [10,12,13,23,24,30,31,47]. 

Among the most important interactions that an NNRTI should retain with RT while it wiggles and 

jiggles in NNBP are [24]: 

 Hydrophobic sandwiches; 

 A characteristic hydrogen bond with the Lys101 main-chain carbonyl; 

 And water-mediated hydrogen bonds. 

Yet, a series of 1-substituted-3-(3,5-dimethylbenzyl) uracils do not form this H-bond as was shown 

by Maruyama, et al., while the compounds still retain affinity with RT indicating that the H-bond is not 

essential for docking of 1-substituted-3-(3,5-dimethylbenzyl) uracils [48]. 

The biggest challenge for researchers is to identify new compounds that do not lead to resistance and 

also which must be active against various mutations in the virus that already exist. 

The NNRTI resistance mutations impact the binding of the molecules in the NNBP, but some of those 

mutations have also been described to influence functionalities of RT other than DNA polymerization 

(e.g., the V106A and P236L mutations cause a slowing RNaseH cleavage activities while the Y181C 

mutation shows an acceleration of RNaseH cleavage activities) [13,23,49]. Over 40 amino acid 

substitutions (all located in the NNRTI binding pocket) have been identified to be associated with 

NNRTI resistance. They are mainly present in domains which include amino acids 98–108, 178–190, 

and 225–238 of the p66 subunit (the most usual mutations observed in HIV-1 RT relevant to clinical 

NNRTI-resistance are K103N, Y181C, Y318F, Y188C, and L100I) [12,13,23,24,30]. 

The mutation of an aromatic tyrosine to a non-aromatic cysteine causes a dramatic change from  

a hydrophobic environment to a hydrophilic environment of the binding pocket; therefore, most of the 

possible hydrophobic contacts are abolished [50]. Mutations in the p51 subunit at the Glu138 position 

causes resistance to NNRTIs, as well as mutations N384I, T369I, and E399D have been shown to confer 

resistance to both NRTIs and NNRTIs [12,13,23,24,30,51,52]. 

1.5. Overview of the Present Study 

In this broad context, the present paper contributes for the HIV’s “weak spot” [1] by small molecules, 

the pyrimidines in this case. Accordingly, the paper will unfold the follows: 

 Section 2 presents the working pyrimidine series, their structural roots, as well as their SMILES 

(simplified molecular input line entry system) conformations, which were created via the 

controlled breaking of chemical bonds; 

 The generated longest SMILES molecular chain (LoSMoC) and Branching SMILES (BraS) cases 

are further considered in Section 3 as the variational transformation into anti-HIV docking action; 
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 The Section 4 interprets the computational docking results in variational Genuine-LoSMoC-

Branching (BraS) form while selecting the most versatile pyrimidine molecule able to change its 

conformation (variationally). 

The current advanced double-variational algorithm conceptually-computationally adapts to the HIV 

pocket variational shielding—i.e., by combining both binding and conformation information towards 

the docking of the most active anti-HIV ligand. Reference to available knowledge in the anti-HIV by 

HEPTs research field and especially related with the amino acid residues in bonding is systematically 

pursued. The paper closes with general lessons and conclusions on combining the binding with 

conformational change of small molecules aiming at anti-HIV activity. 

2. SMILES of Anti-HIV Pyrimidines 

2.1. Presenting the Anti-HIV HEPT Derivatives 

Post 1996, the most effective treatment for AIDS is the highly-active antiretroviral therapy (HAART). 

To this end the NNRTIs are important components of HAART with high antiviral potency, high 

specificity, and low cytotoxicity [10,23,53–55]. 

The NNRTI class is characterized by a high chemical diversity, with more than 50 families of 

molecules that have been reported so far [10,23,53–55]. 

The era of the pyrimidine NNRTIs started with the discovery of the anti-HIV-1 activity of the HEPT 

derivatives (1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine) [10,23,56,57] (Figure 3). 

Concurrently, the TIBO derivatives (tetrahydroimidazo[4,5,1-jk][1,4]-benzodiazepine-2(1H)-one 

and –thione) were discovered as specific HIV-1 inhibitors targeting the HIV-1 RT, nevirapine, delavirdine, 

and efavirenz being also approved and commercialized for clinical use [10,23,58] (Figure 3). 

The MKC-442 (emivirine) has HEPT origins (Figure 3), even if it was very promising, it was 

abandoned after phase III of clinical trials [10,14,15,28]. 

In addition to HEPT origins is TNK-651 (Figure 3), which has shown to have great potential as  

a NNRTI. For it, virus mutations and rapid installation of resistance were observed, along the decrease 

of PI bioavailability that was tested (as happened in the case of emvirine). As a consequence, any further 

development of this compound was not considered [10,15,21,59]. 

The HEPT-like compounds TNK-651 and emvirine were a source of inspiration for future compounds 

such as those of Figure 3, e.g., [10,12,13,15,21,59,60]: 

 The compound VI (1-benzyloxymethyl-6-(3,5-dimethylbenzyl)-5-iodouracil), has potent NNRTI 

activity against HIV-1 strains resistance (through a halogen at the C-5 position and meta-substituents 

on the C-6 aromatic moiety) [60]; 

 The compound BmPCP (1-[(benzyloxy)methyl]-9-phenyl-6,7,8,9-tetrahydro-1H-cyclohepta[d] 

pyrimidine-2,4-(3H,5H)-dione); 

 The compound VII (6-benzyl-1-(benzyloxymethyl)-3-hydroxy-5-isopropyl-uracil) which proved 

to be a potential dual inhibitor behaving both as NNRTI and INI alike; 

 Worth mentioning the pyrimidin-diones (PYD) among potential dual inhibitors, this time as RT 

and Viral entry inhibitors, as we may list IQP-0410 (SJ-3366) and IQP-0528 compounds featuring 

better inhibitory activity than any congener HEPT derivatives [61–66]. 
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They all have shown very good inhibitory activity versus many strains and subtypes of HIV being 

very potent NNRTIs against HIV-1. While they are not inhibiting HIV RT-2, they still inhibit the entry 

step for both HIV-1 and HIV-2 [61–66]. Moreover, these compounds act synergistically in combination 

with other antiretrovirals (ARV) with no observed toxicity antagonistic effects. For instance, from 

Figure 3, the IQP-0410 proved to be the best candidate for oral therapy in a combination with another 

ARV, such that the resultant combination targeting at least threefold in HIV inhibition; also  

IQP-0528 was developed in the treatment of prevention, as a local microbicide in different forms and 

combinations [61–66]. 

 

Figure 3. Pyrimidine derivatives already tested as NNRTI; the emphasized molecular 

fragments—also represented in the color red—are studied in this work. See text for details. 

On the other side, the TIBO synthesis path successively led to DAPY–diaril-pyrimidine etravirine 

(TMC278) and rilpivirine (TMC120), and dapivirine (TMC125) of Figures 2 and 3, which have so far 

been approved for clinical use [10,12,13,23,67]. Since DAPY NNRTI inhibitors were first produced, 

many derivatives with modifications on the structural diversity of the linker between the right benzene 

ring and the central pyrimidine ring have been developed. The left wing of the DAPY structure was 

confirmed as the indispensable pharmacophore, e.g., the related compounds CH-DAPY, CH(OH)-DAPY, 

CR(OH)-DAPY, CH(CN)-DAPY, C(=NOH)-DAPY, O-DAPY, pDAPY–piperidinylamino-diarylpyrimidine, 

and CAPY–cycloalkyl arylpyrimidines [37,50,67–74]. 
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Another family intensively researched are the DABO derivatives (dihydro-alkoxy-benzyl-oxopyrimidine), 

a molecular class having in the C-2 position the presence of an alkoxy group for DABO derivatives. 

Accordingly, the compounds like alkylthio for S-DABO or as alkylamino for NH-DABO are important 

for their activity as NNRTI. This is because the C-2, C-5, and C-6 substituent effects were tightly linked: 

the optimal moieties at positions 5 and 6 of the pyrimidine nucleus are dependent on the nature of the 

C-2 side chain. Some representatives from S-DABO family are compounds VIII–XII in Figure 3, while 

some DABO derivatives are currently tested as microbicides or were obtained hybrids DAPY-DABO 

with a very good inhibitory activity [75–83]. 

The literature also communicates very different structures of NNRTI containing the pyrimidine core  

and exhibiting very good anti-HIV activity, as seen from Figure 3, the pyrimidine-catechol-diether  

compounds XIII and XIV, or compound XV and compound XVI (representative for a novel class of  

2-pyrimidinylphenylamine derivatives) [39,40,84–86]. Similar compounds are 1,3-dibenzyl-uracil 

derivates, e.g., benzylated pyrimidines, being substituted in N1 and/or N3 position of pyrimidine nucleus 

by Maruyama et al. [28,48,87–91]; they have been synthesized and tested as the compounds XVII and 

XX in Figure 3 (see Novikov et al. [92–95]). 

The HEPT derivatives inspired Maruyama, et al. to identify for 1,3-disubstituted uracil derivatives 

wwith very good anti-HIV-1 activity as NNRTIs, and in Figure 3 presented as the compounds 18 

(BBF29) and 29—representative for the series of our study—see also Table 1 and forthcoming discussion. 

Based on compound 18 other compounds with increased anti-HIV-1 activity have been developed, 

namely (cf. Figure 3) [28,48,87–91]: 

 The compounds XXI (3-(3,5-dimethylbenzyl)-1-(2-pyridinylmethyl)-2,4(1H,3H)-pyrimidinedione) 

and XXII (3-(3,5-dimethylbenzyl)-1-(4-pyridinylmethyl)-2,4(1H,3H)-pyrimidinedione); 

 The foremost representative compounds AzBBU (6-azido-1-benzyl-3-(3,5-dimethylbenzyl) uracil) 

presumed to be reduced by metabolic pathway in AmBBU (6-amino-1-benzyl-3-(3,5-

dimethylbenzyl)uracil; 

 The derivates of AmBBU as compounds XXIII (6-amino-3-(3,5-dimethylbenzyl)-1-(4-

pyridinylmethyl)-uracil and XXIV (6-Amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)-uracil. 

Nevertheless, dedicated studies confirm that one of the most usual mutations (Y181C) seems to be 

sufficient for the acquisition of resistance to AzBBU and AmBBU, while other common NNRTI 

resistance mutations, such as K101E, K103N, and Y188C, were not identified for which the compound 

18 shares similar properties [28]. 

2.2. SMILES Forms for Working HEPT Derivatives 

From this point onward, one employs the working molecules under those actually most likely to form, 

targeting the considered end-point, namely the anti-HIV activity, as produced by uracil-based  

pyrimidines [87,96]. They are represented by the (gas-phase) genuine molecular structure alongside the 

two forms of their simplified molecular input line entry system (SMILES) structure, as presented in 

Table 1, respectively [9,96–99]. 
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Table 1. Working molecules (IUPAC name and molecular weight MW are indicated ) and their corresponding SMILES topology, i.e.,  

the longest SMILES molecular chain (LoSMoC) as upper entry and the Branching SMILES (BraS) as down entry, for each pyrimidine structure 

considered, manifesting antiviral activity of 1,3-disubstituted uracils against human immunodeficiency virus (HIV-1) [87], with AIDS code 

indicated [96], respectively. SMILES legend is:  principal SMILES chain;  secondary SMILES branch;  tertiary SMILES branch; 

 quaternary SMILES branch; = double bond; # triple bond; /,\ directional bonds; ( ) branch; C, N, F, S, I–atoms present in the molecule;  

c, n–atoms place in an aromatic ring; C1/2/3, N1/2, c1/2/3, n2–connectivity points [97–99]. 

No. Structure 2D IUPAC Name MW AIDS Code 
SMILES Configurations 

LoSMoC Code LoSMoC 
BraS Code BraS 

1 N

NO

O

N  

[3-(2-Methyl-benzyl)-2,4-dioxo-3,4-
dihydro-2H-pyrimidin-1-yl]-acetonitrile 255.28 AIDS352092 

N#CCN1/C=C\C(=O)  
N(C1=O)Cc2ccc(C)c(C)c2 

O=C1N(Cc(c(C)cc2)cc2)  
C(N(/C=C1\)CC#N)=O 

2 N

NO

O

N  

[3-(3-Methyl-benzyl)-2,4-dioxo-3,4-
dihydro-2H-pyrimidin-1-yl]-acetonitrile 

255.28 AIDS352093 

N#CCN1/C=C\C(=O)  
N(C1=O)Cc2cccc(C)c2 

O=C1N(Cc(cc(C)c2)cc2)  
C(N(/C=C1\)CC#N)=O 
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Table 1. Cont. 

No. Structure 2D IUPAC Name MW AIDS Code 
SMILES Configurations 

LoSMoC Code LoSMoC 
BraS Code BraS 

3 N

NO

O

N  

[3-(4-Methyl-benzyl)-2,4-dioxo-3,4-
dihydro-2H-pyrimidin-1-yl]-acetonitrile 

255.28 AIDS352094 

N#CCN1/C=C\C(=O)  
N(C1=O)Cc2ccc(C)cc2 

O=C1N(Cc(ccc2C)cc2)  
C(N(/C=C1\)CC#N)=O 

4 N

NO

O

N  

[3-(2,4-Dimethyl-benzyl)-2,4-dioxo-3,4-
dihydro-2H-pyrimidin-1-yl]-acetonitrile 

269.30 AIDS352888 

N#CCN1/C=C\C(=O)  
N(C1=O)Cc2ccc(C)cc2C 

O=C1N(Cc2c(cc(cc2)C)C)  
C(N(/C=C1\)CC#N)=O 
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Table 1. Cont. 

No. Structure 2D IUPAC Name MW AIDS Code 
SMILES Configurations 

LoSMoC Code LoSMoC 
BraS Code BraS 

5 N

NO

O

N  

[3-(2,5-Dimethyl-benzyl)-2,4-dioxo-3,4-
dihydro-2H-pyrimidin-1-yl]-acetonitrile 

269.30 AIDS352889 

N#CCN1/C=C\C(=O)  
N(C1=O)Cc2cc(C)ccc2C 

O=C1N(Cc(cc(C)c2)c(c2)C)  
C(N(/C=C1\)CC#N)=O 

6 N

NO

O

N  

[3-(2,6-Dimethyl-benzyl)-2,4-dioxo-3,4-
dihydro-2H-pyrimidin-1-yl]-acetonitrile 

269.30 AIDS352890 

N#CCN1/C=C\C(=O)  
N(C1=O)Cc2c(C)cccc2C 

O=C1N(Cc(c(C)cc2)c(C)c2)  
C(N(/C=C1\)CC#N)=O 
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Table 1. Cont. 

No. Structure 2D IUPAC Name MW AIDS Code 
SMILES Configurations 

LoSMoC Code LoSMoC 
BraS Code BraS 

7 N

NO

O

N  

[3-(3,5-Dimethyl-benzyl)-2,4-dioxo-3,4-
dihydro-2H-pyrimidin-1-yl]-acetonitrile 

269.30 AIDS352095 

N#CCN1/C=C\C(=O)  
N(C1=O)Cc2cc(C)cc(C)c2 

O=C1N(Cc(cc(C)c2)cc2C)  
C(N(/C=C1\)CC#N)=O 

8 N

NO

O

N  

[3-(3,4-Dimethyl-benzyl)-2,4-dioxo-3,4-
dihydro-2H-pyrimidin-1-yl]-acetonitrile 

269.30 AIDS352891 

N#CCN1/C=C\C(=O)  
N(C1=O)Cc2ccc(C)c(C)c2 

O=C1N(Cc(cc(c2C)C)cc2)  
C(N(/C=C1\)CC#N)=O 
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Table 1. Cont. 

No. Structure 2D IUPAC Name MW AIDS Code 
SMILES Configurations 

LoSMoC Code LoSMoC 
BraS Code BraS 

9 N

NO

O

N  

[3-(2,4,6-Trimethyl-benzyl)- 2,4-dioxo-3,4-
dihydro-2H-pyrimidin-1-yl]-acetonitrile 

283.33 AIDS352892 

N#CCN1/C=C\C(=O)  
N(C1=O)Cc2c(C)cc(C)cc2C 

O=C1N(Cc2c(cc(cc2C)C)C)  
C(N(/C=C1\)CC#N)=O 

10 
N

NO

O

N

N

 

[3-(3-Cyanophenyl)methyl-2,4-dioxo-3,4-
dihydro-2H-pyrimidin-1-yl]-acetonitrile 

266.26 AIDS352893 

N#CCN1/C=C\C(=O)  
N(C1=O)Cc2cccc(c2)C#N 

O=C1N(Cc(cc(C#N)c2)cc2)  
C(N(/C=C1\)CC#N)=O 
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Table 1. Cont. 

No. Structure 2D IUPAC Name MW AIDS Code 
SMILES Configurations 

LoSMoC Code LoSMoC 
BraS Code BraS 

11 N

NO

O

N

O O

 

[3-(3,5-Dimethoxy-benzyl)-2,4-dioxo-3,4-
dihydro-2H-pyrimidin-1-yl]-acetonitrile 

301.30 AIDS352897 

N#CCN1/C=C\C(=O)N(C1=O)  
Cc2cc(OC)cc(c2)OC 

O=C1N(Cc(cc2OC)cc(OC)c2)  
C(N(/C=C1\)CC#N)=O 

12 N

NO

O

N

OO
O

 

[3-(3,4,5-trimethoxy-benzyl)-2,4-dioxo-3,4-
dihydro-2H-pyrimidin-1-yl]-acetonitrile 

331.33 AIDS352898 

N#CCN1/C=C\C(=O)N(C1=O)  
Cc2cc(OC)c(OC)c(c2)OC 

O=C1N(Cc2cc(c(OC)c(OC)c2)OC)  
C(N(/C=C1\)CC#N)=O 
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Table 1. Cont. 

No. Structure 2D IUPAC Name MW AIDS Code 
SMILES Configurations 

LoSMoC Code LoSMoC 
BraS Code BraS 

13 N

NO

O

N  

(3-Naphthalen-1-ylmethyl-2,4-dioxo-3,4-
dihydro-2H-pyrimidin-1-yl)-acetonitrile 

291.31 AIDS352899 

N#CCN1/C=C\C(=O)N  
(C1=O)Cc3c2ccccc2ccc3 

O=C1N(Cc(c(cc3)c(cc3)c2)cc2)  
C(N(/C=C1\)CC#N)=O 

14 

N

NO

O

N

 

(3-Naphthalen-2-ylmethyl-2,4-dioxo-3,4-
dihydro-2H-pyrimidin-1-yl)-acetonitrile 

291.31 AIDS352900 

N#CCN1/C=C\C(=O)N  
(C1=O)Cc3cc2ccccc2cc3 

O=C1N(Cc(cc(ccc3)c2c3)cc2)  
C(N(/C=C1\)CC#N)=O 

15 
N

NO

O

N  

(3-Biphenyl-4-ylmethyl-2,4-dioxo-3,4-
dihydro-2H-pyrimidin-1-yl)-acetonitrile 

317.35 AIDS352901 

N#CCN1/C=C\C(=O)N  
(C1=O)Cc2ccc(cc2)c3ccccc3 

O=C1N(Cc(c2)ccc(c(cc3)ccc3)c2)  
C(N(/C=C1\)CC#N)=O 
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Table 1. Cont. 

No. Structure 2D IUPAC Name MW AIDS Code 
SMILES Configurations 

LoSMoC Code LoSMoC 
BraS Code BraS 

16 

N

NO

O

 

1-Benzyl-3-phenyl-1H-pyrimidine-2,4-dione 278.31 AIDS352902 

c1ccccc1CN2/C=C\C(=O)  
N(C2=O)c3ccccc3 

O=C1N(c(cc2)ccc2)C(N(/C=C1\)  
Cc(ccc3)cc3)=O 

17 
N

NO

O

 

1,3-Dibenzyl-1H-pyrimidine-2,4-dione 292.34 AIDS352903 

c1ccccc1CN2/C=C\C(=O)  
N(C2=O)Cc3ccccc3 

O=C1N(Cc(ccc2)cc2)C  
(N(/C=C1\)Cc(ccc3)cc3)=O 

18 
N

NO

O

 

1-Benzyl-3-(3,5-dimethyl-benzyl)-1H-
pyrimidine-2,4-dione 

320.39 AIDS352096 

c1ccccc1CN2/C=C\C(=O)  
N(C2=O)Cc3cc(C)cc(C)c3 

O=C1N(Cc(cc(C)c2)cc2C)C  
(N(/C=C1\)Cc(ccc3)cc3)=O 
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Table 1. Cont. 

No. Structure 2D IUPAC Name MW AIDS Code 
SMILES Configurations 

LoSMoC Code LoSMoC 
BraS Code BraS 

19 
N

NO

O
N

 

1-Benzyl-3-(4,6-dimethyl-pyridin-2-
ylmethyl)-1H-pyrimidine-2,4-dione 

321.38 AIDS352904 

c1ccccc1CN2/C=C\C(=O)  
N(C2=O)Cc3nc(C)cc(C)c3 

O=C1N(Cc(cc(C)c2)nc2C)C  
(N(/C=C1\)Cc(ccc3)cc3)=O 

20 
N

NO

O

 

1-Benzyl-3-(3,5-dimethyl-benzyl)-5-
methyl-1H-pyrimidine-2,4-dione 

334.42 AIDS352905 

c1ccccc1CN2/C=C\(C)C(=O)  
N(C2=O)Cc3cc(C)cc(C)c3 

O=C1N(Cc(cc(C)c2)cc2C)  
C(N(/C=C1\C)Cc(ccc3)cc3)=O 
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Table 1. Cont. 

No. Structure 2D IUPAC Name MW AIDS Code 
SMILES Configurations 

LoSMoC Code LoSMoC 
BraS Code BraS 

21 
N

NO

O
I

 

1-Benzyl-3-(3,5-dimethyl-benzyl)-5-iodo-
1H-pyrimidine-2,4-dione 

446.29 AIDS352906 

c1ccccc1CN2/C=C\(I)C(=O)  
N(C2=O)Cc3cc(C)cc(C)c3 

O=C1N(Cc(cc(C)c2)cc2C)  
C(N(/C=C1\I)Cc(ccc3)cc3)=O 

22 

N

NO

O

F

F  

1-(2,6-Difluoro-benzyl)-3-phenyl-1H-
pyrimidine-2,4-dione 

314.29 AIDS352907 

Fc1cccc(F)c1CN2/C=C\C 
(=O)N(C2=O)c3ccccc3 

O=C1N(c(cc2)ccc2)C(N(/C=C1\)  
Cc(c(F)cc3)c(F)c3)=O 
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Table 1. Cont. 

No. Structure 2D IUPAC Name MW AIDS Code 
SMILES Configurations 

LoSMoC Code LoSMoC 
BraS Code BraS 

23 
N

NO

O

F

F  

1-(2,6-Difluoro-benzyl)-3-(3,5-dimethyl-
benzyl)-1H-pyrimidine-2,4-dione 

356.37 AIDS352908 

Fc1cccc(F)c1CN2/C=C\C(=O)  
N(C2=O)Cc3cc(C)cc(C)c3 

O=C1N(Cc(cc(C)c2)cc2C)C  
(N(/C=C1\)Cc(c(F)cc3)c(F)c3)=O 

24 
N

NO

O
N

F

F  

1-(2,6-Difluoro-benzyl)-3-(4,6-dimethyl-
pyridin-2-ylmethyl)-1H-pyrimidine-2,4-

dione 
357.36 AIDS352909 

Fc1cccc(F)c1CN2/C=C\C(=O)  
N(C2=O)Cc3nc(C)cc(C)c3 

O=C1N(Cc(cc(C)c2)nc2C)C  
(N(/C=C1\)Cc(c(F)cc3)c(F)c3)=O 
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Table 1. Cont. 

No. Structure 2D IUPAC Name MW AIDS Code 
SMILES Configurations 

LoSMoC Code LoSMoC 
BraS Code BraS 

25 
N

NO

O

N

F

F  

1-(2,6-Difluoro-benzyl)-3-(2,6-dimethyl-
pyridin-4-ylmethyl)-1H-pyrimidine-2,4-

dione 
357.36 AIDS352910 

Fc1cccc(F)c1CN2/C=C\C(=O)  
N(C2=O)Cc3cc(C)nc(C)c3 

O=C1N(Cc(cc(C)n2)cc2C)C(N(/C=C1\)  
Cc(c(F)cc3)c(F)c3)=O 

26 
N

NO

O

F

F

F

F

 

1,3-Bis-(2,6-difluoro-benzyl)-1H-
pyrimidine-2,4-dione 

364.30 AIDS352911 

Fc1cccc(F)c1CN2/C=C\C(=O)  
N(C2=O)Cc3c(F)cccc3F 

O=C1N(Cc(c(F)cc2)c(F)c2)C  
(N(/C=C1\)Cc(c(F)cc3)c(F)c3)=O 
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Table 1. Cont. 

No. Structure 2D IUPAC Name MW AIDS Code 
SMILES Configurations 

LoSMoC Code LoSMoC 
BraS Code BraS 

27 

N

NO

O

 

3-(3,5-Dimethyl-benzyl)-1-phenethyl-1H-
pyrimidine-2,4-dione 

334.42 AIDS352912 

c1ccccc1CCN2/C=C\C(=O)  
N(C2=O)Cc3cc(C)cc(C)c3 

O=C1N(Cc(cc(C)c2)cc2C)  
C(N(/C=C1\)CCc(cccc3)c3)=O 

28 N

NO

O

 

3-(3,5-Dimethyl-benzyl)-1-prop-2-ynyl-1H-
pyrimidine-2,4-dione 

268.32 AIDS352913 

C#CCN1/C=C\C(=O)  
N(C1=O)Cc2cc(C)cc(C)c2 

O=C1N(Cc(cc(C)c2)cc2C)  
C(N(/C=C1\)CC#C)=O 
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Table 1. Cont. 

No. Structure 2D IUPAC Name MW AIDS Code 
SMILES Configurations 

LoSMoC Code LoSMoC 
BraS Code BraS 

29 
N

NO

O

 

1,3-Bis-(3,5-dimethyl-benzyl)-1H-
pyrimidine-2,4-dione 

348.44 AIDS352914 

c1c(C)cc(C)cc1CN2/C=C\C(=O)  
N(C2=O)Cc3cc(C)cc(C)c3 

O=C1N(Cc(cc(C)c2)cc2C)C  
(N(/C=C1\)Cc(cc(cc3C)C)c3)=O 

30 N

NO

S

N  

[3-(3,5-Dimethyl-benzyl)-2-oxo-4-thioxo-
3,4-dihydro-2H-pyrimidin-1-yl]-acetonitrile 

285.36 AIDS352915 

N#CCN1/C=C\C(=S)N  
(C1=O)Cc2cc(C)cc(C)c2 

S=C1N(Cc(cc(C)c2)cc2C)  
C(N(/C=C1\)CC#N)=O 
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Table 1. Cont. 

No. Structure 2D IUPAC Name MW AIDS Code 
SMILES Configurations 

LoSMoC Code LoSMoC 
BraS Code BraS 

31 
N

NO

S

 

1-Benzyl-3-(3,5-dimethyl-benzyl)-4-thioxo-
3,4-dihydro-1H-pyrimidin-2-one 

336.45 AIDS352916 

c1ccccc1CN2/C=C\C(=S)  
N(C2=O)Cc3cc(C)cc(C)c3 

S=C1N(Cc(cc(C)c2)cc2C)  
C(N(/C=C1\)Cc(ccc3)cc3)=O 

32 
N

NO

S

F

F

 

1-(2,6-Difluoro-benzyl)-3-(3,5-dimethyl-
benzyl)-4-thioxo-3,4-dihydro-1H-

pyrimidin-2-one 
372.43 AIDS352917 

Fc1cccc(F)c1CN2/C=C\C(=S)  
N(C2=O)Cc3cc(C)cc(C)c3 

S=C1N(Cc(cc(C)c2)cc2C)  
C(N(/C=C1\)Cc(c(F)cc3)c(F)c3)=O 
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• The longest SMILES molecular chain (LoSMoC) is assumed to be the first stage in intermediary 

molecular defolding targeting the receptor. It is obtained by breaking one bond in every aromatic 

ring in the original molecule. The resulting “molecule” is displayed as a sort of 2D form for the 

original molecule, so casting a kind of “fractalic” chain; the maximum SMILES chain in LoSMoC 

is presumably responsible for best transport/transduction of ligand molecules through cellular 

(lipidic) walls. Afterwards they may be released with a modified structure due to their further 

ionization upon the interaction with cellular layers. Accordingly, another form of SMILES is 

generated and next to be considered, as follows; 

• The Branching SMILES (BraS) represents the second conformation-phase of molecular defolding. 

It is obtained by ligand bonds’ breaking such that many “bays” are formed, yet with consistent 

“arms” linking the short molecular “skeleton” aiming to favor the binding with receptor in its 

pockets. Accordingly, the branching is not necessary in the same points of molecules through  

a series, yet an ”equilibrium” between maximum branching and stericity of branches accounts for 

the final BraS. For instance, a long branch adjacent to a short one will make an “anchor” not strong 

enough to bind the receptor pocket. Therefore, the “branching principle” requires having the 

equilibrated anchor-clefs by themselves. As such, the branching up to fourth order is performed 

for molecules in Table 1. 

However, one should note the fact that most of the drugs are ionized once immersed in the biological 

body in accordance with the present two-steps of SMILES conformations. This happens because in each 

of these stages more nucleophilic compounds are considered due to the successive bond breaking and 

the loss of electronic pairs paralleling the defolding process from original to LoSMoC to BraS configurations. 

These SMILES metabolic intermediates, posing nucleophilic active sides, are nevertheless confirmed 

at least for fused and non-fused diazines including those based on pyrimidines [100]. In this context, 

their antiviral and anti-HIV acting in special [101–104] and anti-inflammatory effects, in general, was 

already demonstrated [105–107]. 

Remarkably, the present SMILES analysis was also conceptually confirmed at least in two different 

ways, as follows: 

 By the computational proof of the uncatalyzed racemization process where the openings and 

closures of the pyrimidinic nuclei happen just there where the above LoSMoc take places (Table 1). 

Therefore the concerned binding breaks go through a sort of SMILES transformations with a lower 

energy, following the principle of favoring the longest chain in molecular configuration. This is 

already a sort of structural variational principle in chemical bonding [108]; 

 By the recent QSARINS-Chem model for QSAR studies recognizing the role of SMILES 

canonical rules in correctly assessing the query and parsing the structure-activity algorithm (for 

the LoSMoC and BraS conformations, for instance) [109]. 

Worth noting is that the QSAR analysis performed by some of the present authors already revealed 

the general mechanism of action for the Genuine-LoSMoC-BraS related configuration for the actual 

pyrimidines’ anti-HIV ligands of Table 1 [97–99]. Yet, assessing of the highest propensity of anti-HIV 

binding for the individual molecule in the actual set of working compounds remains the aim of this work. 

The previous limitation is natural due to the statistical nature of the QSAR approach working with 

a pool of molecules while, for individual identification of the “most active” molecule in the sense 
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of binding-and-conformation, the complementary analysis should be performed. A viable route in this 

regard is the docking approach by which also the amino acid residues’ presence assisting the  

bonding-conformation of a certain molecule may be predicted. This procedure is presented below with 

the discussion of the results in the forthcoming section. 

3. Docking of Anti-HIV 1,3-Disubstituted Uracil Derivatives 

3.1. Docking Algorithm 

Molecular docking is used to predict the noncovalent binding of two molecules (usually a protein as 

the receptor molecule and a small ligand) and the affinity of binding. It starts with their unbound  

three-dimensional structures extracted from databases or obtained by computational methods. In our 

study we use, as a receptor molecule, the HIV-1 reverse transcriptase (HIV-1RT) and, as small ligands, 

a collection of 32 uracil derivatives with anti-HIV potential [97–99]. 

There are numerous three-dimensional structures of complexes made by the HIV-1RT with  

inhibitors in the Protein Data Bank (PDB) [110]. We have chosen in our study the high-resolution 

structure (1.8 Å) of the complex of HIV-1RT with (4-{[4-({4-[(E)-2-cyanoethenyl]-2,6-dimethylphenyl} 

amino)pyrimidin-2-yl]amino}benzonitrile (also called TMC278 or rilpivirine), a highly effective drug 

in treating wild-type and drug-resistant HIV-1 infections in clinical trials [111]. This structure of the 

HIV-1 RT heterodimer, in complex with the TMC278 drug, has the PDB code entry 2ZD1 and reflects 

an open-cleft conformation resembling those seen in other complexes of RT with nonnucleoside reverse 

transcriptase inhibitors (NNRTIs) [32,42,112]. The binding site of the drug is a hydrophobic tunnel 

connecting the NNRTI-binding pocket to the nucleic acid-binding cleft and is composed by residues 

belonging to both monomeric chains: L100, K101, K103, Y188, Y188, F227, W229, L234, H235, and 

P236 of the A chain (RT p66 subunit) and E138 of the B chain (RT p51 subunit) [111]. In our study we 

have considered, for the receptor structure, only the region containing the binding site of the TMC278 

drug. The receptor has been prepared for molecular docking calculations by cleaning the heteroatoms 

and adding charges using the DockPrep facility under the UCSF Chimera package [113] UCSF Chimera 

package is also used for molecular docking outcome visualization and interpretation. 

For molecular docking studies we used two online servers, PatchDock [114] and 1-Click Docking [115], 

based on distinct approaches for predicting the ligand-receptor complexes. PatchDock webserver 

performs structure prediction for both protein-protein and protein-small ligand complexes using  

a geometry-based molecular docking algorithm [114]. This algorithm is based on finding the 

transformations that produce a local good geometric shape complementarity by considering wide 

interface areas and small amounts of steric clashes, considering wide interface areas guarantees the 

inclusion of the local individualities of the docked molecules with complementary features. The 

transformations are classified using a scoring function that takes into account both the geometric fit and 

atomic desolvation energy and the redundant solutions are rejected by applying a root mean square 

deviation (RMSD) clustering. In our calculations we have used blind docking with default options,  

a clustering RMSD value of 4 Å, and “protein-small ligand” as complex type. FireDock webserver [116] 

has been used to refine the PatchDock predictions. It delivers the global energy of each enzyme-inhibitor 

complex predicted by PatchDock software. 
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The 1-Click Docking is an on-line server that predicts the binding orientation of a small ligand to  

a protein and gives a rough estimation of the binding affinity. It uses AutoDock Vina [115] with default 

parameters for docking calculations. AutoDock Vina is a docking algorithm based on a scoring function 

that approximates the standard chemical potentials of the molecular system. It is computed by combining 

empirical information concerning the conformational preferences of the receptor-ligand complexes and 

the experimental affinity measurements [115]. This server also gives information about the toxic 

potential of the ligand. 

3.2. Docking Results 

Both the 1-Click Dock and PatchDock results for the binding of molecule 25 to HIV-1RT are 

presented in Figure 4: the protein is presented as backbone and continuous surface (brown), the drug 

rilpivirine is presented as yellow sticks, the Genuine molecule 25 as green sticks, the molecule 25 

branched as red sticks and the molecule 25 as LoSMoC as blue sticks. 

(A) (B) 

(C) (D) 

Figure 4. (A) The structure of HIV-1RT with rilpivirine drug bounded in a known place/situs 

to protein as our molecules; (B) more details on the docking of rilpivirine drug and the 

molecule no. 25 of Table 1; (C) still a different variant of 1-Click Docking results with 

molecule 25, yet with dashed surface and without adjacent amino acids; and (D) The 

PatchDock result of molecule no. 25, with the same color legend: the Genuine, BraS, and 

LoSMoC as green, red, and blue sticks, respectively. 
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However, the results for all the molecular series in the Table 1 are displayed in the Tables 2-4 for the 

genuine, LoSMoc and BraS configurations, respectively. 

Table 2. Results for the genuine molecules of Table 1 in terms of molecular surface and 

volume, docking algorithms as PatchDock and 1-Click Docking with the reported global 

energy and interface area—for the first approach and with the binding affinity and toxicity 

for the second one, respectively. 

Molecule 
Genuine, No. 

Molecular 
Area (Å2) 

Molecular 
Volume (Å3) 

PatchDock 1-Click Docking 
Global Energy 

(kcal) 
Interface 
Area (Å2) 

Binding Affinity 
(kcal/mol) 

Toxicity 

1 318.3 358.2 −20.44 442.80 −9.30 Potentially toxic 

2 333.7 386.2 −22.24 511.40 −9.40 Potentially toxic 

3 326.8 363.1 −21.83 450.40 −8.30 Potentially toxic 

4 342.4 388.7 −23.85 489.70 −8.70 Potentially toxic 

5 342.4 390.2 −25.24 481.00 −9.40 Potentially toxic 

6 331.6 387.0 −22.86 498.10 −9.60 Potentially toxic 

7 351.9 396.1 −22.67 505.00 −9.70 Potentially toxic 

8 345.3 391.0 −22.97 505.10 −9.10 Potentially toxic 

9 356.1 419.9 −24.63 546.00 −9.20 Potentially toxic 

10 318.2 345.7 −20.48 467.00 −5.80 Potentially toxic 

11 369.7 417.4 −23.89 549.00 −8.20 Potentially toxic 

12 398.3 462.5 −27.82 567.70 −7.40 Potentially toxic 

13 351.1 395.9 −25.03 526.70 −7.20 Potentially toxic 

14 353.0 393.1 −23.19 503.40 −6.50 Potentially toxic 

15 392.1 438.1 −24.34 560.90 −7.70 Potentially toxic 

16 349.9 393.7 −23.11 511.20 −10.4 Nontoxic 

17 371.5 422.9 −25.89 546.00 −10.2 Nontoxic 

18 422.3 489.4 −27.34 587.30 −11.3 Nontoxic 

19 414.9 483.3 −26.99 587.80 −10.8 Nontoxic 

20 444.0 515.1 −28.83 675.00 −10.7 Nontoxic 

21 433.1 501.9 −26.78 648.00 −11.8 Nontoxic 

22 354.3 399.4 −24.97 509.10 −10.00 Nontoxic 

23 426.6 496.1 −23.31 561.70 −11.10 Nontoxic 

24 424.4 488.1 −28.24 616.30 −8.00 Nontoxic 

25 422.1 486.2 −24.82 616.30 −10.50 Nontoxic 

26 380.9 438.0 −23.53 543.50 −10.40 Nontoxic 

27 439.4 531.0 −26.85 657.80 −11.10 Nontoxic 

28 363.9 406.1 −25.77 512.00 −9.50 Potentially toxic 

29 427.9 556.1 −29.82 707.10 −11.50 Potentially toxic 

30 354.4 399.9 −23.58 506.00 −9.20 Potentially toxic 

31 427.7 493.1 −26.48 594.70 −11.00 Potentially toxic 

32 427.7 497.8 −25.84 630.80 −11.3 Potentially toxic 
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Table 3. The same type of results as in Table 2, yet here for the LoSMoC configuration of 

molecules of Table 1. 

Molecule 
Branched 

Molecular 
Area (Å2) 

Molecular 
Volume (Å3) 

PatchDock 1-Click Docking 
Global 

Energy (kcal) 
Interface 
Area (Å2) 

Binding Affinity 
(kcal/mol) 

Toxicity 

1 331.5 380.4 −22.09 473.00 −7.40 Potentially toxic 

2 336.3 376.7 −20.69 488.80 −4.60 Potentially toxic 

3 335.9 375.7 −23.66 492.60 −4.70 Potentially toxic 

4 347.2 404.5 −25.32 519.20 −6.00 Potentially toxic 

5 349.7 397.6 −23.10 505.20 −5.80 Potentially toxic 

6 346.1 400.4 −22.69 489.00 −7.60 Potentially toxic 

7 361.3 410.0 −24.06 534.60 −7.40 Potentially toxic 

8 356.3 406.3 −24.02 509.01 −7.60 Potentially toxic 

9 365.2 431.1 −26.85 536.70 −8.10 Potentially toxic 

10 327.4 359.4 −21.72 454.00 −7.00 Potentially toxic 

11 380.0 424.9 −22.46 529.70 −5.20 Potentially toxic 

12 406.1 474.6 −24.31 591.40 −5.50 Potentially toxic 

13 384.7 409.6 −22.06 506.80 −7.90 Potentially toxic 

14 387.3 413.5 −22.16 510.20 – Potentially toxic 

15 400.3 446.4 −28.20 605.70 – Potentially toxic 

16 370.1 412.6 −22.53 502.10 −8.20 Potentially toxic 

17 397.1 449.0 −27.21 580.10 −8.30 Potentially toxic 

18 442.5 509.4 −26.17 655.10 −6.10 Potentially toxic 

19 440.3 501.3 −28.46 633.20 −8.00 Potentially toxic 

20 462.3 539.0 −26.17 644.20 −8.60 Potentially toxic 

21 448.7 515.7 −23.04 620.80 −6.30 Potentially toxic 

22 372.3 414.4 −23.59 515.10 −8.00 Potentially toxic 

23 440.4 509.4 −21.71 640.60 −8.30 Potentially toxic 

24 438.2 501.1 −24.35 635.40 −8.20 Potentially toxic 

25 439.6 501.1 −24.44 647.80 −7.80 Potentially toxic 

26 397.7 451.8 −23.62 561.50 −8.00 Potentially toxic 

27 461.2 536.0 −26.39 538.50 −8.20 Potentially toxic 

28 368.2 413.0 −22.06 522.40 −7.70 Potentially toxic 

29 486.9 569.1 −25.86 582.70 −8.20 Potentially toxic 

30 362.7 410.5 −24.05 544.80 −7.80 Potentially toxic 

31 442.9 512.5 −25.96 638.20 −8.20 Potentially toxic 

32 445.6 515.6 −27.96 648.00 −8.30 Potentially toxic 

Nevertheless, the results of Tables 2–4 are to be analyzed in light of the conformational-binding 

variational approach of the Genuine-LoSMoC-BraS transformations as in the sequel presented  

and discussed. 
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Table 4. The same type of results as in Tables 2 and 3, yet here for the BraS configuration 

of molecules of Table 1. 

Molecule 
Branched 

Molecular 
Area (Å2) 

Molecular 
Volume (Å3) 

PatchDock 1-Click Docking (AutoDock Vina) 
Global 

Energy (kcal) 
Interface 
Area (Å2) 

Binding Affinity 
(kcal/mol) 

Toxicity 

1 326.5 369.3 −21.18 485.20 −7.60 Potentially toxic 

2 336.5 376.9 −23.16 493.90 −8.50 Potentially toxic 

3 336.0 375.8 −25.23 460.00 −4.80 Potentially toxic 

4 347.9 404.4 −24.99 501.60 −7.90 Potentially toxic 

5 349.7 397.6 −23.10 505.20 −8.00 Potentially toxic 

6 346.3 400.3 −23.43 514.70 −7.80 Potentially toxic 

7 361.2 409.9 −23.06 547.80 −8.50 Potentially toxic 

8 356.2 406.2 −24.23 534.00 −7.50 Potentially toxic 

9 365.2 431.7 −27.04 549.00 −8.20 Potentially toxic 

10 327.4 359.5 −23.38 631.10 −7.40 Potentially toxic 

11 380.0 424.9 −22.46 529.70 −4.40 Potentially toxic 

12 406.6 474.7 −26.03 582.90 −5.40 Potentially toxic 

13 384.8 409.6 −21.70 478.10 – Potentially toxic 

14 387.3 413.4 −21.12 505.00 −8.10 Potentially toxic 

15 400.4 446.5 −26.23 551.60 −5.90 Potentially toxic 

16 370.7 413.1 −23.37 529.00 −4.30 Potentially toxic 

17 397.5 451.6 −24.88 559.50 – Potentially toxic 

18 442.5 509.1 −27.12 669.40 −5.10 Potentially toxic 

19 440.7 501.7 −27.25 611.10 −4.90 Potentially toxic 

20 462.2 538.5 −26.01 611.90 −4.60 Potentially toxic 

21 448.7 517.7 −21.27 652.50 −5.60 Potentially toxic 

22 372.5 414.5 −23.57 533.30 −8.60 Potentially toxic 

23 440.5 509.2 −23.94 592.30 −5.10 Potentially toxic 

24 438.0 500.4 −23.90 626.80 −5.00 Potentially toxic 

25 439.3 501.2 −23.70 596.90 −9.30 Potentially toxic 

26 399.5 454.1 −24.27 576.00 −10.10 Potentially toxic 

27 461.4 536.5 −27.21 677.00 −5.60 Potentially toxic 

28 368.4 412.9 −22.02 540.60 −8.20 Potentially toxic 

29 486.7 568.8 −22.23 681.00 −8.80 Potentially toxic 

30 362.9 410.4 −24.80 518.90 −4.20 Potentially toxic 

31 443.0 512.8 −25.04 655.50 −5.00 Potentially toxic 

32 445.7 515.7 −23.38 631.10 – Potentially toxic 

4. Discussion: Variational Binding-Conformational Analysis 

4.1. The Double Variational Output 

The present variational approach combines the binding with conformation information in establishing 

the best molecular structure, out of compounds of Table 1 that best fits in the HIV-1-RT pocket towards 

inhibiting its activity. The actual variational principle states in the first stage that: 
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 Minimum (in negative, so favoring the binding) energy (either as affinity and/or global) associated 

with a toxically potent molecule highly recommends that structure for the binding purpose, 

according with the performed docking algorithm. 

Then, one implements the second variational stage by: 

 Binding variational procedure across the various conformations of a compound, such as Genuine, 

LoSMoC and BraS, towards further providing binding-conformational best regarded molecule(s) 

for the aimed anti-viral activity. 

Practically, our “best anti-HIV molecule” results in that structure with toxic potential found at the 

intersection between minimum (in negative, so favoring the binding) affinity, global energy, and all 

tested configurations (Genuine, LoSMoC, and BraS). 

Therefore, implementing a kind of triple criteria of selection (i.e., the two above variational steps plus 

their overlapping results), should assure the common binding- and configurational-variational behavior 

of the selected molecule; this way “ably fighting” the natural shielding versatility of the HIV-RT pocket 

in these regards. 

By analyzing the concrete results of Tables 2–4 for the molecules of Table 1, one arrives to the 

following hierarchies: 

 Variational binding affinity procedure selects the following toxically-potent molecules: 

Genuine: 18, 21, 29; 

LoSMoC: 16, 17, 20, 23, 24, 27, 29, 31, 32; 

BraS: 25, 26, 29; 

 Variational global energy procedure selects the following toxically-potent molecules: 

Genuine: 20, 24, 29; 

LoSMoC: 15, 17, 19, 27, 32; 

BraS: 18, 19, 27; 

 Now we are in position to identify the “first intersection” regarding the recorded double outputs 

per configuration (Genuine, LoSMoC, and BraS) while passing from binding affinity to global 

energy minimums: 

Genuine: 29; 

LoSMoC: 17, 27, 32; 

Therefore, excluding the BraS contribution as not so versatile, according to this inter-variational 

criteria, while selecting the single molecule no. 29 in its Genuine configuration as the potential candidate. 

 Performing the “second intersection” regarding the multiple outputs inter-configurations (among 

Genuine, LoSMoC, and BraS) while maintaining either binding affinity or global energy framework:  

18: Genuine & BraS; 

19, 27: LoSMoC & BraS; 

20, 24: Genuine & LoSMoC; 

29: Genuine, BraS, LoSMoC; 
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Therefore, selecting a single molecule for Genuine and BraS, namely molecule no. 18, yet reconfirming 

molecule no. 29 as the common output for all inter-configuration variations. 

As a result of per molecules per configurations, the selected molecules in an actually-proposed 

hierarchy of their anti-HIV potency by variational binding-conformational docking analysis looks like: 

29: Genuine, LoSMoC, & BraS; 

18: Genuine & BraS; 

17: LoSMoC; 

19: LoSMoC & BraS; 

20: Genuine & LoSMoC; 

24: Genuine & LoSMoC; 

27: LoSMoC & BraS; 

32: LoSMoC; 

Overall the output is that molecule no. 29 of Table 1 appears as our best selection by the actual 

doublevariational procedure (binding and conformational analysis). However, the interactions with amino 

acids found closer than 3.5 Å are shown in Figure 5 for the above double variationally-selected molecules. 

 

Genuine:  
CHAIN A: LEU100, LYS101, LYS103, VAL106, VAL179, 
ILE180, TYR181, TYR188, LEU234, HIS235;  
CHAIN B: GLU138, THR139.  
LoSMoC:  
CHAIN A: THR165, GLU169, ALA172, ALA173, ILE178, 
VAL179, ILE180;  
CHAIN B: THR139, PRO140, GLY141, ILE142, ARG143.  
BraS:  
CHAIN A: PRO95, LEU100, LYS101, THR 165, GLU169, 
ALA173, VAL179, ILE180, TYR181;  
CHAIN B: ASN137, GLU138, THR139, PRO140,  
GLY141, ILE142. 

Interaction with Molecule 29 

 

Genuine:  
CHAIN A: VAL90, GLN91, GLN161, THR165, TYR181, 
GLN182, TYR183, MET184;  
CHAIN B: GLU138, THR139, PRO140.  
LoSMoC:  
CHAIN A: VAL90, GLN91, GLN161, ILE180, TYR181, 
GLN182, TYR183, MET184;  
CHAIN B: GLU138, PRO140.  
BraS:  
CHAIN A: VAL90, GLN91, GLN161, ILE180, TYR181, 
GLN182, TYR183, MET184  
CHAIN B: GLU138, THR139, PRO140. 

Interaction with Molecule 18 

Figure 5. Cont. 
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LoSMoC:  
CHAIN A: LEU100, THR165, LEU168, GLU169, ILE180, 

TYR181, TRP229;  

CHAIN B: GLU138, THR139, PRO140. 

Interaction with Molecule 17 

LoSMoC:  
CHAIN A: LEU100, LYS101, LYS103, VAL106, VAL 179, 

ILE180, TYR181, TYR183, TYR188, VAL189, PHE227, 

TRP229, LEU234;  

CHAIN B: GLU138, THR139. 

BraS:  
CHAIN A: VAL90, GLN91, PRO157, PHE160, GLN161, 

ILE180, TYR181, GLN182, TYR183, MET184  

CHAIN B: THR139, PRO140. 

Interaction with Molecule 19 

LoSMoC:  
CHAIN A: PRO95, LEU100, LYS101, LYS102, LYS103, 

VAL106, VAL 179, ILE180, TYR181, PHE227,  

TRP229, LEU234;  

CHAIN B: THR139, PRO140. 

Interaction with Molecule 20 

Figure 5. Cont. 
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LoSMoC:  
CHAIN A: LYS101, LYS103, VAL 179, ILE180, TYR181, 

TYR188, PHE227  

CHAIN B: ILE135, GLU138, THR139. 

Interaction with Molecule 24 

BraS:  
CHAIN A: VAL90, GLN91, GLN161, THR165, LEU168, 

ILE180, TYR181, GLN182, TYR183, MET184;  

CHAIN B: GLU138, THR139, PRO140. 

Interaction with Molecule 27 

LoSMoC:  
CHAIN A: LEU100, LYS101, LYS103, GLU169, ALA172, 

ALA173, VAL179, ILE180, TYR181;  

CHAIN B: GLU138, THR139, PRO140. 

Interaction with Molecule 32 

Figure 5. ContPro [117] results for interacting residues with selected molecules at 3.5 Å  

by the present Genuine-LoSMoC-BraS double variational procedure, in their relevant 

configuration(s), see text for details. 

4.2. Discussing the Interaction with Amino Acids 

The binding results of selected molecules by double binning-conformational variational algorithm 

and by their anti-HIV interaction are illustrated by the Docking package in Figure 5 with available amino 

acids by their certain (Genuine, LOSMoC and BraS) configurations. They are to be commented on next, 

in the general context of anti-HIV pyrimidine available knowledge. 
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Many compounds with anti-HIV activity from the NNRTI inhibitor class include, in their molecule, 

two or three aromatic rings which can form hydrophobic (e.g., π–π) interactions with NNBP. In the case 

of the pyrimidine-derivative NNRTI inhibitors, one of the aromatic nuclei is the pyrimidine (in many 

cases being the uracil) and the other core is the benzyl group, a common and important ingredient in 

maintaining the anti-HIV activity of the molecule. 

Benzyl or dimethyl-benzyl core also can be found in the structure of some pyrimidine derivatives INI 

inhibitors of HIV-1RT or dual inhibitors INI + NNRTI. In these cases the bond is in a C-6 or C-2 position 

of the pyrimidine core, so the diketo acid (DKA) structure (required to bind two divalent metal ions 

Mg2+ or Mn2+) is linked in N1/N3 position in case of INI inhibitors. In case of dual inhibitors,  

the chelating triad of Mg2+ can be included in pyrimidine core (used an uracil core, [C/NpositionX]):  

[Cp2]O-[Np3]H(or OH)-[Cp4]O, where the groups of benzyl or dimethyl-benzyl are bounded in N-1 or  

C-6 positions [20–22,118]. However, for the actual majority of pyrimidine derivatives NNRTIs 

inhibitors with an excellent anti-HIV-1 activity of HIV-1 (as HEPT, DABO, DAPY) the following 

findings are specific [21,28,39,40,48,50,68–86,89,90,119,120]: 

 The position of the molecule is in the hydrophobic region of the NNRTI binding site/hydrophobic 

interactions (by π–π, π-CH, van der Waals contacts) having as two major substituents of the 

pyrimidine core the residues Tyr181, Tyr188, Phe227, Trp229, His235, Pro238 and/or Val106; 

 The –CH2– linker of benzyl group or methyl group bound to the benzene ring is positioned closely 

to Glu138 from the p51 domain of RT, while the pyrimidine core is positioned in the area between 

Leu100 and Val179; 

 The formation of one or more H-bonds with Lys101 (and/or Lys103) where there are possible; 

 The Ar-H interactions with Leu234 are often observed. 

Worth noting is that, in many known cases, the –CH2– linker is replaced with others like –S–, –NH–,  

–O–; or, the hydrogen atoms from –CH2– linker is replaced with –OH and/or –alkyl groups. These 

changes lead to an increase in anti-HIV activity for many derivatives (such as DABO and DAPY 

inhibitors) due to a better binding to NNIBP. Working examples are –NH–, –O–, and –CH(OH)– groups 

that can be involved in H-bonding with the Lys101 in DAPY-type inhibitors [37,50,69–72]. In some 

cases, the former types of substitutions will lead to a more hydrophobic space occupied in NNIBP. 

Benzyl groups, with or without –CH2– linker modified, are usually involved in hydrophobic 

interactions, π–π, and/or arenas-H with one or more residues Tyr181, Tyr188, Phe227, Trp229 from 

NNIBP [21,28,39,40,48,50,68–86,89,90,119,120]. The number and type of these interactions differ 

more or less from one compound to another, no matter the NNRTI family they belong to. This behavior 

is due to the cumulative effects of other existing substituents in the molecule and, in the case of a chiral 

compound [69], the differences between enantiomers can be significant. Accordingly, the orientation of 

the “U” shape for one of the enantiomers is downward, which can be nearly opposite to that of the usual 

“U” shape, and can lead to a weak inhibition against HIV-1 RT [69]. 

In general, when –CH2– linker is extended it will lead to a weak inhibition of HIV-1 RT, e.g., for 

DABO and HEPT inhibitors, excepting some derivatives where a deeper penetration into the pocket is 

observed [39,40,59–66,77–86,92–95]. However, the compounds from the presently-studied series, and 

in all of their three forms (Genuine, LoSMoC, and Branch), bind in non-classical “U” mode, since the 

“U” is a bit twisted and it has two or more interactions specified for pyrimidine NNRTI derivatives. 
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On the other hand, for the variationally-selected compounds 20 and 24 the presence of a majority of 

amino acid residues it was observed at a distance of less than 3.5 Å: 

 For compound 20/LoSMoC: Leu100, Lys101, Lys103, Val106, Val179, Tyr181, Phe227,  

Trp229, Leu234; 

 For compound 20/Genuine: Lys101, Lys103, Val106, Val179, Tyr181, Tyr188, Phe227, Trp229, 

Leu234, His235, Pro236; 

 For compound 24/LoSMoC: Lys101, Lys103, Val179, Tyr181, Tyr188, Phe227, Glu138B; 

 For compound 24/Genuine: Leu100, Lys101, Lys103, Val106, Val179, Tyr181, Tyr188, Phe227, 

Trp229, Leu234, Glu138B. 

with the first two amino acid residues groups being deep in the hydrophobic pocket. 

According with the current variational results, the hydrophobic interaction of the molecule with 

Tyr181 can be observed in most of the cases, not taking into account the compound form (as Genuine, 

LoSMoC, or Branch). This behavior underlines once again that for a better inhibition of RT HIV-1 the 

1,3-disubstituted uracil derivatives widely features the interaction with Tyr181, similar with the results 

produced by Maruyama et al. [28,48,87–91]. This way, the importance of this interaction provides the 

explanation for the dramatic decrease in the inhibitory activity of these compounds against mutant 

Y181C. In the case of actual compound 18 (BBF29), i.e., the (Maruyama) leader from which the 

development of AmBBU (as derivatives with poor activity against mutant Y181C) was started, all its 

three forms (Genuine, LoSMoC, Branch) interact with Tyr181 and Glu138 from the p51 domain. 

Moreover, the docking studies of the compound 18/AmBBU derivative show that this inhibitor interacts 

with the pool of amino acid residues Leu100, Val106, Tyr181, and Trp229, suggesting its inhibitory 

effect on HIV-1 RT (wt) [28]. 

The arene-H interactions such as: 

 Leu100 (H) with the central aromatic ring (2-pyrimidine) of AmBBU; 

 Val106 (H) with 1-benzyl of AmBBU; 

 Tyr181 (arene) with hydrogen (3-methyl) at 3-(3,5-dimethylbenzyl) of AmBBU; 

 Trp229 (arene) with 4ʹ-hydrogen of 3-(3,5-dimethylbenzyl) of AmBBU. 

were equally observed [28], with the conclusion that the interaction with the Tyr181 residue is essential 

for docking of 6-substituted-1-benzyl-3-(3,5-dimethylbenzyl)uracils. The precise role of the 6-amino 

substitution in the binding to the allosteric pocket could not be identified [28]. 

For a series of 1-benzyl-3-(3,5-dimethylbenzyl) uracil and related compounds, which do not form  

an H-bond (with Lys101, usual necessary), a remaining affinity with RT was observed indicating that 

the H-bond is not essential for docking of such small molecules [48]. For the “brother” of AmBBU,  

the compound XXIV, the docking studies show that [91]: 

 The 6-amino group forms a H-bond with Lys 101 (due to water solubility of the 4-aminobenzyl 

group of XXIV); 

 The 3,5-dimethylbenzyl moiety enhanced the π–π stacking of the benzene rings of the Tyr181 and 

Tyr188 residues; 
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 The CH–π interactions are manifested between the methyl group of the 3,5-dimethylbenzyl  

moiety and Trp229 residue, or between the benzene rings of the 3,5-dimethylbenzyl moiety and 

Leu234 residue. 

Generally, it is apparent that the position near the Glu138B of the –CH2– linker of the benzyl  

group of the methyl groups aids the binding of the benzene ring. This is observed in the majority of the 

actually-studied compounds in all three molecular conformations, namely: 

 LoSMoC favoring cellular penetration; 

 Branch favoring “binding” to the active site; 

 and Genuine towards restoring the original molecule, the actually inhibition. 

This advanced hierarchical mechanism suggests that these 1,3-disubstituted uracil derivatives use 

Glu138B as a compass or a guiding point towards a better placement of the molecule in the active site 

of RT HIV-1, yielding with the inhibition of its activity. 

This mechanism is finally discussed for the overall output of this variational study, compound 29. 

While containing in its structure the 3,5-dimethyl-benzyl group bound in both N1 and N3 positions of 

the pyrimidine core, it appears to be the most potent molecule by the actual variational anti-HIV 

Genuine-to-LoSMoC-to-Branch principle: 

 By the LoSMoC configuration it features the specific interactions of pyrimidine NNRTI 

derivatives only with Val179, so predicting the future position of the pyrimidine core; 

 On its Branch form the presence of new amino acid residues specific to NNRTI-pyrimidines are 

observed: Glu138B, Lys101, Val179 and Leu100; the latter two are forming the future space where 

pyrimidine core will be set in, with the specific placement of pyrimidine substituent in the 

hydrophobic area being delimited, among others in its entry of Figure 5, by Tyr181; 

 In the Genuine conformation the compound 29 has the correct “U” shape of molecule with a little 

twist, so keeping in its proximity the same amino acid residues as in the previous Branch form, 

along the additional ones: Lys103, Ile180, Val106, Tyr188, Leu234, and His235. 

The Genuine molecule 29 finally acts as: 

 Restoring the pyrimidine core in the area between Val179 and Leu100; 

 Having the –CH2– linker of the benzyl group placed closely to Glu138B; 

 Having the methyl groups from 3,5-dimethyl-benzyl and the benzene ring deep positioned in the 

hydrophobic pocket, closed to Val106, Tyr188, Leu234, and His235 (forming hydrophobic 

interactions with them); 

 Having the other 3,5-dimethyl-benzyl substituent placed close to Tyr 181 and Ile180. 

5. Conclusions 

Pyrimidine derivatives occupy a favored position among the compounds investigated/approved for 

anti-HIV activity. 

The presence of pyrimidine core is obligatory in NRTIs and NtRTI inhibitors, and they are 

increasingly used in the design of NNRTIs, INIs, NcRTIs, PIs, CRIs, and dual inhibitors.  

As microbicides they are often substituted in various positions with (3,5-dimethyl)-benzyl, the more 
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important HEPT derivatives become. They provide front-runner compounds and inspire researchers to 

develop other pyrimidine families’ derivatives with anti-HIV activity, e.g., the DABO, DAPY 

pyrimidindione derivatives. They are at the forefront in the treatment of HIV, with pharmacotherapy and 

antiviral therapy. However, many side effects have arisen, and there is a continual battle with drug 

toxicity paralleling HIV mutations that become more resistant. In the pharmacotherapy of HIV infection 

there is a common practice to use the combination therapy of three or more antiretrovirals (ARVs) 

dealing with different targets. This therapy was introduced in the mid-1990s, being called highly active 

antiretroviral therapy (HAART) and over the years it has led to a decreased morbidity and mortality 

among HIV-infected patients [25–27,29,121–123]. Although more than 25 years have passed since the 

first approved ARV for treating HIV infection, a treatment with constant high rate of healing of any HIV 

subtypes or mutations it hasn’t been found yet, nor an inexpensive administrated treatment, accessible 

to large social classes. In addition, finding a treatment based on a near future vaccine or on effective 

microbicides to be widely used as a method of HIV prevention is a humankind desiderata. 

 

Figure 6. Flow diagram summary outlining the computational protocol towards double 

variational procedure in the relevant configuration(s) for the present outlined molecule 29; 

See text for details. 

In this context, the present work contributes to currently-available studies in assessing the anti-HIV 

activity by small, flexible, and easy to synthesize molecules—pyrimidine derivatives in this case. 
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Moreover, the actual approach advances the double-variational procedure, combining the binding 

(affinity and total energy) with molecular conformation (by Genunine and LoSMoC and BraS SMILES 

forms) by available docking protocols for a representative series of 32 molecules with earlier-studied 

anti-HIV activities (resumed in Figure 6). 

Nevertheless, the molecule identified as “most potent” by this double-variational docking-SMILES 

analysis, was molecule 29 across compounds of Table 1 and shows, at 3.5 Å, interaction with  

amino-acids of the HIV RT pocket significant similarities with previously-assigned potent anti-HIV 

molecules in this regard, namely the molecule no. 18 of Table 1. They are in proximity of the residues 

Tyr181, Glu138, and Thr139 for Genuine and Ile180, Tyr181, Glu138, and Pro 140 for BraS–SMILES 

forms, respectively, while molecule 29 complements the earlier analysis also by its LoSMoc 

conformational potent presence, with a triggering role in the present anti-HIV docking mechanism study, 

worthy to be further focused for research and testing. 
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