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Abnormal DNA methylation patterns are thought to drive the pathobiology of high-risk

myelodysplastic syndromes (HR-MDS) and acute myeloid leukemia (AML). Sixteen years

after their initial approval, the hypomethylating agents (HMAs), 5-azacytidine (AZA) and 5-

aza-2′-deoxycytidine, remain the mainstay of treatment for HR-MDS and AML. However,

a connection of the hypomethylating or additional effects of HMAs with clinical responses

remains yet to be shown, and the mode of action of HMAs remains obscure. Given the

relatively short-lived responses and the inevitable development of resistance in HMAs, a

thorough understanding of the antineoplastic mechanisms employed by HMAs holds

critical importance. Recent data in cancer cell lines demonstrate that reactivation of

endogenous retroelements (EREs) and induction of a cell-intrinsic antiviral response

triggered by RNA neotranscripts may underlie the antitumor activity of HMAs. However,

data on primary CD34+ cells derived from patients with HR-MDS failed to confirm a

link between HMA-mediated ERE modulation and clinical response. Though difficult to

reconcile the apparent discrepancy, it is possible that HMAs mediate their effects in

more advanced levels of differentiation where cells become responsive to interferon,

whereas, inter-individual variations in the process of RNA editing and, in particular, in the

ADAR1/OAS/RNase L pathway may also confound the associations of clinical response

with the induction of viral mimicry. Further ex vivo studies along with clinical correlations

in well-annotated patient cohorts are warranted to decipher the role of ERE derepression

in the antineoplastic mechanisms of HMAs.

Keywords: endogenous retroelements, hypomethylating agents, 5-azacytidine, decitabine, myelodysplastic

syndromes, acute myeloid leukemia

INTRODUCTION

In an attempt to model embryonic development, C.H. Waddington coined the term
“epigenetics,” as “the causal interactions between genes and their products, which bring
the phenotype into being.” (1). However, the current notion of epigenetics refers to the
processes that mediate heritable changes in gene expression without changing the primary DNA
sequence (2). DNA methylation, post-translational modifications of histone proteins, and post-
transcriptional gene regulation by long non-coding RNA are key epigenetic mechanisms that
are collectively referred to as the epigenome. The role of epigenetic alterations in promoting
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and maintaining cancerous growth is now well-established (3, 4).
Malignant cells harbor mutations in almost all gene encoding
epigenetic regulators, such as chromatin-modifying enzymes
(5). In addition, the cancer epigenome exhibits aberrancies in
virtually all the epigenetic control characteristics, particularly
in DNA methylation, where cancer-specific hypermethylation
at CpG-rich sites or CpG islands in the promoter regions
theoretically lead to repression in the expression of critical tumor
suppressor genes (6, 7).

Long before deciphering the complexity of DNA methylation,
inhibitors of DNA methyltransferase 1 (DNMT1), the enzyme
which catalyzes the addition of the methyl group to the cytosine
residues, were developed (8, 9) and approved for the treatment of
myelodysplastic syndromes (MDS) and acute myeloid leukemia
(AML). 5-azacytidine (AZA) and decitabine (DAC) are chemical
nucleoside analogs of cytidine with identical ring structure, which
is attached to the ribose sugar of AZA and deoxyribose of DAC
(10). Both agents induce hypomethylation after incorporation
into DNA and/or RNA of highly proliferating cells and depletion
of DNMT1 (11). Nevertheless, despite the wide use of the two
hypomethylating agents (HMAs), the exact mechanism of action
and the genetic and cellular level where HMAs exert their effects
remain largely unidentified (12).

HMAs in Myeloid Malignancies
Myelodysplastic syndromes and AML comprise two
heterogeneous groups of clonal hematopoietic disorders sharing
several common molecular defects (13, 14). In early 1970, AZA
was first administered to patients with AML using a higher than
the current dosing, which resulted in limited efficacy and severe
cytotoxicity (8). Several decades later, AZA was approved for the
treatment of MDS, on the basis of a less intensive regimen and
of the administration via a subcutaneous route (15, 16). Two
formulations of AZA are also approved for AML, parenteral
formulation as an induction therapy for unfit patients (17), and
oral formulation as maintenance treatment for patients who
achieved complete remission and are ineligible for hematopoietic
cell transplantation (18). Treatment with DAC was initially
investigated in pediatric acute lymphoblastic leukemia (ALL)
and then in MDS and AML, showing promising antitumor
effects but with dose-limiting toxicities (19). Currently, DAC
is approved for AML in Europe and for AML and high risk
myelodysplastic syndromes (HR-MDS) in the USA (20, 21). The
effectiveness, ease of use, and the favorable toxicity profile have
rendered HMAs as the backbone for combination regimens for
clinical trials in AML and MDS. However, the median overall
survival with HMA monotherapy is∼13–16 months for patients
with MDS (22) and less than a year for the ones with AML (17).
In addition, both primary and secondary, i.e., after an initial
response, failure to HMAs confer a grave (23–25) outcome,
and there is currently no approach to overcome the inevitable
development of resistance to HMAs (26).

Immune Mechanisms of Action of HMAs
Hypomethylating agents induce global hypomethylation and
purportedly have pleiotropic effects. Beyond the presumed
derepression of tumor suppressor genes, HMA-mediated

hypomethylation potentially affects cell cycle control, DNA
repair, apoptosis, cell signaling, angiogenesis and control of
cancer cell invasion, and metastasis (27, 28). In addition, the
dissociation between the degree of HMA-induced demethylation
and clinical response (29) points to alternative, DNMT-
independent mechanisms, such as direct cytotoxicity via
inhibition of protein synthesis and activation of DNA damage
pathways (30) and immunomodulation. Epigenetic silencing of
immune-response genes by DNA methylation characterizes the
cancer genome (31), and HMAs can restore numerous pathways
of cancer immune evasion (32). Consequently, the antileukemic
activity of HMA could be, at least partially, immune-mediated,
but literature reports are often contradictory. HMA can promote
the antitumor response by several mechanisms encompassing
increased tumor immunogenicity and enhanced the cellular-
and cytokine-mediated effector T-cell tumor lysis (32, 33).
Conversely, HMA may inhibit T-cell proliferation and pro-
inflammatory cytokine secretion with simultaneous induction
of regulatory T cells (Tregs) (34, 35), while the HMA-induced
increase in the expression of immune checkpoint molecules in
clonal CD34+ progenitors is associated with refractory disease
in patients with high-risk MDS (36). Partially reconciling these
antithetic effects, another study demonstrated that HMAs are
probably effective only in tumors with an “immune evasion”
gene expression signature (37). HMAs can also directly affect
leukemic and immune signaling pathways, and perturbed
signaling networks in malignancies are not only detected in
cancer cells but also in the cellular components of tumor
immunity (38, 39). We have shown that the AZA-mediated
restoration of the pathological signal transducer and activator
of transcription (STAT) biosignature in both CD34+ and CD4+

T cells is strongly linked with a favorable clinical outcome in
patients with high-risk MDS (40, 41). However, in accordance
with the selective immunological activity of HMAs, no effect on
the STAT networks was observed in patients who were refractory
to AZA. Though not readily interpretable, the highly diverse
clinical course of patients treated with HMA (42) and the equally
heterogeneous, sample-specific responses to HMAs observed in
multiomics studies (43, 44) argue for a multifaceted mechanism
of the action of HMAs, potentially influenced by the molecular
background of individual patients.

Another candidate antineoplastic mechanism of HMAs is
the reactivation of human endogenous retroelements (EREs)
(45) and the induction of viral mimicry (46). Recently,
several intriguing reports rekindled interest on the ERE-
induced antitumor immune response by demonstrating the
upregulation of endogenous double-stranded RNAs (dsRNAs)
and the induction of type I and III interferon (IFN) responses-
in cancer cells treated with epigenetic agents (47–53).

Endogenous Retroelements
Endogenous retroelements comprise a significant part of the
human genome, composing about 43% of the genome (54). EREs
are distinguished into non-long terminal repeats (non-LTRs),
which include the long and short interspersed nuclear elements
(LINEs and SINEs), and LTR elements. With the exception of
about 100 young elements, the rest of the LINEs reside as inactive
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fragments (55). Themost common SINEs and themore abundant
mobile elements in the human genome are Alu elements which
comprise up to 11% of the genome. Alus have a variable impact
on gene functions, and up to 0.3% of all human genetic disorders
are associated with Alu-mediated recombination (56). Human
endogenous retroviruses (HERVs) and mammalian apparent
LTR retrotransposons (MaLRs) are part of the LTR elements (57–
59). HERVs are remnants of germ-line integrations of exogenous
retroviruses which in the past have infected the host (57, 60)
and occupied ∼8% of our genomes (54). ERVs are the only
EREs that could be transmitted from one cell to another (60,
61). However, most of the HERVs have lost this ability due to
mutations and recombination events that have been accumulated
for years during the evolution. Recently acquired HERVs have
preserved their copies intact and retain the ability to produce
infectious particles, while evolutionarily old LTRs are more likely
inactivated and not replication-competent (62).

EREs and Leukemogenesis
Since the first discovery of transposable elements (63),
hypothetical links between repetitive elements and tumorigenesis
have started to emerge, and a multitude of ERE-mediated
mechanisms ultimately leading to the disruption of genomic
integrity have been reported (57, 64, 65). The term “onco-
exaptation” has been coined to describe the exploitation of
the epigenetic and transcriptional dysregulation in cancer by
EREs (66). Reactivation of EREs may promote carcinogenesis
via the activation of cryptic promoters and the formation of
chimeric transcripts with gene regulatory properties (64, 67).
Specifically, the data for leukemogenesis are scarce, and a
direct demonstration of leukemogenic potential of EREs in
the primary AML cells is still lacking. Rearrangements of the
MLL gene in AML have been associated with Alu-mediated
recombination events (68–70), while the induction of AML in
a xenograft mouse model for primary myelofibrosis (PMF) was
attributed to unrestricted replication and subsequent viremia of
murine leukemia virus (MuLV), potentially due to a paracrine
mechanism in peptide mass fingerprinting (PMF) (71). A
recent study demonstrated that specific HERVs can also act as
oncogenic enhancers in AML. Using genome and epigenome
editing approaches in AML cell lines, the authors detected six
ERV families which bore chromatin signatures of enhancers
and could regulate the host gene expression. It is to be noted
that the deletion of the AML-specific LTR2B elements decreased
proliferation and induced the apoptosis of AML cell lines by
reducing the expression of the apolipoprotein C1 (APOC1), an
oncogene (72).

EREs, Tumor Immunity, and HMAs
In contrast to their putative role in oncogenesis and
leukemogenesis, EREs can potentially promote antitumor
immunity. Epigenetic deregulation in tumors results in the
expression of several ERE antigens not expressed in healthy
tissues which can, at least theoretically, trigger immune
sensing and induce potent adaptive antitumor responses (58).
Cytotoxic CD8+ T-cell responses against epitopes of certain

HERV proteins have been reported in several tumors (73–
76), and the in silico analysis of local cytolytic activity in 18
untreated tumors identified a set of three tumor-specific ERVs
(TSERVs), untraceable in the corresponding normal tissues (77).
Importantly, the immune pathways were enriched in tumors
with the highest expression of TSERVs, whereas, the cytolytic
activity in several tumor types correlated with the expression
of other HERVs. Upregulation of EREs in AML was linked to
specific mutations, but, rather unexpectedly, not with DNMT3A
and TET2 mutations (51, 78). IDH1 and TP53 mutations were
associated with suppression in the expression of ERE (78),
consistent with the low immunogenicity of IDH1-mutated
tumors (79) and the role of TP53 dysfunction in tumor-immune
evasion (80). Activating mutations of the SET-binding protein
1 gene (SETBP1) and the overexpression of wild-type SETDB1
are associated with aggressive diseases and poor outcomes in
myeloid neoplasms (81). The disruption of SETDB1 in AML
cell lines triggers a type-I IFN antiviral response by desilencing
both the LTR and non-LTR elements, indicating that the evasion
of innate immune sensing of EREs possibly underlies the poor
prognostic impact of SETDB1 alterations in AML and MDS (51).

Regarding the therapeutic derepression of EREs, Jaenisch
et al. (45) first showed that AZA can reactivate silent retroviral
genomes in mice, whereas, in 1999, Karpf et al. (82) reported
the induction of IFN responsive genes by AZA in HT29
colon adenocarcinoma cells. Two recent articles revisited these
phenomena and addressed their role in the antineoplastic
mechanisms employed by synthetic azanucleosides. Utilizing
the in vitro assays in colorectal cancer cells (CRCs), Roulois
et al. (47) demonstrated that a low dose of DAC can
induce the formation of dsRNAs into cancer-initiating cells
(CICs). These dsRNAs were mainly derived from endogenous
retroviral elements and activated the melanoma differentiation-
associated protein 5 (MDA5), a cytosolic pattern recognition
receptor, the mitochondrial antiviral-signaling protein (MAVS),
its downstream signaling modules, and IFN regulatory factor
7 (IRF7). Triggering the MDA5/MAVS/IRF7 axis culminates in
the induction of an IFN type-III response, upregulation of IFN-
stimulated genes (ISGs), and setting the CICs into a “virus-
infected” state. Analogous findings were reported by Chiapinelli
et al. (48), who observed aHMA-mediated induction of IFN type-
I response in ovarian cancer cell lines via ERV demethylation
and dsRNA formation. Also, AZA-induced viral defense gene
levels discriminated epithelial ovarian cancer tumors into good
(high levels) and poor (low levels) prognosis, whereas, an
intense viral defense signature was associated with a better
outcome in patients with melanoma treated with the anti-CTLA-
4 therapy. Given the pleiotropic function of IFNs in immune
response (83), the authors further used murine models to show
a synergistic effect of the combination of AZA with anti-CTLA-4
antibody (48).

In line with the above reports, the antitumor activity of other
agents targeting the epigenetic machinery was also based on
the induction of ERE-mediated viral mimicry. Experiments in
breast cancer cell lines and patient-derived xenograft models
revealed that CDK4/6 inhibitors upregulate the ERV3-1 gene
by reducing the activity of DNMT1, leading to a type-III IFN
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viral mimicry response (49). Ablation of the histone demethylase
LSD1 in cancer cell lines also induced the reexpression of
HERVs, LINE1, and the AluYa5 sub-family of Alu elements,
which in turn mediated a dsRNA-diven type-I IFN antitumor
response, without affecting either global methylation or the
DNMT1 levels (50). Moreover, the derepression of LINE1 by
histone deacetylase (HDAC) inhibitors led to the increased
death of drug-resistant cancer cell lines by permitting a
chemotherapy-induced antiviral defense response (52), whereas,
the combination of epigenetic therapies enhanced the viral
defense response and increased the antitumor efficacy (84,
85). However, the global patterns of the reexpression of
ERE and the heterogeneous investigational approaches of the
above studies hampered the identification of the exact origin
of drug-induced immunogenic EREs. By using an MDA5-
protection assay and RNA-sequencing (RNA-seq) in CRCs,
Mehdipour et al. (53) identified inverted-repeat Alus (IRAlus)
as the major source of DAC-induced immunogenic dsRNAs.
Almost 90% of the MDA-protected RNA was IRAlus, whereas,
the LTR elements were represented only by 1.37% and the
ERV-derived dsRNAs had no role in the induction of viral
mimicry (53).

In contrast to the majority of the abovementioned studies
that used cancer cells lines or murine models, we investigated
the effect of AZA on the pattern of ERE expression on CD34+

primary hematopoietic stem cells (HSCs) derived from patients
with MDS undergoing treatment with AZA (86). By using RNA-
seq, sophisticated bioinformatics tools, and the de novo assembly,
we charted a complete transcriptional profile of EREs in the bone
marrow of HSCs from healthy donors and patients with AML,
MDS, and chronic myelomonocytic leukemia (CMML), before
and after AZA administration. Even though the transcription of
EREs increased after six cycles of AZA, this effect was equally
observed in both patients with complete remission (CR) and
failure to AZA. An analysis of an independent dataset (accession
number: SRP067631) in a comparable cohort (87) revealed
identical results, clearly suggesting that the response to AZA
cannot be predicted by the global upregulation of EREs. We
further analyzed the AZA-mediated modulation of specific ERE
groups of loci, but, again, we were unable to track significant
differences based on the treatment response. To address the
possibility of an ERE-induced antiviral response only in patients
with CR, we also assessed the alterations of IFN-inducible LTR
elements or IFN-signature genes (ISGs) in our patients and the
aforementioned cohort (87). No induction after AZA therapy
or correlation with its outcome was observed either after six
cycles of AZA or as early as day 15 after the first cycle of
AZA, thus pre-cluding a sustained IFN signature in HSCs as
a mechanism of the AZA activity. In keeping with our results,
no correlation between an IFN response in the bone marrow
of CD34+ cells and the response to AZA and DAC was shown
in a cohort of 55 patients with MDS and CMML, whereas, the
inflammatory signaling was reduced instead of enhanced after
HMA administration (88). Also, in a heterogeneous cohort of
patients with myeloid and lymphoid malignancies, evolutionarily
young EREs were pre-ferentially upregulated in responders to
AZA. However, the same EREs were also upregulated in few

non-responders, whereas, the analyses were performed in diverse
cell subpopulations, thus adding another layer of complexity to
the interpretation of the findings (89). Of note both in vitro
(48) and in patients treated with HMAs (88), no differential
regulation of EREs or induction of an IFN response was noted
between AZA and DAC, whereas, guadecitabine also appears to
induce an ERE-mediated immune response, but this has not been
formally shown (90).

The discrepancy of findings in the pre-clinical data of patients
with MDS might be in part due to the intrinsically high
constitutive expression of ISGs and the resistance of HSCs
to IFN stimulation (91). In contrast, the differentiated cells
downregulated the expression of ISGs and became responsive
to IFN (91), indicating that the level of cellular differentiation
might be an important factor in determining the mode
of action of HMAs. Another possibility is the antagonizing
role of the ADAR1 enzyme in the cytotoxic effect of AZA.
ADAR1 edits dsRNA through the conversion of adenosine to
inosine, resulting in the destabilization of RNA duplexes (92),

repression of the 2
′

,5
′

-oligoadenylate synthetase (OAS)-RNase
L pathway (93), and blocking the activation of the MDA5
receptor (94). Inactivating mutations of ADAR1 are present in
Aicardi–Goutières syndrome (AGS), an autoimmune disorder,
and are accompanied by an intense type-I IFN signature and
upregulation of ISGs (95). Knockout of the IFN-inducible
ADAR1 p150 isoform in a lung adenocarcinoma cell line
enhanced the cytotoxic potential of AZA via reactivation of
the single-stranded RNA-specific endoribonuclease RNAase L,
an antiviral enzyme (93). Mehdipour and colleagues (53) also
elegantly showed that the efficacy of HMAs is interdependent
on the expression of ADAR1 and activity. DAC induced the
expression of ADAR1 in CRCs and depleted immunogenic
dsRNAs, while ADAR1-knockdown of both the constitutively
expressed (p110) and the interferon-inducible (p150) forms
resulted in persistent upregulation of ISGs and an enhanced
activation of MAVS. Further confirming the bidirectional
interaction between HMAs and ADAR1, a low dose DAC in
CRC xenograft models was efficacious only in mice injected
with ADAR1-knockdown CRCs. Collectively, the above data
suggest that the differential expression of ADAR1 enzyme and/or
regulators of the ADAR1/OAS/RNase L pathway may account
for the disconnection between the clinical response and the
induction of viral mimicry observed in our study. Several tumors
express high levels of ADAR1 (96) and display dysregulated
RNA editing (97), but, in others, the depletion of the ADAR1
may instead promote tumor progression and metastasis (98,
99). In AML, ADAR1 is variably expressed (100) and a JAK2-
dependent upregulation of ADAR1 p150 takes place during
blast crisis in chronic myeloid leukemia (CML) (101), but there
is a lack of correlations between ADAR1 levels and activity
and clinical outcomes. Importantly, the expression and activity
of ADAR1 increases during the differentiation of myeloid cell
lines (100); therefore, measurements on more differentiated
myeloid forms rather than the leukemic blasts will probably
be more relevant for clinical associations. Based on the above
considerations, an updatedmodel of the viral mimicry hypothesis
is provided in Figure 1.
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FIGURE 1 | Modified model of the HMA-induced viral mimicry in leukemic cells. (A) Treatment with DNA-methyltransferase inhibitors (DNMTis), such as azacytidine

(AZA) and decitabine (DAC), reactivate repressed inverted-repeat Alus (IRAlus), leading to the formation of double-stranded RNAs (dsRNAs). The same agents

upregulate the expression of the RNA-editing enzyme, ADAR1 (1). The pattern recognition receptor, MDA5, senses the dsRNAs located in the cytoplasm, leading to

the aggregation of the mitochondrial antiviral-signaling protein (MAVS) and to the phosphorylation of interferon (IFN) regulatory factor 7 (IRF7). However, increased

ADAR1 activity depletes dsRNAs and prevents the activation of MDA5 (2), whereas, it further inhibits the OAS/RNAse L apoptotic pathway (3). In the absence of

ADAR1 upregulation, activated IRF7 translocates into the nucleus inducing the transcription of type-I and III IFN (4), which are then secreted into the tumor

microenvironment (5) and bind to their receptors, causing the phosphorylation of signal transducer and activator of transcription (STAT) proteins (6). Activated STATs

associate with the IRF9 and move into the nucleus (7), where they induce the expression of IFN-stimulated genes (ISGs) and the major histocompatibility complex

(MHC) molecules (8) by increasing the ability of tumor cells to present tumor-associated antigens (TAAs). (B) The competence of HMAs to induce a viral mimicry state

potentially depends on the level of cellular differentiation. The latter defines the permissiveness to IFN-mediated induction of ISGs and the degree of upregulation

of ADAR1.

CONCLUSION

More than 50 years after their discovery, HMAs remain
as the only approved compound for the treatment of HR-
MDS and the main therapeutic option for unfit patients with
AML. Paradoxically, after 16 years of clinical experience, the
mechanism of action of HMAs is still under investigation, a
fact that poses obvious obstacles in bypassing the resistance
and developing rational combinations with other agents.
Endogenous retroelements, once viewed as parasitic elements,
are currently enjoying a resurgence of interest regarding their
role in the mechanism of action of HMAs. Aside from its
potential use as a predictor of response to immunotherapy,
the HMA-mediated induction of immunogenic EREs appears
to sensitize immune-refractory tumors to checkpoint inhibition.
However, a robust clinical proof confirming a cause–effect

relationship of the induction of viral mimicry with the efficacy
of HMAs is currently lacking. In addition, the combination of
HMAs with immune checkpoint inhibitors demonstrates the
modest efficacy in clinical trials for patients with MDS (102).
While a multitude of issues pertaining to treatment schedule,
dosing, and pharmacological attributes may account for the
discordance between research findings and clinical efficacy, the
interpatient-diversity of the tumor-immune system interactions
is an obvious obstacle that has to be thoroughly interrogated
before assigning a mechanistic role of ERE reactivation in
the clinical activity of HMAs. A deeper understanding of
the regulation of HMA-mediated reactivation of EREs at the
single cell level and large-scale correlations of the experimental
findings with clinical information is required to circumvent
the limitations of both HMA and immune therapy in
myeloid neoplasms.
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