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The genus Crinivirus includes the whitefly-transmitted members of the family Clos-
teroviridae. Whitefly-transmitted viruses have emerged as a major problem for world
agriculture and are responsible for diseases that lead to losses measured in the billions
of dollars annually. Criniviruses emerged as a major agricultural threat at the end of the
twentieth century with the establishment and naturalization of their whitefly vectors,
members of the generaTrialeurodes and Bemisia, in temperate climates around the globe.
Several criniviruses cause significant diseases in single infections whereas others remain
asymptomatic and only cause disease when found in mixed infections with other viruses.
Characterization of the majority of criniviruses has been done in the last 20 years and this
article provides a detailed review on the epidemiology of this important group of viruses.

Keywords: Crinivirus, Closteroviridae, whitefly, transmission, detection, control

INTRODUCTION
The genus Crinivirus is one of the three genera in the family
Closteroviridae and includes viruses with segmented genomes,
transmitted by whiteflies (Martelli et al., 2011). Details on the
molecular biology of the criniviruses are presented in the Kiss
et al.(2013) article and for the most part will not be duplicated
in this communication. Instead this article will focus on virus
epidemiology.

Criniviruses are emerging worldwide, with the first member
of the genus, Beet pseudo-yellows virus (BPYV) identified in the
1960s (Duffus, 1965). Since then there has been a steady increase
in the number of new species with most identified over the past 20
years (Winter et al., 1992; Celix et al., 1996; Duffus et al., 1996a,b;
Liu et al., 1997; Wisler et al., 1998a; Salazar et al., 2000; Wisler and
Duffus, 2001; Martin et al., 2004; Martín et al., 2008; Tzanetakis
et al., 2004; Okuda et al., 2010).

Crinivirus genomic RNAs are encapsidated into long flexuous
rods averaging between 650 and 1000 nm in length (Liu et al.,
2000; Kreuze et al., 2002), and have large bipartite or tripartite
genomes of positive-sense single-stranded RNA totaling approxi-
mately 15.3–17.7 kb. Genome organization is similar across the
genus, but there are also apparent differences among species.
RNA1 encodes proteins that are associated predominantly with
replication, whereas RNA2 [or RNAs 2 and 3 for Potato yellow

vein virus (PYVV)] encodes up to 10 proteins with a range
of functions including but not limited to virus encapsidation,
cell-to-cell movement, and vector transmission. Most genomic
RNAs have common or highly conserved nucleotides at the 5′
end ranging from 4 to 11 nucleotides in length. The 3′ untrans-
lated regions for each virus other than Lettuce infectious yellows
virus (LIYV) share a region of approximately 150 nucleotides
with a high degree of genetic conservation between the genomic
RNAs.

Crinivirus transmission is species-specific and performed
exclusively by whiteflies in the genera Trialeurodes and Bemisia
in a semi-persistent manner; the reason they are identified with
increasing frequency in tropical and subtropical climates where
whitefly populations are present. They often cause symptoms that
are readily mistaken for physiological or nutritional disorders or
pesticide phytotoxicity. Typically, infection is associated with a
loss of photosynthetic capability, often characterized by inter-
veinal yellowing of leaves, leaf brittleness, reduced plant vigor,
yield reductions, and early senescence, depending on the host
plant affected. Some plants may exhibit an interveinal redden-
ing rather than yellowing. Others may exhibit chlorotic mottle
on some leaves, usually progressing into interveinal discoloration.
Symptoms generally first appear 3–4 weeks after infection, and
are most apparent on the older areas of the plant, whereas new
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growth appears normal. For example, a tomato plant infected with
a crinivirus may show extensive interveinal yellowing on leaves
near the base, developing interveinal chlorosis on leaves in the
middle of the plant, but no symptoms near the apex (Figure 1).
Similarly, an infected cucumber plant may appear healthy near the
growing point of the vines, but exhibit progressively more severe
interveinal yellowing toward the crown (Figure 1). In both cases
it is not uncommon for brittle, symptomatic leaves to snap when
bent.

An interesting characteristic of many of the criniviruses stud-
ied to date is their ability to interact with other viruses in plants
and alter symptoms. Studies have shown host-specific competition
between crinivirus species that influence accumulation of other
viruses present in the plant and consequently symptom severity
(Karyeija et al., 2000; Susaimuthu et al., 2008; Wintermantel et al.,
2008). Other viruses interact with distantly related or unrelated co-
infecting viruses, resulting in increased disease severity whereas
single crinivirus infections may remain asymptomatic (Karyeija
et al., 2000; Tzanetakis et al., 2004, 2006b).

Management of criniviruses is predominantly through man-
agement of their whitefly vectors. Criniviruses routinely emerge in
areas with regularly occurring or persistent whitefly populations,
or as vector populations migrate or are moved to new regions. An
effective vector control regimen can slow spread or reduce severity
of infections; however, such methods will not prevent infection
as most criniviruses can be transmitted within the relatively short
acquisition and transmission periods of a few hours (Wisler and
Duffus, 2001). Sources of host plant resistance have been iden-
tified to some criniviruses (McCreight, 1987, 2000; Lopez-Sesé
and Gomez-Guillamon, 2000; Aguilar et al., 2006; Eid et al., 2006;

Garcia-Cano et al., 2010; McCreight and Wintermantel, 2011) and
efforts to identify additional sources are in progress. This may offer
potential for effective control and reduced pesticide application
as resistance is incorporated into commercial cultivars. Recent
studies have also shown that deterrence may effectively reduce
whitefly and subsequently virus pressure within fields. For exam-
ple, acylsucrose expressed through type IV glandular trichomes on
tomato have been shown to interfere with the ability of whiteflies
to settle and feed steadily, and this can significantly reduce primary
and secondary spread of the Begomovirus, Tomato yellow leaf curl
virus (Rodriguez-Lopez et al., 2011, 2012). Although no conclusive
studies have been completed with criniviruses, preliminary studies
on tomatoes expressing acyl sugars demonstrated delayed Tomato
infectious chlorosis virus (TICV) symptom development in the field
by as much as a month compared with controls (Mutschler and
Wintermantel, 2006).

In this communication we provide information on the recent
advances in crinivirus epidemiology and associated diseases.
Viruses will be presented according to their phylogenetic grouping
(Wintermantel et al., 2009b; Figure 2) as members of each group
tend to have similar vectors and host ranges (Table 1).

GROUP-1
ABUTILON YELLOWS VIRUS
Abutilon yellows virus (AYV) is a partially characterized crinivirus
originally identified from the common weed velvetleaf (Abutilon
theophrasti Medic.) collected from Illinois in 1977 (Liu et al.,
1997). AYV has flexuous filamentous particles of 12 nm in diam-
eter, approximately 850–900 nm in length (Liu et al., 1997, 2000)
but the genome remains uncharacterized; with the exception of the

FIGURE 1 | (A) Symptoms of Tomato infectious chlorosis virus infection,
showing interveinal yellowing on middle to lower portions of a tomato plant,
while newer growth remains asymptomatic; (B) symptoms of mottling and

interveinal chlorosis resulting from Beet pseudo-yellows virus infection of
cucumber. Symptoms are prominent near the crown, less apparent near ends
of vines.

Frontiers in Microbiology | Virology May 2013 | Volume 4 | Article 119 | 2

http://www.frontiersin.org/Virology/
http://www.frontiersin.org/Virology/archive


“fmicb-04-00119” — 2013/5/15 — 18:49 — page 3 — #3

Tzanetakis et al. Crinivirus epidemiology

FIGURE 2 | Phylogenetic analysis of the genus Crinivirus based on the

1a/1b fusion polyprotein sequences. All protein sequences have been
obtained from the GenBank genomic sequences of the respective virus.
BnYDV, Bean yellow disorder virus; BYVaV, Blackberry yellow vein
associated virus; BPYV, Beet pseudo-yellows virus; CCYV, Cucurbit
chlorotic yellows virus; CYSDV, Cucurbit yellow stunting disorder virus;
DVCV, Diodia vein chlorosis virus; LChV, Lettuce infectious chlorosis virus;
LIYV, Lettuce infectious yellows virus; PYVV, Potato yellow vein virus; SPaV,
Strawberry pallidosis associated virus; SPCSV, Sweet potato chlorotic stunt
virus; ToCV, Tomato chlorosis virus; TICV, Tomato infectious chlorosis virus.
Beet yellows virus (BYV) is used as the outgroup. The bar represents 0.3
amino acid changes/site.

coat protein and a region of the replication-associated polyprotein
genes (Liu, unpublished data).

Abutilon yellows virus was the first crinivirus known to be
transmitted exclusively by T. abutilonea Haldeman (banded-wing
whitefly) but there is limited information on its host range and
its geographic distribution. No crop plants have been identified
as hosts; however, the virus can infect members of the Malvaceae,
and the experimental solanaceous species, Nicotiana clevelandii
A. Grey (Liu et al., 1997). AYV symptoms of foliar vein yellowing
appear 2–3 weeks after inoculation on the malvaceous weed Anoda
abutiloides A. Gray (Wisler and Duffus, 2001), symptoms that are
highly unusual for criniviruses.

Like other members of the genus, AYV is not mechanically
transmissible. To date, the only known vector of AYV remains T.
abutilonea, and the virus can be retained by the whitefly for up to
3 days (Wisler and Duffus, 2001). Transmission efficiency varied
from 4% for individual whiteflies to 81% for 50 whiteflies with
acquisition access periods (AAP) of 24 h and inoculation access
periods (IAP) of 48 h; whereas efficiency of virus acquisition varied
from 19% for single whiteflies to 77% when 50 of the insects were
used (Wisler and Duffus, 2001).

BEET PSEUDO-YELLOWS VIRUS
Beet pseudo-yellows virus was first described in 1965 (Duffus, 1965)
from sugar beet grown in greenhouses for the sugar beet indexing
programs in California and subsequently found to be worldwide
in distribution wherever the vector, T. vaporariorum Westwood
(greenhouse whitefly) is found (Wisler et al., 1998a). The range
of T. vaporariorum has increased dramatically in recent years with

Table 1 | Crinivirus species and their known vectors.

Virus Whitefly vector

BtA BtB BtQ Baf Tvp Tab

Abutilon yellows virus (AYV) X

Beet pseudo-yellows virus (BPYV) X

Bean yellow disorder virus (BnYDV) X

Blackberry yellow vein associated

virus (BYVaV)

X X

Cucurbit chlorotic yellows virus

(CCYV)

X X

Cucurbit yellow stunting disorder

virus (CYSDV)

X X X

Diodia vein chlorosis virus (DVCV) X X

Lettuce chlorosis virus (LCV) X X

Lettuce infectious yellows virus

(LIYV)

X

Potato yellow vein virus (PYVV) X

Strawberry pallidosis associated

virus (SPaV)

X

Sweet potato chlorotic stunt virus

(SPCSV)

X X

Tomato infectious chlorosis virus

(TICV)

X

Tomato chlorosis virus (ToCV) X X X X X

BtA, Bemisia tabaci biotype A; BtB, B. tabaci biotype B; BtQ, B. tabaci biotype Q;
Baf, Bemisia afer; Tab, T. abutilonea; Tvp, Trialeurodes vaporariorum.

the movement of plant material as has BPYV. Both virus and vec-
tor have become serious problems for greenhouse production of
vegetables, fruits, and ornamentals worldwide. BPYV is transmit-
ted very efficiently by its vector (Wisler et al., 1998a; Tzanetakis
et al., 2006b), a property uncommon among criniviruses (Win-
termantel, 2004). Additionally, once introduced into areas where
T. vaporariorum does well outside the protected environment of
greenhouses, the vector has often become naturalized and BPYV
often becomes problematic in field-grown crops, as was the case in
the western United States (Wintermantel, 2004). Another unique
feature of BPYV is its broad host range infecting plants in at least
12 plant families including many vegetable, ornamental, and berry
crops. Typical symptoms include interveinal chlorosis as leaves
mature (Figure 1), reduced growth and fruit size, and early senes-
cence in cucurbits (Wisler et al., 1998a). BPYV was first reported in
a rosaceous host, strawberry in 2002 and is one of the criniviruses
that can induce strawberry pallidosis disease in Fragaria virginiana
Duchesne clones UC-10 and UC-11 (Tzanetakis et al., 2003). In
California, where the vector has become naturalized, BPYV is now
quite common in strawberry (Martin and Tzanetakis, 2013). It was
also reported from blackberry in the southeastern United States in
plants that exhibited symptoms of blackberry yellow vein disease
(BYVD; Tzanetakis and Martin, 2004b). At present, BPYV is rare
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in blackberry (Tzanetakis, unpublished). If the vector becomes
naturalized in the southeastern United States, BPYV will likely
become a greater problem in blackberry given that many weed
hosts are present in and around blackberry fields in that region
(Martin et al., 2013).

Two isolates of BPYV have been fully sequenced, the first from
Japan (Hartono et al., 2003), originally named Cucumber yellows
virus, that will be referred to as the cucumber isolate here, and a
strawberry isolate from the United States (Tzanetakis and Martin,
2004a). The genome size ranges from 15.5 to 15.9 kb with features
found in other members of genus; with two or three open reading
frames (ORFs) in RNAs 1 and 7 or eight in RNA2. The differences
between isolates is noteworthy; the first being a 147 nucleotide
insertion after the methyltransferase domain in the replication-
associated polyprotein of the strawberry isolate (Tzanetakis and
Martin, 2004a). The nucleotide sequence identity of the two iso-
lates before the insertion is 86%, whereas after the insertion the
identity is elevated to 94% indicating a possible recombination
event. Additionally, the cucumber isolate lacks an ORF at the 3′
end of RNA1 that is present in the strawberry isolate. There are also
significant differences between the two BPYV isolates on RNA2.
RNA2 of the cucumber isolate contains seven ORFs whereas the
strawberry isolate has eight. The extra ORF in the strawberry iso-
late codes for a putative 6 kDa protein with counterparts in several
other criniviruses. Based on criteria used to differentiate species in
the genus Crinivirus, these two isolates of BPYV are clearly distinct
strains of the same virus based on amino acid sequence identities
of key gene products differing by less than 25% [RNA-dependent
RNA polymerase, 98% identical; coat proteins, 99% identical; heat
shock protein 70 homolog (HSP70h), 99% identical at the amino
acid level; Martelli et al., 2011]. Still, the strawberry strain appears
to be the dominant variant in the Americas and as noted affects a
wide range of crop and weed hosts (Ramírez-Fonseca et al., 2008;
Tzanetakis et al., unpublished).

Because BPYV symptoms are often confused with physiolog-
ical and nutritional disorders it is likely that the impact and
significance of the virus in vegetables and other crops has been
underestimated. Additionally, since in most cases symptoms
caused by BPYV are those of general plant stress it is impor-
tant to do virus testing before taking corrective action. Given the
great variability among strains, it may be more appropriate to use
degenerate primers for virus detection (Wintermantel and Hladky,
2010) that will minimize the possibility of false negatives in test-
ing. To date no sources of resistance have been identified against
BPYV.

BLACKBERRY YELLOW VEIN ASSOCIATED VIRUS
Blackberry yellow vein disease was first observed in the North and
South Carolina in 2000 and has since become the most impor-
tant disease affecting blackberry production in the southeastern
United States (Martin et al., 2013). Symptoms of BYVD only occur
when blackberry plants are infected with more than one virus.
Symptoms include vein yellowing, oak-leaf or irregular patterns
of chlorosis, ringspots, and line patterns (Figure 3; Susaimuthu
et al., 2007, 2008). Floricanes can also be severely affected leading
to misshapen fruit and cane dieback. In the past, this disease was
thought to be caused by Tobacco ringspot virus (TRSV) as this was

the only virus that was mechanically transmissible from plants
with such symptoms. This was questioned when blackberry plants
were infected with TRSV using nematodes and infected plants did
not develop symptoms over a 3-year period. The first virus char-
acterized from blackberry plants that exhibited BYVD symptoms
from South Carolina was a crinivirus, and named Blackberry yellow
vein associated virus (BYVaV; Martin et al., 2004).

Blackberry yellow vein associated virus is a typical crinivirus with
a bipartite genome. RNA1 is 7.8 kb in length and encodes only the
replication-associated polyprotein whereas RNA2 is about 7.9 kb
and contains the eight ORFs typical of other criniviruses. BYVaV
RNA2 contains an additional ORF at the 5′ end that encodes for a
second transmembrane protein, that is absent from RNA2 of other
criniviruses (Tzanetakis et al., 2006a).

Once detection primers were developed it was observed that
BYVaV could be detected in both symptomless and symptomatic
plants of several blackberry cultivars, suggesting a complex eti-
ology for BYVD. Since that time multiple viruses have been
characterized from blackberry with BYVD symptoms and in
all cases symptomatic plants had mixed virus infections (Mar-
tin et al., 2013). BYVaV is the most common virus found in
plants that exhibit BYVD symptoms. BYVaV does not cause
symptoms on the standard woody indicators used for graft index-
ing in Rubus certification programs, which explains its presence
in nursery stocks prior to the development and application of
PCR-based detection assays (Susaimuthu et al., 2007). Studies
with several isolates of BYVaV from cultivated and wild black-
berry from diverse geographic areas showed diversity at the
nucleotide level as high as 12% and suggested that recombina-
tion between isolates is likely a factor in the evolution of the
virus (Poudel et al., 2012). In addition, the study on virus diver-
sity has resulted in the development of a set of detection primers
based on conserved sequences from all isolates studied, whereas
previous detection primers did not detect all of these isolates
(Poudel et al., 2013).

Blackberry yellow vein associated virus can be transmitted
efficiently from blackberry to blackberry with efficiencies of
approximately 50% for T. abutilonea and 25% for T. vaporariorum
when 50 whiteflies were used for inoculation following 18–24 h
AAP and 48 h IAP (Poudel et al., 2013). BYVaV was not detected
in any of 25 plant species that were common in or near blackberry
fields with a high incidence of BYVaV infection. Even though
BYVaV could be graft transmitted to rose, it was not detected in
40 samples of rose tested in native settings with high BYVaV pres-
sure (Poudel et al., 2013) suggesting that wild rose likely is not an
important component of the epidemiology of BYVaV. The virus
has been detected throughout the southeastern United States, in
California and Oklahoma and as far north as Illinois and West Vir-
ginia, but with surprisingly low incidence in Georgia and Florida.
Overall, 145 of 234 samples of cultivated and native blackberries
that exhibited BYVD symptoms tested were positive for BYVaV
(Poudel et al., 2013). Given the complexity of BYVD there have
not been efforts to introduce resistance for to BYVaV.

DIODIA VEIN CHLOROSIS VIRUS
Virginia buttonweed (Diodia virginiana L.) is a member of the
Rubiaceae (coffee family). Its natural habitat is in wetlands of
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FIGURE 3 | (A) Blackberry infected with Blackberry yellow vein associated
virus and Blackberry chlorotic ringspot virus showing symptoms of yellow
vein disease; (B) Diodia virginiana infected with Diodia vein chlorosis virus
showing vein netting symptoms; (C) potato infected with Potato yellow vein

virus showing yellow vein disease symptoms; (D) strawberry decline
symptoms of leaf reddening and dieback associated with Beet
pseudo-yellows virus and Strawberry pallidosis associated virus co-infection
with other viruses.

the Americas, extending between the 45th parallels of both conti-
nents. It propagates in a prolific manner through stolons and seed,
making it one of the most noxious weeds of turfgrass. Several
Virginia buttonweed populations in the southern United States
show distinct vein chlorosis or vein netting symptoms, typical of
virus infection (Figure 3). Larsen et al. (1991) studied the dis-
ease and discovered virus aggregates in infected material similar
to those found in closterovirus-infected plants. The putative virus
produced double-stranded RNA was similar in size to that of LIYV
and T. abutilonea was experimentally verified as a vector. All these
properties indicated that Diodia vein chlorosis virus (DVCV) is a
member of the genus Crinivirus but no molecular information
was available until recently when an isolate from a clone of a plant
used in the Larsen et al.’s (1991) study was sequenced (Tzanetakis
et al., 2011). DVCV genome is composed of 16.2 kb with RNA1
coding for the replication-associated polyprotein and RNA2 hav-
ing the normal array of eight genes found in most members of
the genus. Phylogenetic analysis clearly placed DVCV in group-
1 of the genus. Given that all members of the group have been
proven transmissible with T. vaporariorum, this was evaluated for
DVCV. Indeed, both T. abutilonea and T. vaporariorum transmit
the virus with efficiencies of over 36 and 12%, respectively when

plants were inoculated with 50 whiteflies after 48-h AAP and IAP
(Tzanetakis et al., 2011). The phylogenetic placement of DVCV, its
vectors and the co-habitat of D. virginiana and berry crops resulted
in a decision to conduct a series of experiments to determine the
ability of the virus to infect strawberry and blackberry. Those
experiments failed to identify additional hosts for DVCV other
than D. virginiana. Given that the only known host for DVCV is
a weed, control measures are not employed for this virus other
than the elimination of Virginia buttonweed through the use of
herbicides.

POTATO YELLOW VEIN VIRUS
Potato, a plant native to South America, is a host of several viruses.
Many are asymptomatic in single infections, and as many cause
devastating diseases that lead to major losses (Salazar,2006). Plants
affected by potato yellow vein disease can suffer losses reach-
ing as much as 50%. Typical symptoms include vein yellowing
that gives leaves the appearance of a yellow net (Figure 3). The
disease was first identified in 1943 and has since been reported
in Venezuela, Columbia, Ecuador, and Peru (Diazmore, 1963;
Salazar, 2006). It was not until the turn of the century that the
putative causal agent was identified and characterized (Salazar
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et al., 2000). The agent was transmitted by T. vaporariorum and
named PYVV. Virus purifications and cloning of the HSP70h gene
of the virus indicated that is a member of the genus Crinivirus
(Salazar et al., 2000). PYVV is a unique crinivirus as the only
member of the genus with a tripartite genome. RNA1 is organized
similarly to other criniviruses, encoding the replication-associated
proteins and small peptide with a transmembrane domain. RNA2
encodes five proteins that are found in the 5′ terminus of the
crinivirus orthologous molecule whereas RNA3 has three ORFs
commonly found at the 3′ terminus of RNA2 in other crinivirus
species, indicating that PYVV is probably a product of an ances-
tral virus segmentation in which the ancestral RNA2 segregated
into PYVV RNAs 2 and 3 (Livieratos et al., 2004) although, in
phylogenetic terms, it appears ancestral to the bipartite mem-
bers of group-1 (Figure 2). The host range of the virus is rather
restricted, and includes species in the genera Solanum, Polygonum,
Rumex, Tagetes, Catharanthus, and Malva able to sustain virus
replication whereas many common crinivirus indicators including
Nicotiana, Datura, and Physalis species are resistant to infection
(Salazar et al., 2000; Guzman and Rodriguez, 2010). The limited
host range of the virus is reinforced by the fact that studied isolates
present rather limited diversity (Offei et al., 2004; Guzmán et al.,
2006; Rodriguez-Burgos et al., 2010). PYVV is closely associated
with yellow vein disease symptoms but Koch’s postulates have not
been fulfilled as the virus can remain asymptomatic in potato. The
importance of the disease, the ease of transmission, as recorded
with the transmission of the virus in greenhouses in the UK, in
combination with the asexual propagation and the cosmopoli-
tan growth of the potato industry has made the development of
advanced detection methods obligatory for the industry, and there
are reports of sensitive detection protocols available (López et al.,
2006). Virus control is based on insecticide use and strict quar-
antine directives that would not allow virus spread outside the
countries where it is already present.

STRAWBERRY PALLIDOSIS ASSOCIATED VIRUS
Strawberries (family Rosaceae) are known to be natural hosts for
about 30 viruses (Martin and Tzanetakis, 2006; Tzanetakis, 2010 ),
several of which occur wherever the crop is grown and can cause
significant losses (Spiegel and Martin, 1998). Pallidosis disease ini-
tially was identified in the United States during the 1950s (Frazier
and Stubbs, 1969). Symptoms on indicator plants of F. virginiana
clones “UC-10” or “UC-11,” can include leaf distortion, chlorosis,
and some dwarfing, though under less than optimal conditions
for symptom development it is easy to overlook symptoms. Two
viruses have been consistently associated with the disease, BPYV
and Strawberry pallidosis associated virus (SPaV). Sequencing of
the genome of SPaV confirmed it as a crinivirus (Tzanetakis et al.,
2005). It contains two RNAs, both approximately 8 kb, with typi-
cal crinivirus genome organization. SPaV is most closely related to
BPYV and AYV based on phylogenetic analysis (Tzanetakis et al.,
2005).

There have been reports of severe strains of the pallidosis agents
that are lethal on indicators. Graft transmission of multiple iso-
lates from the eastern and western United States caused only mild
symptoms and it is most likely that these “severe strains” actually
represented mixed virus infections involving not only a crinivirus,

but likely another partner virus (Hokanson et al., 2000; Tzanetakis
et al., 2004).

Strawberry pallidosis associated virus is transmitted by T. vapo-
rariorum, although somewhat inefficiently compared to BPYV
(Tzanetakis et al., 2006b). Surprisingly, SPaV was more common in
strawberry than BPYV in field settings. Both viruses were found
in the majority of plants that exhibited decline symptoms due
to mixed virus infections in California in the 2002–2003 peri-
ods (Figure 3). The decline epidemic was estimated to cause
losses of about 50 million dollars for the two seasons (Martin
and Tzanetakis, 2013). Plants were infected with at least one of
the two criniviruses (BPYV or SPaV) and one of the common
aphid-transmitted strawberry viruses (Strawberry crinkle virus,
Strawberry vein banding virus, Strawberry mottle virus, or Straw-
berry mild yellow edge virus); incidence of SPaV was as high as
90% compared to 40% for BPYV. In plants from the Mid-Atlantic
states that indexed positive for pallidosis disease based on symp-
toms, 37 of 38 plants were positive for SPaV and only about 25%
were positive for BPYV (Tzanetakis et al., 2006b). Either virus can
cause pallidosis symptoms in indicator plants. In other compar-
isons, SPaV was always more common in strawberry plants in
side-by-side field comparisons than BPYV. This suggests that in
nature there are other factors that contribute to virus transmis-
sion efficiency than what is typically measured in greenhouse or
growth chamber studies. It is possible that the colony of whiteflies
used in the greenhouse studies is better adapted to transmission
of BPYV than SPaV or there are other, yet to be identified, vec-
tors that are more efficient for transmission of SPaV. SPaV had
a very limited host range in greenhouse studies, where it did not
infect Urtica urens L., but was found in an Urtica species in the
field in an area with high T. vaporariorum populations, though
this could have been a different Urtica species (Tzanetakis et al.,
2006b). The virus has been reported in strawberry production
areas throughout the Americas, Australia, and Egypt (Winterman-
tel et al., 2006; Ragab et al., 2009; Constable et al., 2010; Martin
and Tzanetakis, 2013). Both BPYV and SPaV are asymptomatic in
single or mixed infections in “Hood” and “Noreaster” strawberry
(Tzanetakis, 2004). Given the annual plasticulture that has been
adapted in most production areas in the world it is imperative that
plants do not become infected within the nursery system. Infec-
tions with the strawberry criniviruses may be asymptomatic but
when plants accumulate additional viruses in the field, they can
decline rapidly. The titer of SPaV declines in summertime and
for this reason testing for this virus is recommended in spring or
late fall using younger but fully expanded leaves (Tzanetakis et al.,
2004). As in the case of BYVaV, the symptomless single infections
and the complexity of disease-causing virus complexes have dis-
couraged work toward identification of accessions which preclude
virus replication.

GROUP-2
BEAN YELLOW DISORDER VIRUS
Legumes (family Fabaceae) are infected by numerous viruses,
several of which cause significant losses with many regularly
identified in new locations around the world (de Oliveira et al.,
2011; Zhou et al., 2011). This was also the case of a disease
observed in common bean (Phaseolus vulgaris L.) in Spain in
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2003. Symptoms were similar to nutritional disorders with yel-
lowing of the leaf blade, whereas pods appeared malformed.
Leaves were brittle and whitefly transmission with B. tabaci Genna-
dius yielded reproducible symptoms. These observations pointed
to a crinivirus infection. Confirmation came with the cloning
of the HSP70h gene of the virus, which was named Bean yel-
low disorder virus (BnYDV; Segundo et al., 2004). An extended
study in greenhouses in Spain, the only country the virus is
known to exist, showed BnYDV incidence of about 6%, indi-
cating that the virus was an emerging problem for bean growers
(Segundo et al., 2008). BnYDV genome is 17.5 kb; encoding
four proteins in RNA1 and nine in RNA2 (Martín et al., 2008).
Phylogenetic analysis indicated the close relationship of BnYDV
with vegetable-infecting criniviruses that are efficiently transmit-
ted by B. tabaci (Martín et al., 2008). Transmission experiments
revealed efficiencies that exceeded 35% using single whiteflies
with 24 h AAP and IAP, respectively. A much more surpris-
ing result was the retention ability of B. tabaci which reached 2
weeks when most other criniviruses are retained for less than a
week (Martín et al., 2011). More than 30 species belonging to the
families Asteraceae, Boraginaceae, Cucurbitaceae, Fabaceae, Gera-
niaceae, Lamiaceae, Malvaceae, Scrophulariaceae, Solanaceae,
Thymelaeaceae, and Verbenaceae were evaluated as hosts but only
four legume species (P. vulgaris L., Pisum sativum L., Lens culinaris
Medik., and Vicia faba L.) were able to sustain virus replication.
Given the high incidence of the virus in greenhouses, control mea-
sures have primarily focused in these production systems. Beans
grown in screenhouses had 14 times fewer whiteflies per plant.
The incidence of the virus under screenhouse protection never
exceeded 12.5% unlike that in conventional greenhouses which
reached over 80% (Janssen et al., 2011). Given the incidence of the
virus in the confined environment of a greenhouse, the physical
barrier of fine mesh screenhouses appears to be the most effi-
cient approach to minimize vector presence and associated virus
transmission.

CUCURBIT CHLOROTIC YELLOWS VIRUS
Cucurbits are grown throughout the world and are exposed to a
wide array of production environments and pests. These crops
are known to be infected by more than 60 viruses (Lecoq and
Desbiez, 2012), and several are discovered each year (Brown et al.,
2011; Lecoq et al., 2011; Dong et al., 2012). Melon plants with
severe yellowing symptoms in Kumamoto, Japan tested negative
for known cucurbit viruses. Further research revealed that the
disease agent was transmissible with B. tabaci biotypes B and Q
whereas limited sequence data revealed that the agent shared sim-
ilarities with criniviruses (Gyoutoku et al., 2009). The virus, now
known as Cucurbit chlorotic yellows virus (CCYV), has a typical
bipartite crinivirus genome, encoding four proteins in RNA1 and
eight in RNA2 (Okuda et al., 2010). Phylogenetic analysis revealed
the placement of CCYV into group-2. Okuda et al. (2010) studied
the ability of the virus to replicate and move systemically in 19
additional hosts belonging to the families Asteraceae, Chenopodi-
aceae, Convolvulaceae, Cucurbitaceae, Fabaceae, and Solanaceae.
The majority were shown to accommodate systemic movement,
expanding the known CCYV host range. Since its first report in
2004, CCYV has spread to Taiwan, China, North Africa, and the

Middle East, always found in association with severe disease out-
breaks in cucurbits (Huang et al., 2010; Gu et al., 2011; Hamed
et al., 2011; Abrahamian et al., 2012). Virus infection can sig-
nificantly reduce crop characteristics in melon and watermelon,
with significant brix reduction and yield losses that can reach a
third of the crop when virus incidence is higher than 75% (Peng
and Huang, 2011). Gyoutoku et al. (2009) have developed an effi-
cient RT-PCR test for the virus but the widespread presence of
the virus led to the need for high-throughput detection proto-
cols. For this reason, Kubota et al. (2011) developed antibodies
against the recombinant coat protein able to detect the virus using
immunoelectron microscopy, tissue blot and ELISA. The impor-
tance of the virus and the significant yield losses have led to efforts
toward identification of resistance in melon with five accessions
from the Indian subcontinent exhibiting promising results (Okuda
et al., 2013). Until resistance is incorporated into commercial culti-
vars, control will require insecticide treatment of whitefly-infested
areas.

CUCURBIT YELLOW STUNTING DISORDER VIRUS
Cucurbit yellow stunting disorder virus (CYSDV) was initially dis-
covered in the United Arab Emirates in 1982 (Hassan and Duffus,
1991). Virus particles range from 825 to 900 nm in length (Celix
et al., 1996), and the two RNAs are 9.1 and 8 kb, with genome
organization similar to other criniviruses.

Cucurbit yellow stunting disorder virus has been very successful
in spreading from the Middle East to many cucurbit produc-
tion regions throughout the world. Affected production regions
include, in addition to the Middle East, the Mediterranean Basin
including Lebanon, Israel, North Africa, and Southern Europe as
well as the Canary Islands (Celix et al., 1996; Wisler et al., 1998a;
Abou-Jawdah et al., 2000; Desbiez et al., 2000; Kao et al., 2000;
Louro et al., 2000). The virus has recently become a significant
production threat throughout cucurbit production regions in the
southern United States, Mexico, and Central America. CYSDV is
latent for up to 3 weeks but when symptoms develop they appear
similar to those of other whitefly-transmitted viruses on cucur-
bits, with mottle symptoms early followed by extensive interveinal
chlorosis (Figure 4). As with other criniviruses, symptoms are
more prominent on older leaves with younger leaves remaining
symptomless. CYSDV infections result in reduced plant vigor, and
can significantly reduce fruit sugar production, resulting in poor
tasting, unmarketable fruit.

The host range of CYSDV was originally believed to be
restricted to members of the Cucurbitaceae (Celix et al., 1996);
however, more recent studies have demonstrated CYSDV can
infect plant species from at least nine families (Wintermantel et al.,
2009a). Although cucurbits are the predominant and most signif-
icant agricultural hosts of the virus, common bean can be severely
affected, resulting in severe stunting and virtual elimination of
yield when infected at an early age. Lettuce is another host of the
virus (Wisler et al., 1998a), and can be a reservoir for transmission
to other crops, but symptoms are mild and agronomically insignif-
icant (Wintermantel et al., 2009a). Numerous common weeds are
also hosts of the virus, but in most cases these plants are symptom-
less and vary in their ability to serve as effective virus reservoirs
for transmission to crop hosts (Wintermantel et al., 2009a).
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FIGURE 4 | (A) Severe interveinal chlorosis in melon caused by Cucurbit
yellow stunting disorder virus; (B) typical symptoms of Tomato chlorosis
virus (left) and Tomato infectious chlorosis virus (right) on tomato leaflets,
illustrating the range of similar symptoms produced by both viruses; (C)

lettuce field exhibiting classic yellowing symptom due to Lettuce infectious
yellows virus.

CYSDV is transmitted very efficiently by at least three biotypes
of B. tabaci A, B, and Q (Wisler et al., 1998a; Berdiales et al., 1999).
The A biotype has become rare after its displacement from its
native range in the American Southwest by the B biotype. Both B
and Q biotypes are prevalent in many significant cucurbit produc-
tion regions of the world, and are highly efficient in transmission.

When vector populations are high it is virtually impossible to
prevent infection of cucurbits. When CYSDV emerged in the
American Southwest nearly all cucurbit production was affected
during the first year due to the presence of excessively high vector
populations.

Studies conducted on isolates collected over geographically
distinct regions (Rubio et al., 2001) as well as local populations
(Marco and Aranda, 2005), demonstrated most isolates are highly
conserved genetically. Proteins show significant variation and
among them the coat protein region seems to exhibit the most
substantial variability, illustrating the divergence of a cluster of
isolates from Saudi Arabia from other isolates identified from
throughout the world (Rubio et al., 2001). Examination over
time of a CYSDV collection from a localized region in Spain
demonstrated an exceptionally high level of conservation within
the virus population compared with other plant viruses (Marco
and Aranda, 2005). It is speculated that genetic bottlenecks may
influence the low genetic diversity within local populations. Simi-
larly, genetic bottlenecks may also influence emergence of unique
variants as observed for Arabian isolates (Marco and Aranda,
2005).

Management of CYSDV is predominantly through insecticide
based vector control, which reduces vector numbers and results in
slower rates of symptom development, but does not prevent virus
transmission. Increasing efforts are focusing on development of
virus resistance, particularly in cucumber and melon (Lopez-Sesé
and Gomez-Guillamon, 2000; Marco et al., 2003; Aguilar et al.,
2006; Eid et al., 2006; McCreight and Wintermantel, 2011), in
which new sources of resistance to the virus have been identified
in recent years. Efforts are progressing toward characterization of
resistance in both hosts and toward combining resistance sources
in melon.

LETTUCE CHLOROSIS VIRUS
Yellowing symptoms, normally associated with the crinivirus,
LIYV, were observed in vegetable fields in the southwestern United
States in the 1990s. At that point in time LIYV had virtually been
eliminated following displacement of its primary vector, B. tabaci
biotype A. This fact lead Duffus et al. (1996b) to investigate the
possibility that other viruses might be present in the region, and
ultimately to the discovery of Lettuce chlorosis virus (LChV). The
virus is transmitted by B. tabaci biotypes A and B with similar
efficiencies. Whiteflies can acquire and transmit the virus with
AAP/IAP of 1 h each. Transmission was more efficient after 24 h
of feeding whereas retention did not exceed 4 days. The host range
includes at least 31 species belonging to 13 families, with several
noteworthy hosts including spinach, sugar beet, and several weed
species commonly found in the southwestern United States (Duf-
fus et al., 1996b; McLain et al., 1998). The two genomic RNAs of
the virus are contain in individual particles of 800–850 × 12 nm.
The 17-kb genome is arranged similarly to that of other mem-
bers of group-2, encoding four proteins in RNA1 and 10 in RNA2
(Salem et al., 2009). Insecticide applications can minimize virus
incidence, something that is particularly important in early season
where LChV can have a significant impact in lettuce yield (McLain
et al., 1998). Infected lettuce can exhibit foliar yellowing, but also
head deformation if infection occurs early. LChV has not spread
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to areas outside the southwest United States and is not usually a
significant production threat, probably as a result of lettuce-free
periods and the inability of the virus to infect other significant
crop hosts during the fall season when whitefly populations are
elevated.

SWEET POTATO CHLOROTIC STUNT VIRUS
Sweet potato is one of the most nutritious vegetables, rich in vita-
mins and microelements and one of the most important staple
foods available today in sub-Saharan Africa (Loebenstein and
Thottappilly, 2009). Virus-like diseases of sweet potato have been
reported for more than 50 years in Africa with several aphid-
borne and whitefly-borne agents known to cause significant losses
(Schaefers and Terry, 1976). Schaefers and Terry (1976) provided
the first evidence that one of the components of the sweet potato
virus disease (SPVD), the most important sweet potato disease in
sub-Saharan Africa was whitefly-transmitted (Chavi et al., 1997;
Gibson et al., 1998; Ateka et al., 2004). About 25 years later the
virus, named Sweet potato chlorotic stunt virus (SPCSV) was par-
tially characterized at the biochemical level (Winter et al., 1992)
and a decade later was fully characterized at the molecular level
(Kreuze et al., 2002). SPCSV is the crinivirus with largest genome
identified to date with particles of 900–1000 nm in length and two
genomic RNAs exceeding 17.6 kb (Winter et al., 1992; Kreuze et al.,
2002). RNA1 encodes the replication-associated polyprotein and
two or three additional genes depending on the isolate, similar to
what is observed for BPYV (Cuellar et al., 2011a). RNA2 has sim-
ilar architecture to most criniviruses with seven ORFs speculated
to be involved in assembly and movement. SPCSV is transmitted
by B. tabaci, B. afer sensu lato, and T. vaporariorum (Sim et al.,
2000; Gamarra et al., 2010) and has spread to most areas where
sweet potato is grown (Yun et al., 2002; Lozano et al., 2004; Abad
et al., 2007; Qiao et al., 2011).

While SPCSV appears to exhibit minimal yield effects in single
infections as is also the case for some of the other criniviruses
presented here, it has a major effect when occurring together with
Sweet potato feathery mottle virus or other potyviruses, resulting
in SPVD. In a seminal paper by Karyeija et al. (2000) it was shown
that co-infection of the two viruses leads to a 600-fold titer increase
of the Potyvirus and subsequent development of SPVD symptoms.
It was later shown that similar effects can be observed when the
virus exists in mixed infections with viruses of other genera and
families, further signifying the importance of the SPCSV in SPVDs
(Untiveros et al., 2007; Cuellar et al., 2011b).

There have been several studies on the population structure of
SPCSV (Alicai et al., 1999; Fenby et al., 2002; Tairo et al., 2005).
There are distinct populations of the virus that show diversity in
excess of 25% at the nucleotide level although there is less diver-
sity at the amino acid level. Those studies have identified distinct
virus populations, also reinforced by the variability in gene num-
bers between isolates (Cuellar et al., 2011a), indicating that SPCSV
presents a polyphyletic evolutionary pattern.

Given the asymptomatic infection of SPCSV in single infections
and its importance in SPVD sensitive cultivars, efficient detec-
tion protocols are important for testing propagation stock and
minimizing virus movement to areas where the virus is absent.
For this reason there are several reports of detection protocols

for the virus, both immunological and molecular (Kokkinos and
Clark, 2006; Opiyo et al., 2010). There has also been extensive
work on identification of resistance for the viruses involved in
SPVD using traditional and modern approaches with promis-
ing results (Karyeija et al., 1998; Mwanga et al., 2002; Kreuze
et al., 2008; Miano et al., 2008). Still, the complexity of the
disease and the apparent diversity of the virus make incorpora-
tion of viable resistance into commercial cultivars a challenging
undertaking.

TOMATO CHLOROSIS VIRUS
Tomato chlorosis virus (ToCV) was originally identified in 1996
from greenhouse-grown tomatoes (Lycopersicon esculentum Mill.)
from Florida (Wisler et al., 1998b), and exhibits a moderate host
range of at least 24 plant species from seven different families
(Wintermantel and Wisler, 2006). Symptoms on tomato include
interveinal chlorosis, leaf brittleness, and limited necrotic flecking
or leaf bronzing, and are nearly identical to those associated with
infection by TICV (Figure 4), although genetically the two viruses
vary significantly. Several methods are now available to differ-
entiate ToCV from TICV, including RT-PCR (Wintermantel and
Hladky, 2010; Papayiannis et al., 2011), molecular probes (Garcia-
Cano et al., 2010), or virus-specific antiserum (Duffus et al., 1996;
Jacquemond et al., 2009; Wintermantel, unpublished).

The 16.8 kb genome of ToCV is typical of criniviruses and is
encapsidated as long flexuous virions approximately 800–850 nm
in length (Liu et al., 2000). RNA1 encodes four ORFs including
proteins associated with virus replication, and suppression of gene
silencing (Wintermantel et al., 2005; Cañizares et al., 2008), and
RNA2 encodes up to nine ORFs encoding proteins involved in
a multitude of functions including virus encapsidation, cell-to-
cell movement, membrane association, and whitefly transmission
(Stewart et al., 2010; Chen et al., 2011).

The host range of ToCV extends, in addition to tomato, to
other solanaceous hosts including pepper (Lozano et al., 2003),
potato (Fortes et al., 2012), and tomatillo (Trenado et al., 2007).
Several weed species can also harbor ToCV (Font et al., 2004;
Wintermantel and Wisler, 2006), and the presence of weed hosts
near production areas can provide an alternate host for the
virus between cropping seasons, as well as providing an acqui-
sition source for whitefly vectors that can carry the virus back to
cultivated hosts.

Tomato chlorosis virus is unique among members of the genus
as transmission by at least five different whiteflies has been doc-
umented (Navas-Castillo et al., 2000; Wintermantel and Wisler,
2006). The virus AAP is short, but transmission occurs more read-
ily when vector whiteflies have IAP of several hours. Transmission
efficiency varies among whitefly species, with T. abutilonea and
B. tabaci biotype B, highly efficient vectors, yielding high rates
of transmission, whereas B. tabaci biotype A and T. vaporario-
rum transmit ToCV with much lower efficiency (Wintermantel
and Wisler, 2006). B. tabaci biotype Q is also an efficient vec-
tor, and has emerged as the predominant vector in southern
Europe (Navas-Castillo et al., 2000). Each vector also differs in
its ability to retain the virus, with T. abutilonea able to trans-
mit for up to 5 days following virus acquisition, whereas B.
tabaci biotype B loses its ability to transmit ToCV after 3 days.

www.frontiersin.org May 2013 | Volume 4 | Article 119 | 9

http://www.frontiersin.org/
http://www.frontiersin.org/Virology/archive


“fmicb-04-00119” — 2013/5/15 — 18:49 — page 10 — #10

Tzanetakis et al. Crinivirus epidemiology

B. tabaci biotype A and T. vaporariorum lose their transmissi-
bility after only a day (Wintermantel and Wisler, 2006). ToCV
has a relatively long latent period in infected host plants, often
not inducing symptoms until 3 weeks after infection. If nurs-
ery plants are exposed to viruliferous vector populations at an
early age, it is possible for ToCV-infected plants to be carried to
new areas through movement of transplants prior to symptom
development.

Management of ToCV is primarily through the manage-
ment of vector populations using both chemical and cultural
practices. Since criniviruses cannot spread without whitefly
vectors, suppression of vector populations can keep crinivirus
spread to a minimum. Although insecticides can reduce white-
fly populations, such control methods are inefficient for virus
control, since whiteflies can transmit viruses before being killed
by an insecticide. In addition to vector control, it is impor-
tant to limit availability of alternate host plants that can serve
as virus reservoirs. Testing of nursery stock and ornamental host
plants for the presence of these viruses can also reduce move-
ment of ToCV to new areas. Importantly, resistance to ToCV
was recently identified in crosses between Solanum lycopersicum
(tomato) and S. peruvianum L., as well as S. chilense (Dunal) Reiche
(Garcia-Cano et al., 2010). Introgression of this resistance into cul-
tivated tomato should greatly strengthen future management of
ToCV.

GROUP-3
LETTUCE INFECTIOUS YELLOWS VIRUS
Lettuce infectious yellows virus is the most thoroughly studied virus
in the genus Crinivirus. It was discovered in the southwestern
desert agricultural regions of the United States in 1981 (Duffus
and Flock, 1982), and was the first crinivirus sequenced (Klaassen
et al., 1995). Its 15.3 kb genome partially defined the characteristics
of the genus.

Lettuce infectious yellows virus has a relatively large host range,
infecting at least 45 species of plants in 15 families, and caused
significant yield losses for lettuce, melon, and sugar beet. LIYV
causes interveinal yellowing symptoms in melon and sugar beet,
and a severe yellowing symptom on lettuce that gave the virus
its name and resulted in widespread field yellowing (Figure 4).
Unlike most other criniviruses affecting commercial agriculture,
which have effectively been distributed around the world, LIYV
remained predominantly confined to southwestern United States
and northern Mexico. This is due to its close relationship with the
B. tabaci biotype A, which shared a common geographical range
with the virus (Brown and Nelson, 1986; Duffus et al., 1986). The
virus persisted in the region throughout the 1980s, but quickly
faded from prevalence with the emergence of the B. tabaci biotype
B in the early 1990s (Cohen et al., 1992; Brown et al., 1995). As the
B biotype became established, the A biotype gradually disappeared
from fields, and along with it LIYV. Studies have shown a biolog-
ical basis for this, with LIYV exhibiting over 100 times greater
transmission using the B. tabaci biotype A than biotype B (Wisler
and Duffus, 2001). LIYV has not been identified in the American
Southwest for well over a decade, and although it is possible the
virus may still exist in long-term reservoir hosts, the likelihood that
it would reemerge is slim, since it is transmitted poorly by current

B. tabaci biotypes, and the A biotype is no longer present in the
field.

TOMATO INFECTIOUS CHLOROSIS VIRUS
Tomato infectious chlorosis virus was discovered in tomato from
southern California in 1993 (Duffus et al., 1996a) and has since
been identified as a problem for tomato production in many
parts of the world including Mexico, Europe, the Middle East,
as well as East and Southeast Asia (Wintermantel et al., 2009b).
Symptoms on tomato include, similarly to ToCV, interveinal yel-
lowing (Figure 4) with leaves becoming thickened and crispy,
breaking easily when bent. Yield is affected through decreased
fruit size and number (Wisler et al., 1996), as well as decreased
plant longevity (Wintermantel, 2004).

Tomato infectious chlorosis virus virions consist of long flexuous
rods varying from 850 to 900 nm in length (Liu et al., 2000) con-
taining the two RNAs of about 8.3 and 7.9 kb. Similarity between
TICV and other criniviruses varies throughout the genome but
TICV is related much more closely to LIYV than to any other
crinivirus, and together the two form a distinct clade within the
genus (Wintermantel et al., 2009b).

The virus is transmitted exclusively by T. vaporariorum (Duffus
et al., 1996a). TICV can be acquired and transmitted after a 1-
h AAP; however, transmission efficiency increases steadily with
longer AAPs. A 48-h AAP using 30 whiteflies per plant was most
efficient and resulted in 94% transmission. Individual whiteflies
given a 24-h AAP on infected source plants transmit TICV at
an 8% rate; whereas an 83% transmission rate is found when
plants are exposed to 40 viruliferous whiteflies each. Transmission
by viruliferous whiteflies also varies over time with transmission
using 30 viruliferous whiteflies per plant increasing from 16%
transmission with 1 h transmission access periods to 80% when
whiteflies are exposed to test plants for 48 h. TICV can persist in
whiteflies for up to 4 days, but transmission efficiency drops off
dramatically after 24 h (Duffus et al., 1996a).

Although tomato is considered the principal host of TICV, the
virus also infects a number of important vegetable and ornamen-
tal host plants (Duffus et al., 1996a; Wisler et al., 1996). Lettuce,
potato, petunia, artichoke, ranunculus, and China aster can also be
infected by TICV. Like other criniviruses, TICV symptoms take up
to 3 weeks to develop, and during this period movement of infected
plant material by the nursery industry or by commercial vendors
can be responsible for distribution of TICV to new regions (Wisler
et al., 1998a). The virus can survive during non-crop seasons in a
wide range of weed hosts near production areas and move into
crops as whitefly populations develop and become active. Sim-
ilarly, some ornamentals or alternate crops such as lettuce can
serve as reservoirs for virus transmission to tomato (Duffus et al.,
1996a; Wisler et al., 1998a; Font et al., 2004).

Management of TICV, like other criniviruses, involves both
chemical and cultural practices. Since criniviruses cannot spread
without whitefly vectors, suppression of vector populations can
keep crinivirus spread to a minimum. In addition to vector control,
it is important to limit availability of alternate host plants that
can serve as virus reservoirs. Although insecticides can reduce
whitefly populations, such control methods are inefficient for virus
control, since whiteflies can transmit viruses before being killed
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by an insecticide. Resistance to TICV is not available in cultivated
tomato; however, preliminary studies have indicated resistance
to whitefly feeding can slow TICV disease progress in cultivated
tomato (Mutschler and Wintermantel, 2006).

DISCUSSION
Closteroviruses cause diseases of great economic importance.
Citrus tristeza virus has changed the map of citrus production
around the world and the Grapevine leafroll associated viruses
have had a major impact on vine health and wine quality, both
affecting multi-billion dollar industries worldwide. Criniviruses
have recently emerged as major pathogens in world agriculture,
primarily because of the movement and establishment of their
whitefly vectors in temperate regions around the world.

There are clear cases in which criniviruses are the causal agents
of devastating diseases such as CYSDV and BPYV in cucurbits
or TICV and ToCV in tomato. In addition, there are many cases
in which criniviruses have been the underlying problem behind
major epidemics even though they were not originally recog-
nized as such. The examples of SPVD, strawberry decline, and
BYVD illustrate how criniviruses can be asymptomatic in single
infections and yet cause serious diseases in the presence of virus
complexes with major impacts on plant health and yield. Further-
more, even criniviruses normally regarded as symptomatic can be
asymptomatic in some hosts. Most members of the genus also
require a minimum of 3 weeks for symptoms to become apparent.
During this time infected plants can be moved to new areas or
even new countries without evidence of infection. This fact has
major implications at many levels; especially for viruses infect-
ing clonally propagated crops (BPYV, BYVaV, PYVV, SPaV, and
SPCSV) or crops associated with grafted transplants (CYSDV and
CCYV). In today’s global trading environment there is constant
germplasm exchange among individuals and organizations. The
previous examples of crinivirus-driven epidemics should become
lessons for the future and provide the impetus to improve plant
certification schemes. This will facilitate increasing international
trade in plant and plant products while decreasing the uninten-
tional movement of plant pathogens. Given that some of the
aforementioned viruses remain confined in specific geographic
areas (i.e., BYVaV in the United States, PYVV in northwestern
South America) it is still feasible to minimize their future impact
by eliminating movement of infected material into areas where
these viruses are not present. It is also important to establish vec-
tor exclusion strategies at the nursery or propagation field level.
It has been common practice in certification schemes that plants
are only visually inspected at the certified plant (G4) level. Using
strawberry or blackberry as an example, neither BPYV, BYVaV
nor SPaV cause symptoms in single infections in modern berry
cultivars. However, when singly infected plants are planted in the
field they often become infected with additional viruses and the
resulting mixed infections can lead to serious epidemics. Exclusion
and testing at the G4 level or prior to distribution can enhance
longevity and profitability of the crops within regions and prevent
or reduce accidental introduction of viruses into new production
areas.

Given the relatively recent identification of criniviruses as eco-
nomically important disease agents, work has primarily focused

on characterization, epidemiology, and in certain cases chem-
ical control of vectors. Still, the ultimate control strategy for
any pathogen is strong, stable genetic resistance. Resistance
using modern methods such as RNA interference is probably
the most straightforward and durable approach to prevent infec-
tion by viruses, but public resistance to genetically modified
plants especially in crops that are labeled as “healthy food” or
“superfoods” such as fruits and vegetables, the primary hosts
for criniviruses, has minimized the application of this technol-
ogy. For the majority of the criniviruses little or no work has
been directed toward identification of resistance using traditional
screening of germplasm resources and/or breeding to incorporate
such sources into commercially acceptable cultivars. In the few
cases where resistance has been identified it is almost always found
in wild accessions, which requires many generations of backcross-
ing before the relevant genes are incorporated into marketable
varieties. That is not to say progress is not being made. Sources
of resistance to LIYV were identified in both lettuce and melon
(McCreight, 1987, 2000), although the demise of LIYV as an agri-
cultural threat due to shifting vector population dynamics largely
rendered advancement of the material a moot point. Other efforts
however offer real potential for effective crinivirus management.
A source of resistance to ToCV was recently identified in tomato
(Garcia-Cano et al., 2010), and two independent and complemen-
tary sources of resistance to CYSDV have been found in melon
(Lopez-Sesé and Gomez-Guillamon, 2000; McCreight and Winter-
mantel, 2011). Sequencing of the genomes of many crops affected
by criniviruses, identification of resistance sources, and the use
of marker-assisted selection will speed up the incorporation of
these and likely other resistance traits into commercially relevant
cultivars.

Criniviruses are transmitted in a semi-persistent manner and
chemical control of vectors has not always been effective for virus
disease management. In addition, the development of resistance
to insecticides in insect populations and the effect of insecticides
on whitefly predators may have a negative impact on vector and
virus control, particularly in systems using broad integrated pest
management approaches. Consequently, it may be appropriate to
consider a more generic approach, such as identification of resis-
tance against whitefly vectors. There have been several cases in
which insect resistance has been identified in plants (Mutschler
and Wintermantel, 2006). In many cases this has been more effec-
tive and long-lived than virus resistance, possibly due to the ability
of the viruses to drift toward resistance-breaking populations. In
addition, vector resistance may be effective in controlling several
viruses that are transmitted by a common vector. As an extreme
example, aphid resistance to Amphorphora agathonica (Hottes)
had been effective for over 50 years in controlling three aphid-
borne viruses in raspberry in the North America, before new
biotypes of the vector developed that overcame the resistance
(Hall et al., 2009). Forms of resistance against insects can func-
tion in a number of ways, including acting as feeding deterrents,
physical barriers, or oviposition inhibitors. Some plant secondary
metabolites dissuade insects from settling on plants, preventing
the steady feeding that can lead to toxicity or virus transmis-
sion. Others may prevent oviposition, reducing vector populations
(Mutschler and Wintermantel, 2006). Studies are just beginning to
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address the potential of resistance to insect feeding on control of
whitefly-transmitted viruses (Mutschler and Wintermantel, 2006;
Rodriguez-Lopez et al., 2011, 2012). Appropriate and effective
utilization of such approaches will require specific research to
confirm that methods effective in controlling one pest do not
exacerbate problems with another. Integrating vector control with
other means of pest and disease management; however, offers the
potential to strengthen durability and effectiveness of control for
not only criniviruses, but a number of insect-borne pathogens.

There have been numerous significant breakthroughs in
understanding criniviruses, the diseases they cause, and their
epidemiology. However, a great deal more work is needed on virus
control, including an emphasis on certification to minimize virus
movement, identification of resistance sources against both vectors
and viruses, and introgression of resistance genes into commer-
cially acceptable germplasm. These should be priority areas for
long-term reliability of crinivirus management. Such efforts will

complement or reduce the need for extensive pesticide-based pro-
grams, and will minimize the impact and spread of criniviruses in
world agriculture.
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