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Abstract: Insight into the composition and function of the tick microbiome has expanded considerably
in recent years. Thus far, tick microbiome studies have focused on species and life stages that are
responsible for transmitting disease. In this study we conducted extensive field sampling of six
tick species in the far-western United States to comparatively examine the microbial composition of
sympatric tick species: Ixodes pacificus, Ixodes angustus, Dermacentor variabilis, Dermacentor occidentalis,
Dermacentor albipictus, and Haemaphysalis leporispalustris. These species represent both common
vectors of disease and species that rarely encounter humans, exhibiting a range of host preferences
and natural history. We found significant differences in microbial species diversity and composition
by tick species and life stage. The microbiome of most species examined were dominated by a few
primary endosymbionts. Across all species, the relative abundance of these endosymbionts increased
with life stage while species richness and diversity decreased with development. Only one species,
I. angustus, did not show the presence of a single dominant microbial species indicating the unique
physiology of this species or its interaction with the surrounding environment. Tick species that
specialize in a small number of host species or habitat ranges exhibited lower microbiome diversity,
suggesting that exposure to environmental conditions or host blood meal diversity can affect the
tick microbiome which in turn may affect pathogen transmission. These findings reveal important
associations between ticks and their microbial community and improve our understanding of the
function of non-pathogenic microbiomes in tick physiology and pathogen transmission.
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1. Introduction

Ticks are some of the most important vectors of diseases to humans and other animal hosts [1].
In addition to the pathogens they transmit, ticks can also harbor numerous symbiotic and commensal
microbes such as bacteria, fungi, viruses, and protozoa [2–4]. These microbes, particularly the bacterial
constituents, are increasingly recognized as important components of the tick microbiome that may
interact with tick-borne pathogen transmission [5,6]. For instance, it has long been observed that a
commensal bacteria in Dermacentor andersoni ticks limits the distribution of the pathogen that causes
Rocky Mountain Spotted Fever (Rickettsia rickettsii) [7]. More recently, the transmission of the livestock
pathogen, Anaplasma marginale, was inhibited by higher proportions and quantities of an endosymbiotic
bacteria, Rickettsia bellii [8]. Overall tick microbial diversity has also been found to influence the
colonization success of the Lyme disease pathogen, Borrelia burgdorferi [9]. In particular, an experimental
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study found that higher bacterial diversity affected the quality of the midgut lining and facilitated
B. burgdorferi transmission into Ixodes scapularis [9].

Despite the growing appreciation that tick-associated microbiomes can be important to vector
competency and pathogen transmission dynamics [8–11], the bacterial communities of many tick
species, particularly those that are not common human disease vectors, have yet to be investigated.
Comparisons of microbiome compositions and endosymbiont patterns between tick species may be
a valuable path forward to better understand how tick microbiomes are shaped and perhaps how
they influence vector competency [12]. Amplicon-based next-generation sequencing of the bacterial
microbiome, hereafter referred to as the microbiome, is an effective and efficient method that allows
for rapid characterization of the entire bacterial community in ticks [13,14]. Despite this recent
technological advancement, there have been few studies that have examined how the tick microbiome
changes through time or as the tick develops from one life stage to the next, but see [11,15]. Since
hard ticks take a single blood meal during each of its post-egg life stages, comparative microbiome
analyses of tick life stages could reveal how host blood meal or tick natural history affect the tick
microbiome. Further, for public health reasons, tick microbiome studies have focused on generalist
tick species that tend to transmit zoonotic diseases [8–10,15–18]. However, in the far-western United
States, the co-occurrence of generalist ticks and several nest-dwelling, host specialist ticks provides an
opportunity for comparative microbiome analyses of ticks with divergent life-history strategies [19–21].

In the western United States, there are numerous hard tick species (Family Ixodidae) with
sympatric distributions. Many of these are important vectors for human diseases. Ixodes pacificus is
endemic to the coastal and high elevation regions of western North America and is the main vector for
B. burgdorferi [22,23]. Other tick species like Dermacentor albipictus, Dermacentor occidentalis, Dermacentor
variabilis, Ixodes angustus, and Haemaphysalis leporispalustris are also present in this region [19–22,24].
While D. occidentalis and D. variabilis are vectors of human pathogens, such as Rocky Mountain Spotted
Fever [25,26], tularemia [27], and the newly described Pacific Coast tick fever [28], H. leporispalustris and
D. albipictus are host specialist ticks that do not frequently bite humans and are therefore not common
zoonotic vectors [20,29]. In particular, H. leporispalustris is a nest-dwelling rabbit specialist and rarely
quests in the open [30]. Meanwhile, the winter tick, D. albipictus, is a one-host tick that quests for a
large ungulate host as a larva and then spends the next two life stages feeding and later breeding on the
same individual host [29]. Due to this highly specialized host association, D. albipictus is not usually
considered a zoonotic vector but recent work has shown that it is the infrequent vector of babesiosis in
the western United States [31]. Although I. angustus can feed on a variety of rodent species and has
been shown to be competent for transmitting B. burgdorferi [32] and Anaplasma phagocytophilum [33],
it rarely bites humans and has a narrower habitat distribution than other Ixodes spp. [21].

In this study, we sought to investigate the species-specific microbiomes of six sympatric tick
species that represent a diversity of natural histories and vary in their capacity to transmit zoonotic
pathogens. We addressed how their microbiome communities change through ontogenic development
and ask how life history (e.g., generalist vs. specialist) affects the diversity and composition of the
tick microbiome. We focus on tick species endemic to north coastal California, a region with high
diversity and sympatry of ixodid ticks to better understand the non-pathogenic microbial component
of different species and factors responsible for structuring tick microbiomes more broadly.

2. Materials and Methods

2.1. Sample Collection

Ticks were collected from Jack London State Park (38◦21′24.1” N 122◦32′27.2” W), China Camp
State Park (38◦00′09.7” N 122◦28′01.2” W), the University of California Santa Cruz Forest Ecology
Research Plot (FERP) (37◦00′45.7” N 122◦04′25.1” W), the Presidio Golden Gate National Recreation
Area of San Francisco (37◦47′55.7” N 122◦27′58.3” W), and Rancho Murieta in Sacramento (38◦30′06.5” N
121◦05′40.9” W) in 2015. Most ticks were collected by dragging 1 m2 white flannel flags over the forest
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understory. Dermacentor albipictus nymphs and adults were collected off hosts (California mule deer
and bighorn sheep) by the California Department of Public Health as this species spends the majority
of its life cycle on ungulate hosts after the initial blood meal (Swei et al., 2018). Larval I. angustus were
obtained from eggs hatched in the lab to engorged adult female ticks collected from small mammals at
the FERP because this species is primarily nest-dwelling and difficult to collect using standard drag
techniques. One I. angustus nymph was collected by drag sampling in the field. Immediately after
collection, ticks were flash-frozen in liquid nitrogen and stored at −80 ◦C until laboratory identification
of species, sex, and life stage. Once identified, ticks were stored at −20 ◦C until DNA extraction.

2.2. DNA Extraction

To remove external environmental contaminants, ticks were surface sterilized using successive
washes with 3% hydrogen peroxide, 70% ethanol, and ddH2O. Whole ticks were then ground using
sterilized pestles, and DNA was extracted individually using the Qiagen DNeasy Blood and Tissue Kit
(Qiagen, Inc., Valencia, CA, USA) as specified in the manufacturers’ instructions. Extracted DNA was
stored at −20 ◦C until library preparation for sequencing.

2.3. Sample Preparation

Separate 16S rRNA libraries were prepared for each tick sample following the guidelines
in Klindworth et al., 2013 [14]. First, amplicon PCR was performed using primers from
Klindworth et al. [14] and following the procedure in the Illumina 16S Metagenomic Sequencing
library preparation manual (Illumina, Inc., San Diego, CA, USA). We targeted the 16S rRNA V3-V4
hypervariable region as sequencing this region enables identification of a broad range of bacteria that are
relevant to ticks and their environment and is a common target in tick microbiome studies [10,13,14,34].
Amplicon PCRs were performed in triplicate for each sample, and the resulting product was pooled to
reduce amplification bias. Samples were then purified via solid-phase reversible immobilization (SPRI)
beads [13] or via gel extraction using the Accuprep PCR purification kit (Bioneer, Alameda, CA, USA)
following the manufacturers’ instructions. Dual indices were then attached to the purified amplicons
by PCR using primers from the Nextera XT v2 Index Kit set (Illumina, Inc., San Diego, CA, USA). Each
sample was amplified in duplicate, pooled, and purified as above. Library concentrations were then
quantified via qPCR using the primers and protocol provided in the KAPA Library Quantification kit
(Kapa Biosciences, Woburn, MA, USA). Finally, all samples were diluted to a 2 nM concentration and
pooled to form a multiplexed library. The combined library contained 2 negative controls originating
from the DNA extraction step which were later used to identify and remove suspected contaminants.

2.4. Library Sequencing

The final library was sequenced on an Illumina MiSeq using a MiSeq Reagent Kit v3 (600-cycle,
300 base pair, paired-end) (Illumina, Inc., San Diego, CA, USA).

2.5. Sequence Processing

Microbiome sequencing processing was conducted using Quantitative Insights in Microbial
Ecology (QIIME) [35] and R v3.4. Fastq sequence data were demultiplexed and quality-filtered (at
Phred Q20). Paired-end reads were aligned, assigned to operational taxonomic units (OTUs) using 97%
sequence similarity, and rarefied to 7000 reads per sample to correct for uneven sampling. Taxonomy
was assigned using open-reference OTU picking and the NBCI database. Using the resulting OTU table,
all OTUs present at less than 1% in all samples were pooled into a rare genera category, to minimize
the impact of sequencing artifacts on diversity estimates [36]. Remaining suspected contaminants
were then removed using the decontam package in R v 3.4, which identifies OTUs more abundant in
negative controls than real samples [37].
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2.6. Diversity Analysis

Microbiome richness, evenness, and Shannon’s diversity calculations were performed on the
quality-filtered OTU table described above and were conducted at the genus level. These analyses
were conducted using the vegan package in R. Statistical significance in diversity estimates between
groups (species, life stage, and region) was determined using the Kruskal-Willis test as the data were
not normally distributed. Microbiome profiles were also assessed for adult ticks by sex.

2.7. Microbiome Composition Analysis

Microbiome community composition was compared amongst groups using the vegdist function
in the vegan package. Two community dissimilarity metrics were used to capture different features of
community composition—the Bray-Curtis dissimilarity index, which accounts for OTU abundance,
and the Jaccard index which accounts for only OTU presence/absence. Community dissimilarity
between groups was then compared via PerMANOVA using 999 permutations of the distance values
as a comparison.

2.8. Core Microbiome Analysis

We sought to identify the microbes with the strongest association with each tick species, as
these microbes likely serve an important ecological and functional role within the tick. These “core
microbiome” members were selected based on criteria adapted from [38]. Specifically, the core
microbiota for a given tick species were those: (1) present in ticks from all locations sampled, (2) present
in >50% of all individuals sampled, and (3) present at >5% relative abundance as determined by the
percentage of sequence reads attributed to that microbe.

2.9. Predicted Microbiome Function Analysis

We estimated the functional role of each microbial community using PICRUSt v1.1 [39],
a computational approach that uses 16S rRNA sequencing information and a reference database
to infer functional gene content. Using PICRUSt and the KEGG orthology database [40], we grouped
gene content predictions to the default hierarchical level (level 3). We then compared predicted gene
family content across treatments via ANOVA and applied an FDR multiple testing correction. The
accuracy of the PICRUSt estimates was assessed by calculating the weighted Nearest Sequenced Taxon
Index (NSTI) which measures the availability of nearby genome representatives for the given OTUs.

3. Results

3.1. Sample Numbers

We collected a total of 143 ticks from six species for microbiome analysis (Supplementary Table S1).
Three of the six species had ticks from each post-egg life stage (D. albipictus, D. occidentalis, and I. pacificus)
while we were only able to collect adult D. variabilis, larval H. leporispalustris, and larval and nymphal I.
angustus. Sequencing these samples yielded 7,907,960 reads passing quality filter. All raw sequence files
are accessioned at Sequence Read Archive under BioProject ID PRJNA574713. After removing suspected
contaminants and pooling rare genera [11], we found a total of 59 OTUs across all sample types.

3.2. Tick Species Microbiome Differences

We observed pronounced differences in the microbial communities of sympatric tick species
(Figure 1). Specifically, microbiome composition differed significantly by both the Jaccard and
Bray-Curtis dissimilarity metrics (df = 5, F = 4.82, p = 0.001, df = 5, F = 6.41, p = 0.001, Figure 2,
Supplementary Figures S1 and S2). Microbial richness also differed significantly between tick species
at all life stages, and microbial diversity differed significantly between species at the larval and adult
life stages (p < 0.05 for all, Supplementary Tables S2 and S3).
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Most notably, the core microbiota—the OTUs most frequently present at the greatest abundance
within the microbiome—varied between tick species (Table 1). Dermacentor variabilis and D. occidentalis
were both dominated by Francisella, Sphinogomonas, and Methylobacterium, while D. albipictus was
dominated only by Francisella. The dominant members of H. leporispalustris and I. pacificus were Coxiella
and Rickettsia, respectively, while I. angustus had no discernible core microbiome (Table 1). Sequences
obtained from core microbiota OTU were aligned to the Genbank nucleotide sequence database using
NCBI Blast and the top matches are presented in Supplementary Table S4. In addition to identity,
the relative abundance of these core microbes varied significantly by species (ANOVA F = 25.62, df = 5,
p < 0.001, Supplementary Figure S3). All tick microbiomes displayed highly right-skewed abundance
distributions (Figure 3), indicating that for all tick species, the microbiomes contained many rare OTUs
but were dominated by a few highly abundant taxa. The relative abundance of rare OTUs that never
comprise more than 1% of the sequence reads in any sample, differed significantly between tick species
(ANOVA F = 28.31, df = 5, p < 0.001, Figure 1 and Supplementary Figure S4).

When comparing the functional gene content of tick microbiomes, none of the 328 predicted gene
pathways differed significantly by species at the larval life stage. However, 14 out of 328 gene pathways
varied significantly when comparing only larval I. pacificus and I. angustus, two genetically similar
species with diverging life-history strategies (Supplementary Table S5). At the nymphal life stage,
255 out of 328 gene pathways differed significantly by species (Supplementary Table S5). The average
weighted Nearest Sequenced Taxon Index (NSTI) for our samples was 0.035 (sd = 0.007) indicating that
our samples were highly tractable for metagenome prediction [39].
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Figure 1. Microbiome composition by tick species. A representative, or averaged, microbiome is shown
for each tick species with all life stages included. Colors represent OTUs at the genus level, and bar
heights correspond to OTU relative abundance as determined by the percentage of sequence reads.

Table 1. The core microbiome members for each tick species.

Tick Species Core Microbiome

D. albipictus Francisella
D. occidentalis Francisella, Sphinogomonas, Methylobacterium
D. variabilis Francisella, Sphinogomonas, Methylobacterium

H. leporispalustris Coxiella
I. angustus None
I. pacificus Rickettsia
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3.3. Ontogenic Microbiome Changes

There were significant reductions in microbiome species richness and diversity through
development for all tick species with sufficient sample coverage (D. albipictus, D. occidentalis,
and I. pacificus, Figure 4, Supplementary Tables S1 and S5). On average the adult stages had
approximately 50% of the microbiome richness of larvae, and nymphs exhibited intermediate richness.
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We found a consistent pattern of OTU loss through tick development with larvae exhibiting the highest
levels of species richness and adults exhibiting the lowest levels. Only one species, D. occidentalis,
exhibited a slight increase in species richness from one developmental life stage to the next (nymph
to adult). When analyzing all species together, we detected significant differences in microbiome
composition by life stage using the Jaccard, presence/absence-based dissimilarity metric (df = 2, F =

5.67, p = 0.007), but not for the Bray-Curtis, abundance-based dissimilarity metric (df = 2, F = 2.74,
p = 0.077).

Microbiome differences of adult ticks by species and sex found that for many species, the profiles
were similar with the exception of D. variabilis for which Francisella was present at a higher relative
abundance in females compared to males (Supplemental Figure S5).
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3.4. Regional Microbiome Differences

We compared larval I. pacificus, D. albipictus, and D. occidentalis collected from two sites located
approximately 40 miles apart to examine the effects of geographic variation on tick microbiomes.
We detected no significant differences in microbial richness, diversity, or composition between ticks
collected from these two regions (Supplementary Tables S6 and S7, Supplementary Figure S6). Further,
none of the 328 predicted gene pathways differed significantly by region.
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4. Discussion

We conducted a multi-species comparative microbiome analysis of ixodid tick species and found
that distinct microbial compositions, diversity, and core microbes characterized these sympatric tick
species. The species examined ranged from highly generalist species like the Lyme disease vector,
I. pacificus, which feeds on a wide diversity of hosts [19] to extreme host specialists like D. albipictus
which feeds on a single host over the course of its three life stages [29]. Consistent with other studies
of tick microbiomes [8,10,16], our analysis found that hard tick microbiomes are heavily dominated
by a few core species, likely endosymbionts [41]. These tick-symbiont relationships appear to be
relatively stable [11] and are important for tick physiology and may interact with pathogens as well [12].
Ixodes pacificus is uniformly associated with an endosymbiotic Rickettsia [41], whereas we found that
D. occidentalis and D. variabilis are associated with Francisella, Sphinogomonas, and Methylobacterium
(Table 1), consistent with other studies [3,42]. While the function of endosymbionts in tick physiology is
not entirely known, their generally ubiquitous occurrence in hard ticks suggests they serve an essential
function in these hematophagous tick parasites, perhaps in the form of nutritional supplementation of
folic acid and other nutrients lacking in blood [12,41,43]. The one striking exception to this pattern was
I. angustus which did not have a core microbiome, defined as having a microbial component present in
a majority of samples and being present at greater than 5% relative abundance [38]. Although our
sample size for I. angustus was small, we only found a single Rickettsia read among all the samples,
demonstrating that a previously reported endosymbiont, Candidatus Rickettsia angustus [33], was not
found in our samples and may not be essential. In contrast, the most dominant component of I. angustus
microbiome was the “Rare genera” category (Supplementary Figure S4) indicating that most of the
microbial species detected in the tick were present at less than 1% relative abundance of sequence reads.
These results suggest that environmental or physiological factors that shape the tick microbiome are
distinct in I. angustus and warrant further inquiry and investigation into the ecological and physiological
factors that permit them to not require harboring a dominant endosymbiont. Experimental studies and
habitat suitability models reveal that I. angustus is a nest dwelling specialist [44] and highly associated
with coastal redwood forests in the northwestern US [21]. The unique environmental conditions or host
associations in this habitat may enable I. angustus to survive and develop without an endosymbiont,
though in some locations an endosymbiont has been reported [33], but the mechanisms driving this
are unknown and require further study.

The relationship between tick species and their endosymbionts is likely a deep evolutionary
relationship. Ixodes species such as I. scapularis and I. ricinus are also frequently associated with Rickettsia
endosymbionts [9,16,17,45], although perhaps not to the same degree as I. pacificus. A comparison of
microbiomes from different regions in the eastern United States found that while northern I. scapularis
populations harbored high relative abundances of a Rickettsia symbiont, southern populations lacked
Rickettsia and instead had high abundances of an Enterobacteriaceae [16]. Both ubiquitous and high
relative abundance of Rickettsia endosymbionts in I. pacificus [46] implies an especially important
relationship between endosymbiont and tick or a particularly strong ecological pressure driving the
dominance of Rickettsia in the tick microbiome. Likewise, other studies of Dermacentor ticks show
frequent association with Francisella endosymbionts [3,8,47].

While the core microbiota varied between tick species, general patterns did emerge from our
species and life stage comparison of tick microbial diversity. We find that across the tick species
examined, microbial species richness tended to be highest in the larval stage and decreased with each
subsequent life stage until the adult microbiome becomes almost entirely composed of the dominant
endosymbiont(s), a finding that is consistent with studies of other tick species [48]. This pattern is true
both for generalist, multi-host ticks like I. pacificus as well as for the one-host specialist, D. albipictus.
It should be noted that nymph and adult D. albipictus samples were partially engorged due to the
necessity of collecting them from their blood meal host and it is not clear if the host blood would tend
to increase or decrease the OTU richness signature, however, host blood is generally low in bacterial
richness [49]. Due to sampling limitations, we did not have nymphal or adult H. leporispalustris
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samples, therefore we were not able to assess patterns in these life stages in this rabbit specialist
species. It is unclear if the loss of microbial species richness is driven by competitive interactions
between components of the microbiome or perhaps reflects the gradual loss of transient, unstable
microbes that are more commonly associated with the larval stage [11,50]. It has also been suggested
that the tick host itself is filtering non-essential or harmful microbes after initial, transient colonization
from environmental sources [11]. Our results suggest that this pattern may be common among many
hard tick species and could indicate a conserved microbial successional pattern in hard ticks. Further
studies should seek to better understand how and why microbial diversity is lost through the tick’s
ontogenic development.

Although microbial richness was highest at the larval stage, the predicted gene function did not
differ at all between species at this life stage. At the nymphal stage, however, there were large numbers
of differences in predicted gene function despite a loss of microbial species richness. Our finding that
predicted gene function was conserved across all species at the larval stage but started to diverge
at the nymphal stage suggests that tick age or blood meal host differences may be driving these
functional differences. Perhaps species-specific differences in natural history like host blood meal
associations or questing behavior play a role in driving these functional differences via changes in
microbiome composition [10]. While it is still not clear how comprehensive these gene prediction
algorithms are, these results suggest that there is still much to learn about what factors influence the
composition and function of the tick microbiome and how tick microbial activity may affect tick fitness
or pathogen transmission.

In this study, we collected as many life stages from the field as possible from a range of sympatric
ixodid tick species. Some of these species are generalist ticks and important zoonotic vectors such as
I. pacificus and D. variabilis, but others have highly specialized host preferences like D. albipictus and
H. leporispalustris, and rarely transmit pathogens to humans. Generalist ticks can feed on numerous
species of hosts such as rodents, birds, and lizards [19,33] while specialist ticks feed predominantly on
a single or limited range of species such as rabbits in the case of H. leporispalustris or large ungulates in
the case of D. albipictus. We found that H. leporispalustris had significantly lower microbiome species
richness and diversity compared to the other species at the larval stage. In addition, the large ungulate
one-host tick, D. albipictus had lower microbiome species diversity (Table S3) and distinct microbial
communities (Supplementary Figure S6) compared to the other Dermacentor spp., especially at the
larval and adult stages. While the mechanisms behind these patterns are still unclear, these results
suggest that a broader host range may contribute to greater microbiome diversity on a population level.
Given that zoonotic vectors tend to be generalist species, higher microbial diversity may facilitate
pathogen transmission, similar to what was found in I. scapularis [9].

The differences that we document are highly structured by tick species. We did not detect
significant differences in microbial diversity, composition or function within a species between two
regions where samples were collected. However, the distance between these two collection sites
may not be far enough or sufficiently ecologically distinct to reflect potential microbiome differences.
Expanded regional studies would be valuable to help tease apart inherent differences in tick microbiome
composition versus factors that may be shaped by abiotic or biotic factors.

Next-generation sequencing-based microbiome studies are improving our understanding of the
relationship between tick microbiome composition, endosymbiont interactions and vector competency.
These types of studies can help ecologists better understand microbial community ecology and also
may also provide key insights into vector control to mitigate the emergence of vector-borne diseases,
of which the majority are tick-borne diseases [51]. Our comparative tick microbiome study found
differences in tick core microbiota but also common diversity patterns which may provide valuable
insights into how ticks acquire and lose their microbiota, the function of endosymbionts, and how
we can harness these relationships to control vector-borne disease transmission. We are still in the
early stages of probing and understanding the drivers of and impacts of the tick microbiome but
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comparative studies like ours are a first step to developing testable hypotheses to better understand
these relationships in the hope of being able to better mitigate tick-borne disease transmission.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4450/10/10/353/s1,
Figure S1: Microbiome representation of nymphs by species, Figure S2: Microbiome representation of adults
by species, Figure S3: Relative abundance of core microbiota by tick species, Figure S4: Relative abundance of
rare genera (See Methods: Sequence processing) by tick species, Figure S5: Microbiome composition by tick
species and adult sex, Figure S6: Microbiome representation of larval D. albipictus, D. occidentalis, and I. pacificus
by region (China Camp State Park in Marin, CA or Jack London State Park in Sonoma, CA., Table S1: Sample
Size for Treatment Groups, Table S2: Species Richness by Species & Life Stage, Table S3: Species Diversity by
Species & Life Stage, Table S4: Top sequence BLAST results from OTUs identified as core microbiota, Table S5:
Variation in functional gene content by sample type, Table S6: OTU Richness by Location, Table S7: OTU Diversity
by Location.
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