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In computer-aided diagnosis systems for lung cancer, segmentation of lung nodules

is important for analyzing image features of lung nodules on computed tomography

(CT) images and distinguishing malignant nodules from benign ones. However, it is

difficult to accurately and robustly segment lung nodules attached to the chest wall or

with ground-glass opacities using conventional image processing methods. Therefore,

this study aimed to develop a method for robust and accurate three-dimensional (3D)

segmentation of lung nodule regions using deep learning. In this study, a nested 3D

fully connected convolutional network with residual unit structures was proposed, and

designed a new loss function. Compared with annotated images obtained under the

guidance of a radiologist, the Dice similarity coefficient (DS) and intersection over union

(IoU) were 0.845 ± 0.008 and 0.738 ± 0.011, respectively, for 332 lung nodules (lung

adenocarcinoma) obtained from 332 patients. On the other hand, for 3D U-Net and

3D SegNet, the DS was 0.822 ± 0.009 and 0.786 ± 0.011, respectively, and the IoU

was 0.711 ± 0.011 and 0.660 ± 0.012, respectively. These results indicate that the

proposedmethod is significantly superior to well-known deep learningmodels. Moreover,

we compared the results obtained from the proposed method with those obtained from

conventional image processing methods, watersheds, and graph cuts. The DS and IoU

results for the watershed method were 0.628 ± 0.027 and 0.494 ± 0.025, respectively,

and those for the graph cut method were 0.566± 0.025 and 0.414± 0.021, respectively.

These results indicate that the proposed method is significantly superior to conventional

image processingmethods. The proposedmethodmay be useful for accurate and robust

segmentation of lung nodules to assist radiologists in the diagnosis of lung nodules such

as lung adenocarcinoma on CT images.
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INTRODUCTION

Lung cancer is considered one of the most serious and morbid
cancers as it is the leading cause of cancer-related deaths and
the most commonly detected cancer in men (Sung et al., 2021).
According to the American Cancer Society, the 5-year survival
rate for patients with lung cancer is 19% (Siegel et al., 2019). If
lung cancer is detected in early-stage lung nodules, the survival
rate improves from 10–15% to 60–80% (Diederich et al., 2002).
Early detection of lung nodules is of high importance for
reducing mortality rates of patients with lung cancer, because the
cure rate is very low once clinical symptoms of lung cancer appear
(Wu et al., 2020).

Chest X-rays and computed tomography (CT) images are
used to diagnose and detect lung cancer; however, CT images
are generally more effective for diagnosing lung nodules (Sone

et al., 1998). According to the National Lung Screening Trial, the
mortality rate owing to lung cancer among participants between

the ages of 55 and 74 years with a minimum of 30 pack-years of

smoking and no more than 15 years since quitting, was reduced
by 20% when using CT compared with the rate when using
non-CT methods (The National Lung Screening Trial Research

Team, 2011). Sone et al. (1998) reported that the detection rate
of lung cancer in a low-dose CT screening was 0.48%, which
was significantly higher than the detection rate of 0.03–0.05%
in chest radiographs performed previously in the same area.
However, owing to advances in scanner technology, CT produces
a large number of images; this has been time consuming and
burdensome for radiologists to detect lung nodules in such a large
number of cases. In addition, a radiologist’s diagnosis still relies
on experience and subjective evaluation.

Computer-aided diagnosis (CAD) systems have been studied
to accelerate diagnosis and detection processes and support
radiologists (Doi, 2007; Gurcan et al., 2009). In quantitative
CAD for lung nodules, segmentation of lung nodules is
an important preprocessing step (Gu et al., 2021). CAD
calculates and analyzes image features such as texture features,
grayscale distribution, and lung nodule volume to assist in the
differential diagnosis of lung nodules (Sluimer et al., 2006).
Several methods have been proposed for the segmentation of
lung nodules (Gu et al., 2021). Segmentation methods for
lung nodules in lung CT images are generally classified into
some groups: morphological operation-based methods, region
growing-based methods, region integration-based methods,
optimization methods, and machine learning-based methods,
including deep learning (Lecun et al., 2015).

In morphological operation methods (Haralick et al., 1987),
Kostis et al. (2003) used a morphological opening operation
to eliminate blood vessels attached to lung nodules with their
associated connecting components. Messay et al. (2010) used a
rolling ball filter with rule-based analysis for segmentation of
nodules attached to the chest wall. These methods were fast
and easy to implement; however, it was difficult to set the size
of the morphological operator owing to the varying nodule
sizes. Diciotti et al. (2008) also reported that segmentation of
non-solid nodules prove to be difficult for segmentation using
morphological operations.

Region growing-based methods required seed points to be set
manually, and internally added voxels to nodules set until the
predefined convergence criteria were satisfied. Dehmeshki et al.
(2008) proposed an algorithm that used fuzzy connectivity and
a contrast-based region growing to segment nodules attached to
the chest wall. Kubota et al. (2011) separated nodules from the
background using the region growingmethod by probabilistically
determining the likelihood that each voxel belongs to a nodule
based on local intensity values. The problem encountered with
these methods was that nodules were diverse and irregular in
shape; therefore, convergence criteria were difficult to set.

The watershedmethodwas a region integration-basedmethod
(Vincent et al., 1991), wherein a grayscale image was regarded as
a geographic plane, and a region was obtained by setting amarker
at the local minimum of the image grayscale value and expanding
the marker to neighboring pixels. Tachibana and Kido (2006)
proposed a method for separation of small pulmonary nodules
on CT images, segmentation of the region using the watershed
method, generation of a mass model by distance transformation,
and integration of the nodule regions.

Based on the energy optimization method, several methods
such as level set and graph cut have been proposed. In the
level set method proposed by Chan and Vese (2001), the image
was described using a level set function so that the segmented
contour was minimized when it matched the boundary. Farag
et al. (2013) used a level set with shape before the hypothesis.
Shakir et al. (2018) used a voxel intensity-based segmentation
method that incorporated an average intensity-based threshold
into a level-set geodesic active contourmodel. Graph cut (Boykov
and Kolmogorov, 2004) is a method for separating objects and
background by treating the input image as a graph, and it has
been used to separate organ regions on CT images. Boykov and
Kolmogorov (2004) incorporated the problem into a maximum
flow optimization task and segmented the lung nodules using
the graph cut method. Cha et al. (2018) robustly segmented lung
nodules from gated 4D CT images of the respiratory system
using the graph cut method. The energy optimization method
segmented isolated nodules well but often failed for nodules with
complex shapes, those with ground-glass opacity (GGO), and
those in contact with the chest wall.

Machine learning-based lung nodule segmentation methods
have been recently proposed. In these methods, features for
image recognition are defined, extracted, and classified using
discriminators (Ciompi et al., 2017). Liu et al. (2019) used
a residual block-based dual-path network that extracted local
features and rich contextual information from lung nodules,
which resulted in improved performance. However, they used a
fixed volume of interest (VOI) that did not allow free exploration
of the nodules, which resulted in poor performance. For
lung nodule segmentation, Shakibapour et al. (2019) optimally
clustered a set of feature vectors consisting of intensity and shape-
related features in a given feature data space extracted from
predicted nodules.

Several methods based on deep learning have been currently
proposed without the design of image features (Litjens et al.,
2017; Kido et al., 2020). Ronneberger et al. (2015) proposed
U-Net for medical image segmentation, which is now widely

Frontiers in Artificial Intelligence | www.frontiersin.org 2 February 2022 | Volume 5 | Article 782225

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Kido et al. Segmentation of Lung Nodules

used. Various improvement methods have been proposed for
U-Net. Tong et al. (2018) improved the performance of U-Net
in nodule segmentation by including skipped connections in
the encoder and decoder paths. Amorim et al. (2019) changed
the architecture of U-Net and used a patch-wise approach to
investigate the presence of nodules. Usman et al. (2020) proposed
a two-stage method for three-dimensional (3D) segmentation of
lung nodules using the residual U-Net (He et al., 2016), which
incorporates a residual structure into its architecture.

Mukherjee et al. (2017) performed deep learning based
segmentation of lung nodules, which uses deep learning to find
the location of the object and preserves the morphological details
of the object using graph cut method. Wang et al. (2017a)
proposed a multi-view convolutional neural network (CNN) for
lung nodule segmentation considering axial, coronal, and sagittal
views around any voxel of the nodule. The same authors (Wang
et al., 2017b) also proposed a central focused CNN for lung
nodule segmentation. Roy et al. (2019) presented a synergistic
combination of deep learning and a level set for the segmentation
of lung nodules. Liu et al. (2018) used the fine-tuned the Mask
R-CNN model (He et al., 2017), an object detection neural
network trained on the COCO dataset (Lin et al., 2014) in order
to segment lung nodules, and then tested the model on the
LIDC-IDRI dataset (Armato et al., 2011).

Although many segmentation methods have been proposed
for lung nodules as described above, segmentation of lung
nodules with high accuracy is still difficult. For example, it is
difficult to obtain a robust segmentation result when the lung
nodule has GGO or is in contact with the chest wall. Therefore,
in this study, a nested 3D fully connected convolutional network
(FCN) using residual units (He et al., 2016) for the 3D
segmentation of lung nodule regions was proposed. FCNs are
the de facto standard for image segmentation, just as CNNs are
the de facto standard for classification. FCNs provide robust
and accurate segmentation of medical images compared to
conventional methods, and new methods are being proposed
one after another to improve the accuracy and robustness. While
there are many applications of FCN for 2D image segmentation,
most of the applications of FCN for 3D images are based on
volume data obtained from CT or MRI images. In addition
to diagnostic imaging, FCN has been used for segmentation
of the anatomical structures of thorax and abdominal organs.
In addition to diagnostic imaging, FCN has been used for
segmentation of thoracic and abdominal organs to analyze their
anatomical structures. The proposed model was compared with
well-known deep learning models, namely 3D U-Net and 3D
SegNet (Badrinarayanan et al., 2017), and the conventional image
processing methods, watershed, and graph cut.

MATERIALS AND METHODS

Study Data
CT images of 330 consecutive patients with 330 lung
adenocarcinomas who had undergone surgery between 2006 and
2014 at the Saiseikai Yamaguchi General Hospital (185 men and
168 women; mean age: 69.7 ± 9.7 years; range: 30–93 years)
were used. CT images were acquired using Somatom Definition

and Somatom Sensation 64 (Siemens, Erlangen, Germany) and
were obtained at the suspended end-inspiratory effort in the
supine position without intravenous contrast material. The
acquisition parameters were as follows: collimation, 0.6mm;
pitch, 0.9; rotation time, 0.33 s/rotation; tube voltage, 120 kVp;
tube current, 200mA; and field of view, 200 or 300mm. All
image data were reconstructed with a high spatial frequency
algorithm and reconstruction thickness, and the intervals were
1.0 and 2.0mm for 141 and 212 patients, respectively. The
annotation of all lung nodules for evaluation was performed
under the guidance of a board-certified radiologist.

Datasets
For 3D CT images containing 330 lung nodules, the lung nodule
regions were cropped to size of 128∗128∗64 and these images
were divided into five parts. For four of them, data augmentation
(rotation processing of 15◦ each in the x-y slice plane, and
mirroring processing for the x-, y-, and z-axes) was performed. 96
lung nodule images were generated from one lung nodule image,
and used as the training data set. The remaining one was used
as a test dataset. This process was performed five times while
changing the test dataset (5-fold cross validation).

Network Architecture of the Proposed
Model
The proposed model is shown in Figure 1. Image features
were extracted from the input 3D CT image using a single
encoder network, and image features output from each block
(e_2 to e_5) of the encoder network were used to create the
region segmentation result (region map). The decoder network
connected to each block (e_2 to e_5) was also used to create
the region map. The created region map (output of o_1 to
o_4) was substituted into the loss function to calculate the
loss value. The outputs included the deepest encoder network
(e_1 to e_5), deepest decoder network (d_5-1 to d_5-4), and
region map created by o_4. Furthermore, each block had a
housing unit structure, and all blocks except e_1 incorporated a
dropout layer (Dropout3d) before the final convolutional layer.
In the proposed model, encoder and decoder are connected by
concatenation. The hyperparameter tuning of the model was
done experimentally.

Loss Function
The loss function used in this study is given in Equation 1.

loss
(

x.y
)

= λlossb
(

x, y
)

+ (1.0− λ)lossd(x, y),λǫ[0.0, 1.0] (1)

In this equation, lossb
(

x, y
)

is the binary cross entropy, lossd(x, y)
is the Dice loss, x is the predicted image, and y is the annotated
image. The binary cross entropy and Dice loss terms in the
equation of the loss function are multiplied by coefficients λ and
(1.0-λ), which range from 0.0–1.0. The tree-structured Parzen
Estimator was used to determine hyperparameters (Ozaki et al.,
2020). Therefore, Optuna, a hyperparameter auto-optimization
framework for machine learning was used (Akiba et al., 2019).
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FIGURE 1 | Architecture of the proposed nested three-dimensional (3D) fully connected convolutional network. The connections are indicated by the red circles,

where the encoder and decoder are connected by concatenation.

FIGURE 2 | Architecture of the residual unit. (A) Conventional feed-forward neural network and (B) residual unit.

Residual Unit
Residual unit is a technique for deepening the CNN used in
the residual network (ResNet) proposed by He et al. (2016).
Deepening the layers of CNNs usually enables more advanced
and complex feature extraction; however, simply deepening
the layers of CNNs can deteriorate the performance owing
to problems such as gradient vanishing. Activation functions

such as ReLU and dropout have been proposed as a solution
to this problem; however, training does not proceed when the
CNN layers are made deeper than a certain level even when
these functions are applied. Therefore, a deep residual learning
framework (residual unit) is devised. In a conventional CNN, if
the input is x and the output is H(x), the network will appear,
as shown in Figure 2A. In contrast, the residual unit has a skip
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connection structure where the input does not pass through the
convolutional layer, as shown in Figure 2B, and is trained using
Equation 2. The two convolutional layers were then trained using
Equation 3, implying the presence of residuals.

H (x) = F (x) + x (2)

F (x) = H (x) − x (3)

This makes it easy to learn F(x) even when the difference between
x and H(x) is small. In the proposed model, the residual unit
structure prevents the gradient from decreasing, even in the
deepest layers of the model, and the image features around the
lung nodules can be properly trained.

Comparison With Different Methods
Our proposed method was compared with the following four
methods that have already been published. 3D U-Net and 3D
SegNet were used as segmentation methods using deep learning.
Moreover, the watershed method and graph cut method were
used as conventional image processing methods.

U-Net
U-Net is an object segmentationmodel proposed by Ronneberger
et al. (2015) for biomedical images and is currently the best
known segmentation method for medical images. U-Net is an
FCN (Shelhamer et al., 2017), and the difference between U-Net
and FCN is that the information used for coding is also used for
decoding the convolutional image. In this study, the mini-batch
gradient descent method was used to optimize the parameters of
the network model. Five-fold cross-validation was performed.

SegNet
SegNet is a segmentation model for object regions proposed
by Badrinarayanan et al. (2017) in 2016. SegNet has the same
encoder and decoder structure as U-Net. However, while U-Net
uses convolution transpose, SegNet uses unpooling. In addition,
unlike U-Net, SegNet does not have a skip connection structure.
In this study, the mini-batch gradient descent method was used
to optimize the parameters of the network model. Adam was
used as an algorithm to update the parameters (Kingma and
Ba, 2015). Cross entropy was used for loss function, and 5-fold
cross-validation was performed.

Watershed Method
The segmentation of lung nodules using the watershed method
comprises two main steps. The first step is to segment the rough
region of the lung nodule by determining a threshold value to
separate the lung nodule region from the rest of the lung. The
rough region is the area that includes the blood vessels and
trachea adjacent to the nodule after removing the chest wall
and other parts adjacent to the nodule. In the second step, a
model of the lung nodule region was created using distance
transformation. The lung nodule region and blood vessel region
were segmented based on gray scale information, and the lung
nodule region was segmented. The VOI was set to 128×128×64
voxels, similar to the proposedmethod, and the center of the VOI
was set to the center of the lung nodule.

Graph Cut Method
The graph cut method has the following features: it can reflect the
likelihood and boundedness inside the region in a well-balanced
manner, globally optimize the energy, and can be easily extended
to multidimensional data. For objects with a known shape, the
segmentation accuracy can be further improved by setting an
appropriate shape energy. In general, the energy is given in the
form of a linear sum of the region term region(L) and boundary
term boundary(L), as shown in Equation 4.

E (L) = Region (L) + Boundary (L) (4)

The region where the energy E(L) is minimized is determined
and segmented.

Evaluation Parameters
The accuracy of the proposed method is quantitatively evaluated
using performance measures such as the Dice similarity
coefficient (DS) and intersection of union (IoU). These measures
are calculated by determining the difference between the results
of segmentation and a manually annotated reference standard.
DS was calculated using Equation 5, and IoU was calculated
using Equation 6. In the equations, R is the manually annotated
reference standard and S is the result of segmentation.

DS (R, S) =
2× |R ∩ S|

|R| + |S|
(5)

IoU (R, S) =
|R ∩ S|

|R ∪ S|
(6)

Computation Environment
The proposed model and four different methods were
implemented on a custom-made Linux-based computing server
equipped with GeForce GTX 1080 Ti (NVIDIA Corporation,
Santa Clara, CA, USA) and Xeon CPU E5-2623 v4 (Intel
Corporation, Santa Clara, CA, USA). The deep learning model
was implemented using PyTorch. In addition, a hyperparameter
search was performed using an open-source hyperparameter
auto-optimization framework, Optuna (Preferred Networks,
Inc., Tokyo, Japan).

RESULTS

Table 1 shows a comparison between the proposed method and
other four methods. The results of the proposed method were
0.845± 0.008 and 0.738± 0.011 for DS and IoU, respectively. The
DS and IoU were 0.822 ± 0.009 and 0.711 ± 0.011, respectively,
for 3D U-Net and 0.786 ± 0.011 and 0.660 ± 0.012, respectively,
for 3D SegNet. Therefore, the proposed method was significantly
better than 3D U-Net and 3D SegNet. Moreover, the results of
the watershed method were 0.628 ± 0.027 and 0.494 ± 0.025
for DS and IoU, respectively, and the results of the graph cut
method were 0.566 ± 0.025 and 0.414 ± 0.021, respectively. The
proposed method was also significantly better than the watershed
and graph cut methods.

The average processing times per case for the proposed
model, 3D U-Net, and 3D SegNet using graphics processing
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unit are shown in Table 2. The average segmentation time of
the proposed model was 0.283 ± 0.002 s, which was longer than
that of the 3D U-Net (0.160 ± 0.001 s) and 3D SegNet (0.083
± 0.001 s). However, the percentage of the total processing time
for analyzing lung nodules was short, and no practical problems
were expected.

An example of segmentation in the case of a GGO nodule
is shown in Figure 3, Table 3. The proposed method was
considered the best, followed by 3D U-Net and 3D SegNet. There

TABLE 1 | Comparison of the proposed method with four segmentation methods.

DS (Mean ± SD) IoU (Mean ± SD)

Proposed 0.845 ± 0.008 0.738 ± 0.011

3D U-Net 0.822 ± 0.009* 0.711 ± 0.011*

3D SegNet 0.786 ± 0.011** 0.660 ± 0.012**

Watershed 0.628 ± 0.027** 0.494 ± 0.025**

Graph cut 0.566 ± 0.025** 0.414 ± 0.021**

Comparison with the proposed method.

*P < 0.01.

**P < 0.001.

TABLE 2 | Average processing time per case for the proposed model, 3D U-Net,

and 3D SegNet.

Average processing time

Mean ± SD (s)

Proposed 0.283 ± 0.002

3D U-Net 0.160 ± 0.001***

3D SegNet 0.083 ± 0.001***

Comparison with the proposed method. ***P < 0.0001.

were instances wherein the watershed and graph cut methods
failed to segment the GGO regions at the edges and inside
the nodule.

Figure 4,Table 4 show an example of segmentation in the case
of a nodule attached to the chest wall. 3D U-Net and 3D SegNet
failed to segment the boundary region when the nodule was in
the adjacent chest wall, while the graph cut method identified the
chest wall region contiguous to the nodule as the nodule. The
watershed method failed to segment lung nodules.

DISCUSSION

In this study, a nested 3D FCN for segmenting lung nodule
regions on CT images was proposed, and its segmentation
accuracy was 0.845 ± 0.007 and 0.738 ± 0.011 for DS and IoU,
respectively. These results were better than those obtained using
other segmentation methods used in comparison experiments.
The main contribution of the proposed model could segment
appropriate regions for lung nodules with GGO and lung nodules
attached to the chest wall, which tended not to be segmented
by well-known deep learning models, namely 3D U-Net and
3D SegNet, and by the conventional image processing methods,

TABLE 3 | Comparison of the proposed method with four segmentation methods

in the case of a GGO nodule.

DS IoU

Proposed 0.886 0.795

3D U-Net 0.849 0.738

3D SegNet 0.835 0.719

Watershed 0.310 0.184

Graph cut 0.573 0.401

FIGURE 3 | Examples of segmentation results in the case of a GGO nodule.
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FIGURE 4 | Examples of segmentation results in the case of a nodule attached to the chest wall.

TABLE 4 | Comparison of the proposed method with four segmentation methods

in the case of a nodule attached to the chest wall.

DS IoU

Proposed 0.772 0.628

3D U-Net 0.559 0.388

3D SegNet 0.528 0.359

Watershed 0.000 0.000

Graph cut 0.504 0.336

watershed, and graph cut. This is because the region map was
created using the decoder network connected to e_2 to e_5 of the
encoder network part of the proposed model, and the loss was
calculated and trained using this decoder network. Therefore,
it can be inferred that even the shallow parts of the encoder
network in the model (e_1 and e_2) are trained to segment
appropriate lung nodule image features and that the encoder
network in the deep part of the model (e_3 onward) increased
the number of feature patterns to be segmented and could
segment more advanced features. In addition, the residual unit
structure adopted in the proposed model prevents the gradient
from disappearing in the deeper layers of the model and allows
the model to learn the features of the complex and faint edges of
lung nodules, which improves segmentation accuracy and allows
the model to accurately segment lung nodules with GGO and
nodules attached to the chest wall.

Binary cross entropy calculates the loss for each pixel value
of the prediction result and the annotated image, while Dice
loss calculates the loss by calculating the coincidence between
the prediction result and the region of the annotated image.
In general, when the object to be extracted is too small for
the background, Dice loss is more sensitive than binary cross
entropy, but when the shape of the object to be extracted is

FIGURE 5 | An example of extraction results when the value of λ was

changed. Under-extraction was observed when only Dice loss was used as

the loss function (λ = 0.0).

complex, binary cross entropy is more sensitive (Bertels et al.,
2019; Zhu et al., 2019). Also, compared to binary cross entropy,
Dice loss is prone to unstable learning. For this reason, the
optimal coefficients for combining both were determined by
Bayesian optimization. The cases of binary cross entropy or Dice
loss as the only loss function were experimentally determined
(Figures 5, 6). In these cases, under- or over-extraction were
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FIGURE 6 | An example of extraction results when the value of λ was

changed. Over-extraction was observed when only binary cross entropy was

used as the loss function (λ = 1.0).

observed in the extracted images. However, by optimizing λ,
good extraction results were obtained.

Regarding the average segmentation time for nodules, the
proposed model took 0.283 ± 0.002 s, which is longer than that
required by the other deep learning models. However, if the
segmentation of nodules is considered as a preprocessing step for
CAD, there is no practical problem.

A limitation of this study was that the number of nodules used
was relatively small, and all nodules were adenocarcinomas. This
is because CT images collected for this study were from cases that
were indicated for surgery for lung adenocarcinoma. Therefore,
more cases other than lung adenocarcinoma need to be collected
to assess various nodule morphologies.

In conclusion, the effectiveness of our proposed lung nodule
segmentation method was verified by comparison with other
nodule segmentation methods. The proposed method provides
an effective tool for CAD of lung cancer, where accurate and
robust segmentation of lung nodules is important. This tool may
also enhance the differential diagnosis of lung nodules, which is
currently performed manually. In the future, improvement of the
accuracy of segmentation for all types of lung nodules is planned.
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