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The reactive oxygen species, generally labeled toxic due to high reactivity without

target specificity, are gradually uncovered as signaling molecules involved in a myriad

of biological processes. But one important feature of ROS roles in macromolecule

movement has not caught attention until recent studies with technique advance and

design elegance have shed lights on ROS signaling for intercellular and interorganelle

communication. This review begins with the discussions of genetic and chemical

studies on the regulation of symplastic dye movement through intercellular tunnels in

plants (plasmodesmata), and focuses on the ROS regulatory mechanisms concerning

macromolecule movement including small RNA-mediated gene silencing movement and

protein shuttling between cells. Given the premise that intercellular tunnels (bridges) in

mammalian cells are the key physical structures to sustain intercellular communication,

movement of macromolecules and signals is efficiently facilitated by ROS-induced

membrane protrusions formation, which is analogously applied to the interorganelle

communication in plant cells. Although ROS regulatory differences between plant and

mammalian cells exist, the basis for ROS-triggered conduit formation underlies a unifying

conservative theme in multicellular organisms. These mechanisms may represent the

evolutionary advances that have enabled multicellularity to gain the ability to generate

and utilize ROS to govern material exchanges between individual cells in oxygenated

environment.

Keywords: ROS, intercellular movement, interorganelle transport, membrane protrusions, plasmodesmata,

tunneling nanotubes (TNTs), macromolecule movement, multicellularization

INTRODUCTION

Various cellular metabolic processes, ranging from energy capture and storage in chloroplast, long
chain carbon metabolism in peroxisome, to energy generation in mitochondria, all under normal
physiological condition, accompany with the generation of one type of products: the reactive
oxygen species (ROS) (Halliwell and Gutteridge, 1989; Scandalios, 1997; Davies, 2000; Apel and
Hirt, 2004). Themechanisms of ROS formation during thesemetabolic processes abound (Hinshaw
et al., 1986; Al-Mohanna and Hallett, 1987; Quinn et al., 1989; Apel and Hirt, 2004; Asada, 2006;
Pospíšil, 2009). The most well-known is oxygen’s stepwise reduction principle in which oxygen
molecule in its ground state can only accept one electron at a time to be reduced into superoxide
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anion (O•

2−), then further into hydrogen peroxide (H2O2),
hydroxyl radical (·OH) and water, or excited into singlet oxygen
(1O2) via energy transfer (Klotz, 2002; Turrens, 2003; Apel
and Hirt, 2004; Sharma et al., 2012). These ROS intermediates
energetically react with biomolecules in a non-selective way and
perhaps prompt further production of other destructive radicals,
thus posing great threats to cellular integrity and viability.
Coping with aerobic metabolism, aerobic life has evolved anti-
ROS system including non-enzymatic antioxidant and ROS-
scavenging enzymes to ameliorate the toxic effects imposed by
ROS (Raghu et al., 1986; Abid et al., 2000). Actually, the tug of
war between ROS and antioxidant system has been on play since
evolution of early life living in less oxic environment (Moldovan
et al., 2000; Harfouche et al., 2005); for instance, the advent
of enzymatic antioxidants such as superoxide dismutase (SOD),
catalase and peroxiredoxin in organisms appearing on Earth
around 4.1–3.5 billion years ago—around 1 billion years earlier
than the great oxidation event, which highlights the paramount
role of anti-ROS system in life evolution on Earth. This can be
further seen from photosynthetic organisms that are equipped
with a host of delicate, sophisticated non-enzymatic antioxidants
as diverse as vitamins (e.g., Vitamin C, Vitamin E), amino
acids (e.g., proline), peptide (e.g., GSH), carotenoids (e.g., β-
carotene, lycopene, lutein), flavonoids (e.g., quercetin, catechin),
and hormone (e.g., melatonin) (Sundaresan et al., 1995; Choi
et al., 2005; Connor et al., 2007; Schröder et al., 2007; Lee et al.,
2009).

Existence of such colossal antioxidants in aerobic life may
easily lead to an illusion that ROS is flat-out toxic and doing
nothing good. On the contrary, the past several decades have seen
the growing evidence of ROS as important signaling molecules.
The first recognized biological value of ROS in plants came from
their integration into defense system against pathogen. Earlier
experiments found hydrogen peroxide served as important signal
to trigger local cell death and to induce antioxidant activation
in adjacent cells (Daszkowska-Golec and Szarejko, 2013) and
systemic acquired resistance (Shimazaki et al., 2007; Song et al.,
2014). Derived from oxidative burst, one of the earliest events
following pathogen challenge, H2O2 can rapidly—within several
minutes—accumulate to a considerable level, e.g., magnitude of
millimolar concentration in soybean cells (Apostol et al., 1989;
Stahl and Simon, 2013). An analogous scenario is found in a
confined organelle, or phagosome of immune cells, where ROS,
produced at the millimolar quantities of H2O2, are used to kill
intruding pathogens (Babior et al., 1973; Lucas and Lee, 2004;
Adamec, 2006, 2007; Roelfsema and Hedrich, 2010). Later more
than a decade studies revealed that the intentional production of
ROS was largely driven by the activity of NOX complex (NADPH
oxidase) (Royer-Pokora et al., 1986; Teahan et al., 1987; Babior,
2004; Bedard and Krause, 2007) or its plant counterpart, RBOH-
NADPH oxidase (Torres et al., 2002; Sagi and Fluhr, 2006; Suzuki
et al., 2011). Not surprisingly, other enzymes characterized from
both animals and plants, such as peroxidase (Klebanoff, 1970;
Bindschedler et al., 2006; Choi et al., 2007; O’Brien et al., 2012;
Kimura et al., 2014), oxidoreductase (e.g., xanthine oxidase,
Hille and Nishino, 1995; Harrison, 2002; Zarepour et al., 2010;
Ma et al., 2016), oxalate oxidase (Requena and Bornemann,

1999), and oxygenase (e.g., cyclooxygenase and lipoxygenase)
also contribute to the internal ROS production.

In addition to the involvement in biotic defense, these
ROS-generating machineries together with antioxidants act as
essential modulators of redox signaling pathways capable of
effecting changes in a plethora of biological processes including,
not limited to, abiotic stress, cell growth and programmed
cell death, cell proliferation, and cell differentiation. For more
excellent reviews, reader is referred to those by Holmström
and Finkel (2014), Río and Puppo (2009), Rhee (2006), Finkel
(2011), Farmer and Mueller (2013), Foyer and Noctor (2005),
Mittler et al. (2011), Ray et al. (2012), Baxter et al. (2014),
and Sewelam et al. (2016). Nevertheless, a latent aspect in the
repertoire of ROS function has not yet brought into discussion
until recently; their emerging role in modulating cell-to-cell
information flow through plasmodesmata (PD) in plant and their
inductive capability to produce membrane protrusions between
mammalian cells, as well as among organelles in plant cells.
Thanks to some new approaches adopted to uncover this long-
neglected regulatory mechanism, we can get the glimpse of
how ROS, particularly H2O2, are generated and incorporated
into intercellular bridge-mediated communication by promoting
membrane protrusions formation (in both animal and plant cells)
and cell wall remodeling (in plant cells). This review is focused
on the genetic control of intercellular movement of various
molecules including symplastic dye, small RNA, and proteins,
and outlines the underlying mechanisms that are shared across
plant and animal kingdoms.

DYEING SYMPLASTIC MOVEMENT—ROLE
FOR ROS

Intercellular transport in plants is believed to be one of the
most fundamental processes for which PD embedded in the
cell wall but connecting cytoplasm of neighbor cells is essential
to enable the cell-cell symplastic exchange. The PD-mediated
intercellular communication can be observed through symplastic
dye loading experiment, e.g., CFDA-coupling (Wang and Fisher,
1994), Lucifer Yellow CH injection (van Kesteren et al., 1988),
and HPTS loading experiment (Gisel et al., 1999). Copious
data accumulated from studies on symplastic tracer loading in
model plant Arabidopsis, as well as in monocots and woody
plants, provides indicative insights into the recognition of relative
disconnection from surrounding tissues in some types of cell
clusters/tissues, or namely the symplastic domain (van der Schoot
and van Bel, 1990; Botha and van Bel, 1992; Rinne and van
der Schoot, 1998; Ding et al., 2003) in which the cell-to-cell
connection is highly united into a continuity, but temperally
and spacially cut-off from other cells/tissues. This phenomenon
posed an immediate question as how the symplastic domains are
formed and how they are regulated during plant development.

Genetic screens from the embryo-defective collection,
which was predicated on the premise that defective cell-
to-cell transport would result in the embryo abnormality
or growth arrest, recovered mutants showing increased
plasmodesmatal conductance of symplastic dye, e.g., the
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10-kD F-dextran (Kim I. et al., 2002; Kobayashi et al., 2007;
Burch-Smith and Zambryski, 2010), or decreased movement
of small dye, e.g., HPTS (Xu et al., 2012), at different stages of
embryo development, further adding weight to the idea that
the symplastic domain is dynamically regulated (Gisel et al.,
1999; Ding et al., 2003). However, subsequent outcome from
map-based cloning of causal mutation in these mutant lines
attested to a diversified genetic pathway in which the genetic
component seems not directly link to each other, either spacially
or chemically. For instance, both ISE1 and ISE2 (INCREASED
SIZE EXCLUSION LIMIT OF PLASMODESMATA 1 or 2)
gene encode two different RNA helicases that are involved in
the very basic aspect of RNA metabolism ranging from RNA
transcription, splicing to degradation, and that are localized
to mitochondria and chloroplast respectively, whereas DSE1
(decreased size exclusion limit 1) gene encodes a WD-repeat
protein that is distributed in both cytoplasm and nucleus.
Although these genes controlling the cell-to-cell movement of
symplastic tracer appear to have no apparent intrinsic coherence
in light of genetic and/or biochemical pathways or even the
spacial occurrence relating to PD, TEM dissection has shown
these mutants have altered architecture of PD; with increased
frequency of twinned and branched PD in increased tracer
movement mutant or decreased frequency of twinned and
branched PD in decreased tracer movement mutant.

These results have clearly shown PD-mediated transport
indicated by symplastic tracer is paramount, and as such the
mutants are often displaying severe phenotypic abnormalities as
diverse as retarded growth, altered flowering time, dysfunctional
reproductive organs, and even embryo lethal from strong mutant
allele. Concomitant to the abnormal growth of mutant lines, the
ROS level is apparently higher in the ise1 mutant as opposed
to the wild type plant, which might be explained as a result
of developmental disruption of mitochondria or chloroplast
(Burch-Smith et al., 2011). Though ROS measurement is not
available to dse1 or ise2 mutant, anthocyanin, known as stress-
inducible phytochemical, is accumulated in the embryo of dse2
mutant and another allele tan mutant (Xu et al., 2012), and
cotyledon of ise2 mutant as well (Kobayashi et al., 2007),
tentatively suggesting that PD-mediated transport might be
subject to ROS-related regulatory mechanisms.

Experiments with microinjection showed sodium azide, an
agent known to inhibit electron transport in mitochondria
complex IV (Petersen, 1977; Yoshikawa et al., 1998), thus
leading to ROS augmentation in mammalian cells (Duranteau
et al., 1998) and also mitochondrial oxidation in Arabidopsis
(Schwarzländer et al., 2009), can enlarge PD pore and enhance
the cell-to-cell movement of various dyes (Tucker, 1993).
Moreover, the size exclusion limit (SEL) of cortical PD in
wheat roots under oxidative stress induced by azide can be
increased from <1 KD to between 5 and 10 kD (Cleland et al.,
1994). Astonishingly, this oxidative effect was further applied
to breaking down the epidermis-trichome symplastic boundary
by increasing SEL in tobacco leaf (Figure 1) (Christensen et al.,
2009).

Genetic studies on PD-mediated tracer movement have
provided qualitative perspective on cell-cell transport and

lent much credence to the test of mathematically modeled
permeability. Rutschow et al. (2011) quantified the intercellular
permeability of Arabidopsis root meristematic regions by
applying the diffusion model to CF bleaching experiment with
confocal microscope, and generated a new measurement of PD
conductivity, which is nearly an order of magnitude larger than
the reported with dye microinjection (Goodwin et al., 1990)
(Table 1). Nevertheless, this value discrepancy may lie with
the responsiveness of PD when subjected to the perturbation
of handling or environmental stimuli, or the variation of PD
components and structure in different tissues/organs (Radford
and White, 2001; Roberts and Oparka, 2003). The validity of
this model was further corroborated in two Arabidopsis lines in
which the PD-mediated transport is in defect shown before. With
this confirmation, the authors made a straightforward test on
the role of H2O2 in intercellular transport that was contrarily
demonstrated to be in association with PD conductance in two
ROS-elevated mutants: ise1 mutant with increased transport
(Stonebloom et al., 2009), but gat1 with decreased transport
(Benitez-Alfonso et al., 2009). At relative low concentration
of 0.6mM, H2O2 can double the PD permeability, but the
opposite effect was observed when plants were exposed to
higher concentration, say, 6mM (Rutschow et al., 2011), alluding
that the extent to which the inner ROS accumulated in these
mutants (Benitez-Alfonso et al., 2009; Stonebloom et al., 2009),
or alternatively in which subcellular organs (Stonebloom et al.,
2012), may explain the contradictory repercussions observed in
two independent genetic studies. Further studies would aim at
defining the boundary of H2O2 concentration and exploring the
cause of adverse effect when plants are exposed to H2O2.

MOVEMENT OF SMALL RNA-MEDIATED
POST-TRANSCRIPTIONAL GENE
SILENCING IS CONTROLLED BY
HYDROGEN PEROXIDE

RNA silencing is a conserved defense system against foreign
nucleic acid species across a wide range of organisms.
Interestingly, this process involving small RNA in size of 21–24 nt
is not contained in situ but rather elicits a non-cell-autonomous
transmission—in a mode of either short distance movement or of
long-distance movement, or both (Kalantidis et al., 2008; Liang
et al., 2011; Melnyk et al., 2011). One crucial question concerning
the short/long-distance mobile silencing is how the movement of
silencing signal is subject to intercellular traffic control.

In C. elegans, intercellular transport of silencing signals
depends on the activity of a double stranded RNA (dsRNA)
transporter, or SID-1 which enables transport of the length
of 50 bp up to 500 bp dsRNAs (Winston et al., 2002). It
seems no counterpart of SID-1 in plants is responsible for
the silencing movement. Thus, what factors or mechanisms
in plants are employed to render silencing dissemination has
been very intriguing subject of signal transmission. Long-
sought efforts of genetic screening based on the short-range
silencing movement represented by, e.g., Atsuc2-hpPDS or
Atsuc2-hpSul, in an intention to identify cellular components
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FIGURE 1 | Symplastic dye movement is associated with ROS. The symplastic dye 10 kd F-Dextran moves freely at the heart stage of WT and ise2 mutant, but its

movement is restricted at the torpedo stage due to the formation of symplastic domain. Higher ROS content in the ise2 mutant lifts this restriction. Green depicts

F-Dextran (a). In the epidermal/trichome (e/t) boundary, LYHC dye moves freely between the trichome cells, but cannot cross the e/t boundary into epidermal cell.

Sodium azide, a known ROS-inducing agent can break this blockage. Yellow color depicts the LYCH. (c–e) A root-to-shoot silencing system (RtSS) demonstrates the

long-distance movement of small RNA-mediated gene silencing movement. (c) An RtSS plant shows the silencing pattern after 15-day Dex induction.

(d,e) Longitudinal sectioning of RtSS has shown that silencing front moves from the root to the shoot (d), but the mutation in type III peroxidase RCI3 (R145K) heavily

retards the movement (e). (a,b) were drawn according to the description by Kim I. et al. (2002) and Christensen et al. (2009) respectively. (e) was reprinted from Liang

et al. (2014) under a Creative Commons Attribution License granted to Peer J.

constituting either cytoskeletal features or cell channels result in
the identification of genetic factors that are mainly constituting
the silencing machinery or silencing pathways (Melnyk et al.,
2011). Besides, the time the silencing itself takes to travel through
(assumed in the phloem system) is surprisingly much longer than
photoassimilates in the phloem sap (Table 1). These situations
leave the traffic control of mobile silencing signal through PD
unsettled, and also translate into a need to tackle the issues
around the way the silencing movement may take.

In an effort to mimic the grafting system, Liang et al. (2012)
established a root-to-shoot long-distancemobile silencing system
(RtSS) in which the initial site of silencing signal generation is
spaciously separated from the signal receiving tissue (Liang et al.,
2012), thus enabling to follow the route, monitor the time, and
tease out the details for an upward systemic silencing. Indeed, a
reiterated cell-to-cell silencing movement was observed making
up the upward long-distance silencing. As discussed in previous

section, the symplastic domain validated by symplastic dyemakes
its own hurdle on the movement of this small RNA-mediated
gene silencing, resulting in the variation of movement rate during
the course of systemic spreading (Table 1); for example, the
slower movement in the hypocotyl-epicotyl junction than in the
hypocotyl.

Forward genetic screening on RtSS, aiming to understand
movement control imposed by PD and/or symplastic domain,
identified tsg1 (Tiao-shan-gong 1, meaning in Chinese the

mountain porter who facilitates transport over a mountain)
mutant that shows only deficiency in the silencing movement
while maintaining the production of silencing signal (Liang
et al., 2014). Genetic and molecular studies aided by genome
re-sequencing revealed that tsg1 is an allele of rci3 gene which
encodes type III peroxidase (POX) enzyme. An Arg to Lys
substitution in a highly conserved motif in the RCI3 peroxidase
resulted in the reduced hydrogen peroxide level in the mutant
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line, in agreement with the function of POX which can regulate
H2O2 level through peroxidative and oxidative cycle (Figure 2)
(Berglund et al., 2002; Passardi et al., 2004b). Most remarkably,
direct replenishment of H2O2 to plant growth medium not only
can restore silencing movement in the mutant, but also augment
the rate of silencing movement in RtSS system (Liang et al., 2014)
and the range of vascular silencing (Liang et al., 2014) in JAP3
line (Smith et al., 2007). Conversely, depletion of H2O2 in plant
growth medium by Catalase or MnO2 catalyst can simply and
efficiently reduce the silencing movement in both RtSS and JAP3
line (Liang et al., 2014), unambiguously pinning down the role of
H2O2 in small RNA-mediated gene silencing movement.

The silencing front moves through hypocotyl to shoot in a
way of cell-to-cell transmission, and spreads—analogously to
the PD-mediated symplastic dye movement—with considerable
resistance into symplastic domains, such as hypocotyl epidermis
(Duckett et al., 1994) and the hypocotyl-epicotyl junction (Liang
et al., 2012). Thus, it’s legitimate to assume that the cell-to-
cell channel or PD is the route for silencing RNAs migration.
Immunogold-labeling assay and Cerium(III) cytochemical TEM
(Transmission electron microscopy) assay respectively localized
the POX and H2O2 to PD vicinity and cambial cell wall in
the form of punctate aggregates associated with PD (Ehlers
and van Bel, 2010), suggesting the role of H2O2 and/or ·OH
in PD-associated process. Earlier insights revealed by many
biochemical studies that elevation or decreasing of H2O2 resulted
in cell wall loosening or stiffening (Fry, 1998; Schweikert et al.,
2000; Schopfer, 2001; Liszkay et al., 2004; Müller et al., 2009;
Kunieda et al., 2013) led the authors to propose a new model in
which the PD-mediated transport is modulated through cell wall
remodeling (Liang et al., 2014). In this model, ROS molecules
like H2O2, ·OH are working as biochemical scissor, cleaving
cell wall polymers, altering the cell-wall networks, and inevitably
changing the passage of PD imbedded in the cell wall (Figure 2).
This model emphasizes the role of ROS in apoplastic space and,
for the sake of simplicity, has not considered the ROS signaling
happening in the symplastic domain due to lack of experimental
data. Thus, further investigation regarding to the intracellular
aspects of ROS-initiated cascade (Mangano et al., 2016; Schmidt
et al., 2016; Kimura et al., 2017) will reveal novel insights into
the interaction between symplastic and apoplastic ROS signaling
pathways.

PROTEIN DIFFUSION IS ASSOCIATED
WITH ROS

It is generally established that specification of cell types
through cell proliferation and differentiation largely depends
on positional cues (Sessions and Yanofsky, 2001; Van Norman
et al., 2011), which are hypothesized to exert their non-cell
autonomous effects from a certain distance. Plant meristem-
maintaining factors, such as WUSCHEL (WUS) (Yadav et al.,
2011), KNOTTED-1 (KN1) (Lucas et al., 1995; Kim J. Y. et al.,
2002), SHORT-ROOT (SHR) (Nakajima et al., 2001; Gallagher
et al., 2004), TMO7 (Schlereth et al., 2010), are produced
either locally or in a spatially discrete way, but can move in

a short distance into neighboring cells to initiate downstream
regulatory programs, thereby exemplifying the typical positional
signaling mediated by mobile transcriptional factors (see reviews
by Wu and Gallagher, 2012; Han et al., 2014; Long et al.,
2015). The immediate question would be of interest to pinpoint
the pathways whereby the mobile proteins are signaling their
effects, e.g., the secretory pathway or PD pathway. Genetic
screening on pSUC2::GFP system in which the distribution of
GFP fluorescence is expanded from phloem into RAM due to
a free GFP protein diffusion (Imlau et al., 1999) (Figure 3)
identified gain-of-function mutation in CALS3 gene whose
product catalyzes the polymerization of β-1,3-linked D-glucose
or callose formation (Vatén et al., 2011). Mutation in CALS3 gene
not only congealed GFP diffusion, but also substantially retarded
root growth. Presumably, the phenotypic change in CALS3 gain-
of-function mutant resulted partially, at least, from the impaired
movement of SHR protein and microRNA miR165 (Vatén et al.,
2011; Wu et al., 2016), as the aperture of PD was decreased by
increased callose deposition in the PD neck of mutant, which
is exactly consistent with tremendous studies on the effect of
callose on PD conductivity (see reviews by Roberts and Oparka,
2003; Chen and Kim, 2009; Zavaliev et al., 2011; Burch-Smith
and Zambryski, 2012; De Storme and Geelen, 2014; Sager and
Lee, 2014). Likewise, in the shoot tip, PD aperture reduction by
CALS3m-directed callose deposition in the SAM restricts WUS
protein movement from organizing center to stem cells residing
in the outermost cell layers (Daum et al., 2014), leading to
developmental defects similar to wusmutant. These studies have
clearly assigned the rout for mobile transcriptional factor, and
positional signaling through PD is indeed playing very important
role in cell division and cell identity, thus tissue patterning (Otero
et al., 2016).

An earlier independent EMS screening on pSUC2::GFP
system with the same aim to uncover mutant showing reduced
GFP traffic, pointed to a new regulatory pathway linked to redox
homeostasis (Benitez-Alfonso et al., 2009). Benitez-Alfonso et al.
demonstrated that GFPmovement in the phloem-RAM interface
ground to a halt in an epiallele of gat1 gene encoding a
plastid-localized m type thioredoxin (Figure 3), which essentially
contributes to the regulation of chloroplast redox state (Vieira
Dos Santos and Rey, 2006; Serrato et al., 2013; Nikkanen
and Rintamäki, 2014; Buchanan, 2016). Indeed, examination
on ROS level in this mutant detected an elevated oxidative
staining with 3,3′-diaminobenzidine (DAB) compared to the
wild type plant, apparently contradicting to these findings
(Stonebloom et al., 2009; Rutschow et al., 2011; Liang et al.,
2014) in which the increased ROS level are positively associated
to PD-mediated transport. As ISE1, ISE2, GAT1 protein are
localized in different organelles, one approach to reconcile
this contradiction is to determine the sub-cellular redox state
indicated by the redox-sensing green fluorescent protein fused
with specific compartment-targeting signal; a higher oxidized
state of mitochondria in the ise1 mutant or in WT plants treated
with Salicylhydroxamic acid (SH) and a reduced chloroplast
redox in ise2 are all positively correlated to plasmodesmal
transport whereas oxidized state of chloroplast in paraquat-
treated WT plants resulted in decreased plasmodesmal transport
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FIGURE 2 | Peroxidase-catalyzed cell wall remodeling dictates PD transport. In the apoplastic space (light yellow), type III peroxidase (POX) performs peroxidative

cycle (blue arrows) and oxidative cycle (green arrows) to regulate H2O2 and superoxide/O2 level. Apoplastic ROS from the two cycles lead to cell wall tightening or

loosening by crosslinking or depolymerizing cell wall components, thereby shrinking or enlarging the plasmodesmatal passage. Apoplastic H2O2 can also, through

aquaporins-mediated transmembrane transport, enter the cytoplasm to initiate downstream signaling events, e.g., MAPK cascade signaling and cytoskeletal

remodeling, resulting in membranous protrusion (see the section ROS are required to form intercellular/interorganelle bridge for the details). ROS imbalance inflicted by

mutation in ISE1, ISE2, GAT1 localized in the subcellular compartments also impacts on intercellular transport. It’s currently unknown whether or how ROS from

subcellular compartments contribute to apoplastic ROS pool. Protein that moves through PD sleeve may be subject to ER stress-induced ROS, thus requires a

post-movement refolding (details in the text). The peroxidase/oxidase cycling was adapted from Berglund et al. (2002) with the permission from Rightslink®.

irrespective of the redox states of either mitochondria or
cytoplasm (Stonebloom et al., 2012). The decreased PD transport
in gat1 mutant seems concordant with the proposed model
(Stonebloom et al., 2012) as paraquat-treated pSUC2::GFP plants
showed exactly the same phenotype to gat1 mutant (Benitez-
Alfonso et al., 2009). Comprehensive work such as direct
comparison between mutants, e.g., the ise1 (Stonebloom et al.,
2009), ise2 (Kobayashi et al., 2007), gat1 (Benitez-Alfonso et al.,
2009), dse1 (Xu et al., 2012) with deficiency in PD transport, may
be needed to construct a clearer picture of what effects the site of
ROS production may inflict on PD conductance.

Different ROS and Their Possible Roles
The question of whether different ROS have different roles in
regulating PD transport remains a mystery, but looms, indeed,
large, which can be inspired from the findings that superoxide
and hydrogen peroxide differently regulate cell proliferation, cell

differentiation, and root growth in Arabidopsis (Dunand et al.,
2007; Tsukagoshi et al., 2010; Müller et al., 2015). Tsukagoshi
et al. (2010) reported a novel pathway involving three peroxidases

(Per39, Per40, Per57) that function to balance the distribution

of hydrogen peroxide and superoxide in the transition zone of

cell proliferation and cell differentiation. Disturbance of ROS

level by overexpression or disruption of peroxidase, can alter

the ROS homeostasis in the transition zone, leading to increased
or decreased root meristematic cell number. Interestingly,
negative regulation of peroxidase expression requires a mobile
transcriptional factor, UPBEAT1, which appears to move from
root cap to elongation zone to repress peroxidase transcription
and allows H2O2 accumulation in the differentiated zone. In the
light of abovementioned evidence on the role of ROS in PD
and recent evidence on the role of ROS in root development
(Müller et al., 2015; Orman-Ligeza et al., 2016; Yu et al., 2016),
it is compelling to speculate that developmental regulation
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FIGURE 3 | Protein unloading from phloem to surrounding cells in root is associated with redox homeostasis. GFP is specifically expressed in the companion cell

under the control of AtSuc2 promoter. It’s not retained in the companion cell but rather disperses into sieve element (SE) and other parts of roots including stele,

cortex, RAM (round circle), and root cap (A). mRNA of GFP is less likely to move into surrounding cells to be translated into fluorescence signal as plants harboring

either bigger size of GFP or subcellular targeted GFP only show green fluorescence in the companion cells. Loss-of-function mutation in thioredoxin gene GAT1 for

redox regulation (B), or gain-of-function mutation in callose synthase gene Cals3 shows defective GFP trafficking (C). (A–C) were drawn according to the description

by Imlau et al. (1999), Benitez-Alfonso et al. (2009), Vatén et al. (2011) respectively.

via ROS signaling in root is, at least partially, coming from
the oxidative/reductive impact on PD transport. However, this
speculation should be tested, and particularly the nature of ROS
in relation to cell types and PD function needs to be delineated.

ROS Stress, Chaperon, and Intercellular
Protein Movement
Another different approach involving the KN1 movement makes
a surprising finding, where KN1 movement requires chaperone
protein CCT8, a type-II chaperonin subunit (Xu et al., 2011)
(Figure 4). Xu et al. (2011) further suggested that the whole
chaperonin complex, known as TRiC/CCT complex, consisted of
two rings with each having eight paralogous subunits (CCT1-8)
(Horwich et al., 2007; Hartl et al., 2011), is required for unfolding
and intercellular transport of KN1 protein. In addition to KN1
movement, movement of TRANSPARENTTESTAGLABROUS1
(TTG1) and, even external intruder such as oilseed rape mosaic
virus (ORMV) also requires this complex (Xu et al., 2011;
Fichtenbauer et al., 2012).

Most notably, CCT8 needs to be present in the destination
cell, rather than the donor cell, to make the translocated GL1-
KN1 fusion functional, however, this fusion, if natively expressed
in the destination cell (de novo protein folding), is agnostic
to CCT8 chaperonin (Xu et al., 2011). Therefore, re-folding
after translocation through PD is critical for mobile protein to
fulfill its function in new place. But, these observations, on the
other hand, inevitably cast new thoughts on such questions as
why chaperonin is needed for post-translocation re-folding, or
whether there is any modification occurring to unfolded amino
acid chain during passage through PD. Currently, there is no clue

to these questions from literature, however, in the perspective
of redox regulation on PD, it’s tantalizing to conceive that
the importance of chaperonin complex in PD-mediated protein
movement is likely two-fold: (1) to unfold before transport and
refold the impaired amino acid chain due to oxidative stress
around PD after transport and (2) to protect mobile protein
from redox fluctuation. Furthermore, protein folding/unfolding-
induced endoplasmic reticulum (ER) stress, or more precisely
the unfolded/misfolded protein-induced ER stress has been
proposed to be a significant source of cellular ROS (Malhotra
and Kaufman, 2007; Rutkowski and Kaufman, 2007; Santos et al.,
2009), estimated to account for 25% of cellular ROS in the
yeast Saccharomyces cerevisiae (Tu and Weissman, 2004). The
similar mechanisms seem to operate in plants as well (Onda
and Kawagoe, 2011; Aller and Meyer, 2013; Ozgur et al., 2014).
Since ER sleeve runs through PD (Figure 2), ROS production
from this process could be exploited to facilitate intercellular
movement. Further studies need to be explored to reveal how
chaperon protein help to move through PD channel and in what
mode chaperon protein is incorporated with ROS to regulate
intercellular communication.

ROS ARE REQUIRED TO FORM
INTERCELLULAR/INTERORGANELLE
BRIDGE

ROS Induction of Cellular Membrane
Protrusions
Tunneling nanotubes (TNTs), usually considered as counterpart
to PD, have recently been discovered in a variety of cell types
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FIGURE 4 | Intercellular KN1 movement through PD requires a post-movement refolding, which could result from ER stress. The non-cell autonomous feature of

KN1C (trafficking domain of KN1) protein renders the GFP-GL1-KN1C fusion as a movement protein that moves from mesophyll cell to epidermal cell, whence the

GL1 part in the fusion initiates the developmental program for trichome specification. Chaperonin CCT8 is required in the destination cell, in this case the epidermal

cell, to refold the post-movement protein. This figure was drawn based on the description by Xu et al. (2011).

(Rustom et al., 2004; Gerdes et al., 2007; Gurke et al., 2008;
Rustom, 2009). These intercellular bridges that link mammalian
cells are at play in transmitting a range of signals involved
in developmental processes and spreading pathogens as well
(Gerdes and Carvalho, 2008; Eugenin et al., 2009; Hase et al.,
2009; Marzo et al., 2012; Abounit et al., 2016; Hashimoto
et al., 2016; Victoria and Zurzolo, 2017). Thus, how TNTs
are contributing to intercellular transport is becoming a very
interesting, targeted topic since their discovery (Rustom et al.,
2004). Accumulating evidence has shown that hydrogen peroxide
can not only promote the formation of TNTs within the same cell
type, e.g., between rat primary neurons, astrocytes (Zhu et al.,
2005; Wang et al., 2011), and mouse CAD cells (Gousset et al.,
2013), but also between heterozygous cell type, e.g., rat primary
astrocytes and C6 glioma cells when co-cultured (Zhang and
Zhang, 2015). Actually, more than hydrogen peroxide, oxidative
stress induced by oxidant methylglyoxal and menadione can also
promote TNTs formation in human peritoneal mesothelial cells
(Ranzinger et al., 2014; Rustom, 2016) and rat astrocytes (Zhu
et al., 2009) respectively. Moreover, a recent study has shown that
movement of alpha-synuclein through TNTs is accompanied by
increased ROS, suggesting that ROS could facilitate intercellular
protein transport by increasing the number of TNTs (Abounit
et al., 2016).

Notwithstanding these clear phenomena, the mechanisms
underlying ROS-induced TNTs formation are just emerging from
the perspective of their structural composition. Because TNTs
are mainly actin-filled membrane protrusions (Austefjord et al.,
2014), the inductive formation by ROS could be attributed to the
effects on actin dynamics.

Indeed, cytoskeletal behaviors, under ROS stress, is widely
shown to be altered (Raghu et al., 1986; Zhao and Davis, 1998;

Gellert et al., 2015; Wilson and González-Billault, 2015; Xu
et al., 2017), including actin polymerization, filament assembly,
branching, cytoskeletal reorganization, and dynamic interactions
with cytoskeletal regulators. These behavioral changes stem from
either the direct oxidation of actin by ROS, or the ROS-initiated
signaling, or both. Topologically exposed in the cytoplasm, some
amino acid residues (e.g., Met 44, 47, 355, Cys 374) in actin
and other cytoskeletal components are liable to oxidative attack
(Lassing et al., 2007; Fedorova et al., 2010; Hung et al., 2011;
Wilson et al., 2016), thereby inhibiting actin polymerization or
association with other proteins (Dalle-Donne et al., 2002, 2003;
Landino et al., 2002, 2007). These results are insightful; however,
there are few reports showing the impairment of membrane
protrusions are the direct result of actin oxidation. Part of this
reason could be due to the powerful in vivo antioxidant system
that can reverse the oxidized form. For example, under H2O2

treatment, actin can be kept in reduced form by thioredoxin-1
(Trx1) through its interaction with cysteine 62 of actin (Wang
et al., 2010), thus antagonizing the direct oxidation. Similarly,
for the oxidized Met, a methionine sulfoxide reductase SelR can
reduce the oxidized Met 44 (Hung et al., 2013).

Molecular Signaling in TNTs Formation
Apart from the direct interplay between ROS and antioxidant
on the actin behavior, indirect cascade, or the ROS-initiated
signaling could play important roles in dictating the actin-driven
membrane protrusions. A pioneer work demonstrated that H2O2

induces TNTs-like protrusion formation by promoting actin
polymerization and colocalzation of myosin Va and F-actin in
the newly formed protrusions in primary rat astrocytes (Zhu
et al., 2005). What’s more, the property of astrocytes plasma
membrane is also altered under ROS treatment, which seems
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not to be from the sheer oxidative damage on membrane, rather
to be mediated by cytosolic phospholipase A2 (cPLA2) (Zhu
et al., 2009). Further biochemical experiments suggested that
H2O2-triggered phosphorylation of p38 MAPK and ERK1/2
(extracellular-signal-regulated kinase 1/2) is the key to protrusion
formation as specific inhibitors of p38 MAPK and ERK
can nearly abolish the H2O2-induced TNTs formation (Zhu
et al., 2005, 2009). p38 MAPK and ERK1/2 are very import
players in connecting various signaling pathways and involved
in various fundamental processes (see reviews by Roux and
Blenis, 2004; Shaul and Seger, 2007; Xu et al., 2014), so the
question lingers about the MAPK cascade signaling specificity
to TNTs formation. Fortunately, identification of the molecular
players acting seemingly downstream of ERK1/2 could—at least
partially—answer this question. A TNTs-like localized protein
M-Sec induces de novo actin-containing protrusions through
interaction with the activated small GTPase RalA and, mediation
by RalA-exocyst complex (Sugihara et al., 2002; Hase et al., 2009).
The exocyst complex has been shown to be directly involved
in actin remodeling; one subunit of exocyst, Exo70, interacts
with the Arp 2/3 complex (a key machinery for the generation
of the filamentous actin network) to promote actin branching,
resulting in membrane ruffling or protrusion (Zuo et al., 2006;
Liu et al., 2009). A later discovery that ERK1/2 can directly
phosphorylate the exocyst subunit Exo70 to enhance the complex
assembly in response to EGF (epidermal growth factor) (Ren and
Guo, 2012), established the link between ROS-initiated ERK1/2
signaling and M-Sec-RalA-Exocyst complex (Figure 5). Actually,
in a similar situation to TNTs formation, ERK is also required
for EGF-stimulated protrusion in human mammary epithelial
cells. In this case, ERK promotes the lamellipodia protrusion
by directly phosphorylating the WAVE2 Regulatory Complex
(WRC), which then activates the Arp2/3 complex for actin
assembly together with activated WAVE2 and Abi1 (activation
by the ERK phosphorylation as well) (Mendoza et al., 2011).
The mobilizing force to drive actin network remodeling may
come from the myosin motor (Nambiar et al., 2010) that has
been widely shown in the recent reports (Bishai et al., 2013;
Lou et al., 2015; Yochelis et al., 2015; Saczko-Brack et al., 2016),
so what factor, if there is any, is directing the force to this
process? Interestingly, a recent report has pointed out that the
ERK signaling could provide a clue in which ERK promotes
lamellipodia protrusion by lifting the sequestration of myosin
1E by SH3P2 via phosphorylating its Ser 202, thus resulting in
myosin-actin association at the leading edge of the humanMKN1
tumor cell (Tanimura et al., 2016; Tanimura and Takeda, 2017).

Another study also showed that TNTs are induced by H2O2

in rat hippocampal astrocytes and neurons respectively. Genetic
manipulation demonstrated that p53 is required for TNTs
development, and that Akt is involved in TNTs induction
by H2O2. Ly294002 and rapamycin, the inhibitor of PI3K
and mTOR (the both are p53-responsive genes), respectively,
can effectively quench the TNTs induction (Wang et al.,
2011). Actually, an earlier report showed that mTOR together
with RICTOR regulated actin organization by modulating the
phosphorylation of Protein Kinase C α (PKCα) (Sarbassov
et al., 2004). These collective data suggest the PI3K-Akt-mTOR

signaling pathway is another key mechanism to regulate
TNTs induction (Wang et al., 2011) through activating M-sec
(Figure 5), or that the p38 MAPK and PI3K-Akt-mTOR might
crosstalk to regulate their formation (Xu et al., 2014). Therefore,
future studies in light of dissecting the relationship between
the ROS-initiated p38, ERK, and PI3K-Akt-mTOR signaling are
needed to advance our knowledge of TNTs formation under the
direction of such complex signaling networks.

Actin Cytoskeleton-Based Cellular
Protrusions
Since actin cytoskeleton plays a crucial role during TNTs
formation (Austefjord et al., 2014), it would be of interest to
know whether ROS-triggered effects could be extrapolated to
other actin-based membraneous protrusions, e.g., cytonemes
(Ramírez-Weber and Kornberg, 1999; Hsiung et al., 2005), and
actin-dependent outgrowth of neurite in neuron (da Silva and
Dotti, 2002; Chia et al., 2016; Winans et al., 2016).

Remarkably, a physiological level of ROS sourced mainly
from NOX and lipoxygenase is critical for neurite outgrowth;
downregulation of ROS level withmany different ROS scavengers
caused the disassembly of actin cytoskeleton, resulting in reduced
neuronal extension (Munnamalai and Suter, 2009). Different to
the ROS signaling in TNTs outgrowth in the earlier reports by
Zhu et al. (2005), Hase et al. (2009), and Wang et al. (2011),
the signaling events for neuronal outgrowth are consisting of
interactions between Rac and Rho GTPase-involved pathways
(Figure 5) (Nimnual et al., 2003; Munnamalai and Suter, 2009;
Chianale et al., 2010; Winans et al., 2016). Noteworthily, the
Rac and Rho pathways are not tailored for neuronal outgrowth;
they, together with Cdc42 and downstream componenstsWAVE,
WASP, and Arp2/3, are also required for TNTs biogenesis in
macrophage (Hanna et al., 2017), and cytoplasmic protrusions
during Xenopus embryonic development (Tahinci and Symes,
2003). Further studies on the in vitro neurite outgrowth have
found that the protrusions, under certain circumstances, are
also promoted by Akt-mTOR pathway (Jin et al., 2012) and
p38 MAPK signaling pathway (Sarina et al., 2013), suggesting
that neruronal outgrowth, similar to TNTs formation, can be
achieved through diversified pathways. The wide availability of
versatile signaling pathways may reflect the effective response of
intercellular movement via formation of intercellular bridge to
numerous environmental stimuli which more or less cause redox
fluctuation. And eventually, the responsive node is converged
on the actin cytoskeleton or other cytoskeletons possibly in
accordance with the type of cellular protrusions (Figure 5).

Cytonemes are another type of intercellular bridges, similar
to TNTs in shape, but distinct from TNTs in the contact sites—
opened in the TNTs and closed in the cytonems. Since cytonemes
are actin-based structure, it is plausible that cytonemes formation
may be also subject to ROS regulation. This corollary does not
guarantee an exact scenario, but a similar one. Actually, nitric
oxide (NO), another type of reactive species (RNS, reactive
nitrogen species), can drastically promote the formation of
cytonemes on the surface of human neutrophil (Galkina et al.,
2005) for targeting their prey at a distance (Galkina et al., 2009),
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FIGURE 5 | ROS-induced formation of membrane protrusion, intercellular and interorganelle bridge. (A) At physiologically higher ROS levels, TNTs are formed

between cells via cytoskeleton-based (e.g., actin, myosin) membrane protrusion. ROS-induced diversified pathways including p38 MAPK, PI3k-Akt-mTOR signaling,

ERK1/2 signaling, Rho GTPases family, and M-Sec-RalA-Exocyst complex, are shown to promote membrane protrusions mainly via Arp2/3-mediated actin

cytoskeletal remodeling. The cooperative association between myosin and actin that is activated by ERK signaling plays an important role in mobilizing various related

components and mediating membrane-cytoskeleton coordination. (B) In plant cells, the membrane-encircled organelles, e.g., the chloroplast and peroxisome, can

form inter-organellar bridge between the same type of organelle (the stromule and peroxule) and different types of organelles under higher ROS condition. Repression

of NTRC leads to increased stromules. The signaling mechanism is currently unknown. Arrows may not denote direct activation. Several key nodes in the signaling

networks are colored in red, and Arp1/2 complex, Exocyst complex, NOX, ERK, p38 MAPK, Rac and Rho are also encoded in plant genomes. p38 MAPK, p38

mitogen-activated protein kinase; Pkc, protein Kinase C; PI3k, phosphatidylinositol-3-kinase; AKT, protein kinase B; mTOR, mammalian target of rapamycin; M-Sec,

Myeloid and M cells-expressing Sec6 homolog, also known as TNF alpha-induced protein 2, or Primary response gene B94; RalA, Ras-related protein Ral-A; RalBP1,

RalA-binding protein 1; Cdc42, Cell division control protein 42 homolog; WASP, the Wiskott–Aldrich Syndrome protein; ERK1/2, extracellular signal-regulated kinase

1; Exocyst, an octameric complex; RSK, ribosomal S6 kinase; SH3P2, Src homology-3 (SH3) domain-containing protein 2; Arp2/3, actin-related complex 2/3; WRC,

WAVE2 Regulatory Complex; NOX, NADPH oxidase; WAVE, WASP family verprolin-homologous protein; NTRC, NADP-thioredoxin reductase C.

and the inhibitor of nitric oxide synthase inhibit their extension
without much impact on neutrophil spreading (Galkina et al.,
2005). The exact inductive mechanisms are not fully addressed,

however, based on the constituents of cytonemes, it’s natural
to speculate that NO may act through modulating cytoskeleton
behaviors to extend cytomenes. Extensive studies have shown
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that nitric oxide synthase interacts with tubulin and actin
cytoskeleton (Su et al., 2003, 2005; Kondrikov et al., 2006, 2010)
and modulates their activity through tyrosine nitration and
S-nitrosylation of target cytoskeletal proteins or cytoskeleton-
associated proteins in both animals (Loesch et al., 1994; Aslan
et al., 2003; Tedeschi et al., 2005; Thom et al., 2008; Zhang et al.,
2015) and plants (Kasprowicz et al., 2009; Yemets et al., 2011; Yao
et al., 2012; Blume et al., 2013; Rodríguez-Serrano et al., 2014).
Thus, it’s highly likely that these modifications on cytoskeleton,
particularly the actin, could eventually impact on cytonemes
formation.

However, this does not negate a possible role of ROS in
cytonemes formation since several independent studies have
shown that nitric oxide induces ROS production (Pieper et al.,
1994; Lee et al., 2000; Patel et al., 2009). The NO-induced
ROS can further trigger actin-based cellular protrusions, or
alternatively, in vivo ROS generation could be achieved through
the interaction of nitric oxide synthase with Rac protein (Jyoti
et al., 2014), a key regulator of ROS production (Caron and
Hall, 1998) (Figure 5). In fact, the NO-induced ROS pathway has
been partially uncovered in another similar cellular protrusion
in neutrophil. Neutrophil extracellular traps (NETs) are not
surrounded by membranes, and appear thinner compared to
cytonemes (Brinkmann et al., 2004). As in cytonems, NETs
formation is induced with longer NO donor exposure, and
this induction is dependent on the ROS generation from
the mobilized NOX (Patel et al., 2010). Furthermore, genetic
requirement of Rac and NOX for NETs formation reinforces
the ROS part in the NETs protruding process (Lim et al., 2011;
Stojkov et al., 2017).

The Rac and NOX components are also involved in the
neutrophil chemotaxis by affecting actin behaviors. For example,
NOX-dependent ROS negatively regulate actin polymerization
via actin glutathionylation, and disruption of antioxidant enzyme
glutaredoxin 1 (Grx1) leads to attenuated actin polymerization
(Sakai et al., 2012). In mouse bone marrow neutrophil, Rac
knockout significantly reduced superoxide level and neutrophil
cell polarization toward a chemoattractant gradient (Roberts
et al., 1999). Taken together, cytonemes formation, presumably
via Rac-dependent actin cytoskeletal remodeling (Mitchell et al.,
2008), might share the similar mechanisms to that underlying the
TNTs and neuronal outgrowth (Figure 5). But before leaping to
this conclusion, further study needs to be carried out to examine
the relationship between RNS and ROS and, the crosstalk in
signaling the membrane protruding process.

Membrane Protrusions in Plant Cells
As discussed above, the ROS-induced membrane protrusion via
actin remodeling is widely seen in many different mammalian
cell types. So, would an analogous situation occur in plants as
well? Interestingly, rather than displaying the increased simple
PD between cells, the ise1 mutant with elevated ROS level as
discussed earlier is developing more complex PD such as the
twinned and branched PD (Burch-Smith and Zambryski, 2010),
whose formation requires membrane insertion into pre-existing
simple PD (Faulkner et al., 2008; Burch-Smith and Zambryski,
2012). Nevertheless, this process is much more complicated

than the intercellular bridge formation between mammalian
cells as it has to deal with cell wall remodeling, e.g., cell wall
thinning (Ehlers and Kollmann, 2001; Ehlers and Westerloh,
2013). Thus, membrane protrusion induced by oxidative stress
during complex PD formation may not typically exemplify the
role of oxidative stress in this process, which is indeed the case
in a new study on the formation of complex PD in Arabidopsis
leaf epidermis (Fitzgibbon et al., 2013). Other relative simple
membrane structure, without wall sophistication, could be more
ideal to reflect the role of ROS in membrane protrusion in plants
(see below for further discussion).

ROS Induction of Interorganelle Structure:
Stromule and Peroxule
Some specializedmembrane contact sites, or organelle extensions
such as stromule, peroxule, matrixule (Mathur et al., 2012;
Pérez-Sancho et al., 2016)—evidently without the complication
of cell wall remodeling—present ideal platforms to address the
mechanisms of membrane extrusions. Stromules are stroma-
filled tubules that may, in vivo, extend—analogous to TNTs—
along actin microfilaments, myosin and ER (Kwok and Hanson,
2003, 2004; Gunning, 2005; Natesan et al., 2009; Sattarzadeh
et al., 2009; Schattat et al., 2011). Stromule formation is
known to be induced by different kinds of stresses including
hydrogen peroxide (Gray et al., 2012). A recent study further
elaborated this association. Brunkard et al. (2015) found that
formation of stromule from photosynthetic chloroplast, not
non-photosynthetic plastid or leucoplast, can be boosted by
the chemicals that specifically elicit ROS production in the
chloroplast. This result is further genetically reinforced by
virus-induced gene silencing of the chloroplast-localized NADP-
thioredoxin reductase C (NTRC), which serves as reductant
to reduce hydrogen peroxide (Brunkard et al., 2015); more
than doubled stromule frequency in the NTRC silencing leaf
of N. benthamiana is, therefore, presumably construed as the
consequences of the ROS accumulation in the chloroplast
(Brunkard et al., 2015; Hanson, 2015) (Figure 5). Since in
vitro isolated chloroplast extends stromule independently of
cytoplasmic niche (Brunkard et al., 2015; Ho and Theg, 2016),
it would be very intriguing to see the ROS effect is still viable
on the in vitro stromule formation, which could resolve the
questions as to whether and/or how ROS effect is working
through cytoplasmic niche.

A similar morphing response to ROS stress was also
discovered in peroxisome’s extension (Sinclair et al., 2009;
Rodríguez-Serrano et al., 2016), namely the peroxule which
is coined after stromule as these membrane protrusions are
morphologically similar (Scott et al., 2007). The response is very
rapid, and peroxule extension occurs within seconds of exposure
to H2O2 and ·OH radicals (Sinclair et al., 2009). Similarly,
high light stress, a condition in which cytosolic H2O2 elevation
is induced, can bridge peroxisome-mitochondria contacts via
peroxule (Figure 5). In addition, an irrelevantmutant to peroxule
formation, the anisotropy1 defective in cellulose synthase (CesA)
gene displays elevated internal H2O2 level, and at the same
time has higher peroxule frequency compared to wild type plant

Frontiers in Cell and Developmental Biology | www.frontiersin.org 12 February 2018 | Volume 6 | Article 2

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Liang ROS-Regulated Biomolecule Movement

(Jaipargas et al., 2016). Noteworthily, other ROS like singlet
oxygen and superoxide seem not to instigate peroxule growth
(Sinclair et al., 2009), suggesting peroxule formation may rely
on specific ROS-dependent signaling pathway (Sinclair et al.,
2009). The proposition is recently revealed that quick peroxule
formation is achieved through NOX-generated ROS-mediated
PEX11a expression—at least in the case of Cd stressing situation
(Rodríguez-Serrano et al., 2016).

All of the accumulating evidence highlights a conservative
phenomenon in which the membrane protrusions are subject to
oxidative change, particularly H2O2 fluctuation, either internally
or externally. In mammalian cells, the ROS-initiated signaling
will eventually converge on the regulation of cytoskeleton that
underpins the cellular protrusion. The key players in the signaling
pathways that direct membrane protrusions are largely found in
plant cells, e.g., the Arg2/3 complex (Yanagisawa et al., 2013),
Rac and Rho family (Hassanain et al., 2000; Nagawa et al., 2010;
Kawano et al., 2014), exocyst complex (Zhang et al., 2010), NOX
(Wang et al., 2016), ERK (Cvetkovska et al., 2005; Furukawa
et al., 2012), and p38 MAPK (Liu and He, 2017), implying
that the signaling pathways in animals have meandered into
the networks controlling the cytoskeleton remodeling in plant
cells; an example is the exocyst complex is required for pollen
tube growth (Bloch et al., 2016), for which extensive membrane
dynamics and cytoskeletal remodeling are taking place at the tip
of pollen tube (Cheung and Wu, 2008; Kroeger and Geitmann,
2012; Qu et al., 2015). Although the exact mechanism for
organellar extension is still under investigation, it’s not hard to
conceive that characterization of the structural compositions of
these extensions including the membrane skeleton associated
with them would represent a solid, but very challenging step
toward the comprehension of such complicated process given the
small size of these extensions. ROS-initiated signaling pathways
can be further elaborated with the insights gained from TNTs
studies.

INCREASED OR DECREASED
TRANSPORT VIA PD: AMOUNT TALKS

ROS level has to be kept in a certain range to maintain a healthy
cellular status, in which the intercellular movement alters with
ROS concentration accordingly. As shown by Rutschow et al.
(2011) and Liang et al. (2014), an uptick in hydrogen peroxide
supplement can increase intercellular movement, but this effect
can be reversed if the extra concentration has reached a very
higher level of more than 3 or 6mM. This phenomenon as well as
the contradicted results from gat1 and ise1mutant needs a further
explanation although it might be associated with subcellular
redox as discussed in previous section. Another possible way to
work around this issue could borrow insights from recent work
on pollen tube rupture and pathogen penetration.

Oxidative Burst and Cell Wall
Disconnection/Dissolution
A ROS burst usually occurs under biotic/abiotic stress in order
to kill invaded pathogen or trigger hyper-sensitive cell death to

protect plants from detrimental effects induced by stressors. Such
occurrence is a dangerous theme to plant itself, so employment
of high ROS for plant normal development is thought to be
rare. However, recent study reported that pollen release from the
tube into the female gametophyte during reproductive process
requires the cell wall rupture of pollen tube, which is achieved
via a NOX-mediated ROS burst (Duan et al., 2014) as it happens
during root hair growth (Foreman et al., 2003; Orman-Ligeza
et al., 2016). Moreover, this process can be reconstituted in
vitro by providing exogenous 1mM H2O2 (Duan et al., 2014),
clearly demonstrating oxidative burst is required for pollen
tube rupture. In a broader biological sense, this scenario has
reminded us that oxidative burst plays critical roles in cell
wall dissolution, as has been evidenced in abscission process in
various species (Sakamoto et al., 2008a,b; Yang et al., 2015; Liao
et al., 2016). What’s more, ROS burst at the site of abscission
is most possibly mediated by peroxidase (Poovaiah, 1973; Hall
and Sexton, 1974; Henry, 1979; McManus, 1994). A subclass of
anatomically distinct cells—smaller size and denser cytoplasm
compared to neighboring cells—makes up of the abscission zone,
from which cell wall loosening and eventual dissolution will
occur under the control of various cell wall remodelers (Roberts
et al., 2002; Kim et al., 2015; Merelo et al., 2017; González-
Carranza et al., 2018). To be more specific, dissolution is most
likely happening in the lamella zone of cell wall (Figure 6) (Agustí
et al., 2012; Yamada et al., 2015).

One obvious consequence from abscission is the complete
physical cut-off from intercellular transport, although questions
remain as to at which stage and in what way the PD permeability
is blocked during formation of abscission layer, given the impact
of ROS burst and vigorous cell wall remodeling on PD structure
and/or permeability.

Interestingly, a recent study on oil palm fruit abscission zone
shows that abscission zone is multi-cell layered structure and
PD is frequently observed within the layer, but less frequently
observed between layers (Roongsattham et al., 2016), suggesting
that inter-layer communication via PD is becoming less likely
prior to separation. With progression toward abscission, the
PD size within layer is enlarged (Roongsattham et al., 2016),
fusing membrane vesicles, highly branched PD and its associated
cavities in the vicinity of middle lamella are frequently observed
(Osborne and Sargent, 1976; Henry, 1979; Bar-Dror et al.,
2011; Roongsattham et al., 2016). The physiological function
of these branched PD in the abscission layer is yet known,
but clues from the presence of branched PD in the trichome-
epidermal boundary (Faulkner et al., 2008) where there is only
unidirectional transport (Christensen et al., 2009) (Figure 1) and
also in the cells undergoing sink-source transition that allows
carbon export (Volk et al., 1996; Oparka et al., 1999) suggest
that the branched PD in the abscission zone may be involved
in the unidirectional transport between the separated tissue
and the main body. Alternatively, they are simply results of
the vigorous cell wall remodeling, or formed from the fusions
of existing simple PD due to ROS burst which would also
boost the polarization of membranous system, such as the
TNTs formation or stromule, peroxule formation as discussed
previously (Figure 6).
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FIGURE 6 | A tentative model to depict the relationship among cell wall remodeling, membrane protrusion, complex PD formation and increased ROS level in plant

cells. Plasmodesmata (PD)-mediated intercellular transport is usually regulated by PD-localized proteins (PDLPs) and other PD-associated regulators (e.g., callose

synthase, glucanase), and involves no cell wall remodeling (A). In apoplast, ROS-generating enzymes including type III peroxidase (POX) and other cell wall-localized

oxidases drive cell wall remodeling. Apoplastic H2O2 increment and subsequent conversion into hydroxyl radical from H2O2 leads to cell wall loosening via oxidative

scission of cell wall polysaccharides and ROS-activating enzymatic breakdown of cell wall-associated proteins. PD embedded in the loosened cell wall expands (B),

resulting in increased intercellular exchange. In the symplast, H2O2-induced protruding membrane may cross the loosened cell wall to form novel PD or fuse with

existing PD to form complex PD (C). However, too high ROS cause either cell death (apoptosis) or middle lamella dissolution, resulting in the physical cut-off between

cells (D).

Callose, PD Transport, and Pathogen
Penetration
Decades of research on pathogen-plant interaction have
established that cell wall barrier, e.g., cell wall appositions
known as papillae, at the site of infection can be formed to
constitute a first physical front line against intruder penetration
(Aist, 1976), and later that strengthening of this specialized
structure is proposed to be driven by ROS burst during
infectious attack (Hückelhoven et al., 1999; Grant and Loake,
2000; Torres et al., 2006) as well as iron deposition (Liu et al.,
2007). Callose, the most abundant constituent of papillae (Aist,
1976; Schulze-Lefert, 2004; Bellincampi et al., 2014; Voigt,
2014), is considered to assemble quickly at attack site, thereby
forming a barrier to resist intruder’s penetration. However,
this prevailing view does not withstand from two independent
genetic studies in which loss of function of GLS5/PMR4 gene
coding for a GLUCAN SYNTHASE, indeed, leads to lack of
callose deposition at papilla, but paradoxically results in the
effective growth cessation of powdery mildew (Jacobs et al., 2003;
Nishimura et al., 2003). And more than that, overexpression
of the same gene in Arabidopsis, leading to enlarged callose
deposits and focal accumulation at sites of attempted fungal
penetration, again, jibed with the traditional wisdom (Ellinger
et al., 2013).

Therein lies the seemingly irreconcilable contradiction and
the role of callose in defending fungal penetration is becoming
less conclusive. The structural components of papillae has not
been fully understood, therefore, the possibility remains that
other factors, beyond the sole function of callose, may account
for the discrepancy. By examining the availability of various

polysaccharides in barley papillae against Blumeria graminis f.
sp. hordei, a new study combining immunofluorescence with
immunogold-labeling methods reveals that an effective papilla is
a multilayered structure, with the inner core consisting of callose
and arabinoxylan and the outer layer containing arabinoxylan
and cellulose (Chowdhury et al., 2014). Early results showed
that inhibition of H2O2 production by secreted catalase from

B. graminis f. sp. hordei during penetration might interfere with

penetration resistance (Zhang et al., 2004), and that inhibition
of a POX-mediated ROS burst via direct inactivate of peroxidase

activity by fungal effector Pep1 also suppressed penetration
resistance (Hemetsberger et al., 2012). These findings allow

the proposal of an integrated model in which POX-dependent
ROS accumulation together with the multilayered cell wall

organization shapes up a resistance barrier to hyphae penetration
(Hückelhoven, 2014).

Given the facts that callose homeostasis at the neck region

of PD is one of the key mechanisms regulating permeability
(Zavaliev et al., 2011; De Storme and Geelen, 2014; Knox and
Benitez-Alfonso, 2014) and that PD is exploited by fungal hyphae

for spread, at least in the case of rice blast fungus (Kankanala

et al., 2007), and also resided with various sensing proteins
to detect intruder’s presence, thus to trigger its closure (Lee
et al., 2011; Faulkner et al., 2013; Caillaud et al., 2014), one
may speculate that similar scenario is likely to occur for PD
permeability. That is, PD permeability, analogous to hyphae
growth through cell wall and/or PD, is regulated by more than
callose; cell wall components and how they are organized, and
POX-mediated ROS level are acting in concert to determine PD
permeability (Figures 2, 6).
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AN EVOLUTIONARY LOGIC TO
ROS-REGULATED INTERCELLULAR
MOVEMENT

ROS-controlled biomolecule movement and intercellular/
interorganellar bridge formation, which can facilitate
intercellular transfer, in both plants and animals suggest
there could be existence of some evolutionary sense that needs
to be comprehended. Actually, intercellular communication, as
has been proposed from an evolutionary standpoint, is one of
the key fundamental traits that are required to be developed
for the successful evolution of complex multicellular organisms
(Knoll, 2011; Niklas and Newman, 2013). Due to the essential
notion in this review expressing that intercellular movement
of many types of molecules is controlled by ROS, it would be
justifiable to link the role of ROS in intercellular movement to
multicellularization. This association is further bolstered by the
findings that assigned ROS generation to multicellular organ
formation.

Take NOX as an example. A study with Dictyostelium directly
defined superoxide as the key signal in its transition from
the single to multicellular phase (Bloomfield and Pears, 2003).
Without superoxide, the multicellular aggregates simply do not
form. The authors further indicate that the source of ROS could
result from NOX activity. The ensuing study from independent
group demonstrated that insertional disruption in several NOX
gene of Dictyostelium indeed gave out defects in the formation
of mature fruiting bodies—the multicellular structure (Lardy
et al., 2005), genetically consolidating the role of superoxide in
multicellular formation.

Actually, NOX enzyme, the ROS generating machinery exists
in all multicellular organisms, and is absent from majority of
unicellular organisms (Lalucque and Silar, 2003; Hervé et al.,
2006; Nguyen et al., 2017). The NOX family has been proposed
to be important innovations for the evolution of multicellularity
(Blackstone, 2000). Although unicellular fungus such as S.
cerevisiae does harbor NOX gene (Rinnerthaler et al., 2012), this
does not necessarily argue against the role of ROS-generating
machinery in multicellularity as S. cerevisiae can undergo cellular
fusion to form a diploid zygote which needs intercellular
signaling (Merlini et al., 2013). What’s more, several oxidants
including H2O2 can activate mating-responsive genes (Staleva
et al., 2004). For complex fungi, NOX deletion does not affect
hyphal growth or asexual development, but impairs formation
of fruiting body in fungi Aspergillus nidulans and Podospora
anserina (Lara-Ortíz et al., 2003; Malagnac et al., 2004), strongly
suggesting the presence of ROS-generating machinery is highly
correlated to multicellular structure.

As for the existence of NOX family in unicellular algal
organisms (Hervé et al., 2006; Anderson et al., 2011; Chang et al.,
2016), studies so far have not yet determined the biological role of
NOX in unicellular algae. However, it’s feasible to speculate that
the NOX gene could be, as has been reviewed in the section about
stromule formation, used to generate ROS to facilitate inter-
organelle communication in these algae. Further experiment is
needed to clarify this assumption.

NOX is ROS-generating machinery, and its activity is
required, at least in fungi, for multicellular formation, but
the question remains how the activity is regulated in light
of multicellularization. Until recently, an excellent study in C.
elegans has uncovered a new regulatory mechanism involving
tetraspanins (Moribe et al., 2012). Tetraspanins are another
well-known multicellularity-associated gene family, which is
first innovated in multicellular organisms (Berditchevski, 2001;
Huang et al., 2005). Its main role in multicellularization is
to facilitate cell adhesion and cell-cell communication (Wang
et al., 2012; Charrin et al., 2014). Moribe et al. (2012) showed
that null mutation of a tetraspanin gene Tsp-15 causes the
worm to be very short and croissant-like phenotype, and leads
to embryonic lethality. Genetic screens together with Co-IP
and cell-fusion technique identified a concurrent genetic and
biochemical pathway in which H2O2 production is dependent
on Tetraspanin (TSP-15)-activated NADPH dual oxidase (BLI-
3)-maturation factor(DOXA-1) complex (Moribe et al., 2012).
The downstream signaling pathway involves peroxidase MLT-7,
initiating the extracellular crosslinking process (Thein et al., 2009;
Moribe et al., 2012). Although such clear insights are lacking in
mammals and plants, emerging work in fungal genetic studies
has shown that ROS production and Tetraspanins appear to
work concurrently to establish cell-cell contact during fungi-
host interaction (Moribe and Mekada, 2013). Deletion of either
tetraspanin gene PLS1 (Clergeot et al., 2001; Gourgues et al.,
2004; Veneault-Fourrey et al., 2005) or NOX genes nox1/nox2
(Egan et al., 2007), or both genes in P. anserina (Lambou
et al., 2008) and Botrytis cinerea (Siegmund et al., 2013) renders
the fungus “punchless,” a condition in which the fungi have
defects in penetration. Noteworthily, involvement of tetraspanins
and NOX in pathogen-host relationship may not specifically
contribute to the pathogenicity, rather hints at an evolutionary
strategy to establish interface, thereby enabling transport of
nutrients and signaling molecules between fungal and host cells
(Bonfante and Genre, 2010). Such is the case with symbiotic
interface. NOX-generated ROS in the extracellular matrix is
required for fungus Epichloë festucaeis to establish mutualistic
association with perennial ryegrass Lolium perenne (Tanaka

et al., 2006). Further studies with other symbiotic models could

reveal more common grounds of mutual interactions, such as
ROS production and its relationship with cell wall remodeling

(Lionetti and Métraux, 2014; Martin et al., 2017).
For now, we have learned intercellular transport is the key

underpinning to multicellularization and other forms of cellular
interaction, e.g., the pathogenic and mutualistic interface, all

of whom needs ROS to be involved. Strikingly, geological
and archeological records together with phylogenetic analysis

have shown that rise and fall of atmospheric oxygen is highly

correlated with multicellular emergence and disappearance
(Hedges et al., 2004; El Albani et al., 2010, 2014; Schirrmeister
et al., 2013). Thus, evolutionary tendency to favor ROS utilization
in transport may be incorporated into an evolutionary logic in
which oxygen and its associated reactive species contribute to
drive the evolution of multicellular life by aiding intercellular
transport.
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CONCLUSIONS

By summarizing the data from across the artificial dye
movement, protein movement, gene silencing movement, and
intercellular bridge formation we can readily add the role of
ROS in facilitating intercellular transport into their signaling
repertoire. The ROS effects on membrane protrusions are
widely conserved in many different types of animal cells,
although diversified signaling networks are present accordingly
in different occasions. Key pathways and players involved
in membrane protrusions are well-conserved in plants and
animals. Superimposed on the plasma membrane, the cell wall in
plants poses another challenge to intercellular communication.
Remarkably, ROS are still needed for cell wall remodeling.
Distinct from NOX that resides on cell membrane and is
required for membrane protrusions in animals, the apoplatic
player POX that is unique to land plants and located on
cell walls (Passardi et al., 2004a,b), is evolved for cell wall
remodeling during the evolution of land plants. Convincingly,
this role for ROS has actually found its evolutionary logic
deeply rooted in the evolution of multicellularity as intercellular
communication is one of the key prerequisite for evolving a
multicellular organism. Therefore, it is not unintelligible to
learn that ROS are widely associated with lots of, if not all
of the, physiological processes. If there exists a mechanistic
commonality among different physiological processes, then
plasmodesmatal path or intercellular bridges could be a candidate
hub that converges and dispatches the signaling molecules

from various developmental and physiological processes for a
coordinated response. This would encounter another inevitable
question which is how ROS-enabled biomolecule movement is
engaging with intercellular gating/selection. So far, we have no
candidate answer. With technique advancement in in situ ROS
detection, characterization, and resolution of signaling networks,
more hidden features are expected to be unearthed in this
perplexing but also intriguing area.
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