
RESEARCH ARTICLE

High-frequency oscillations mirror severity of human
temporal lobe seizures
Jan Sch€onberger1,2,3,* , Nadja Birk1,2,*, Daniel Lachner-Piza1 , Matthias D€umpelmann1,
Andreas Schulze-Bonhage1 & Julia Jacobs1,2

1Universit€atsklinikum Freiburg, Epilepsiezentrum, Breisacher Straße 64, 79106, Freiburg im Breisgau, Germany
2Klinik f€ur Neurop€adiatrie und Muskelerkrankungen, Universit€atsklinikum Freiburg, Mathildenstraße 1, 79106, Freiburg im Breisgau, Germany
3Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany

Correspondence

Jan Sch€onberger, Universit€atsklinikum

Freiburg, Epilepsiezentrum, Breisacher Straße

64, 79106 Freiburg im Breisgau, Germany.

Tel: +4976127053910; Fax:

+4976127093350; E-mail:

jan.schoenberger@yahoo.de

Funding information

J. S. was supported by the Berta-Ottenstein-

Program for Clinician Scientists from the

Faculty of Medicine, University of Freiburg. J.

J. was supported by the German Research

Foundation (DFG; JA 1725/4-1).

Received: 16 October 2019; Accepted: 18

October 2019

Annals of Clinical and Translational

Neurology 2019; 6(12): 2479–2488

doi: 10.1002/acn3.50941

*These authors contributed equally to this

work.

Abstract

Objective: Many patients with epilepsy have both focal and bilateral tonic-clo-

nic seizures (BTCSs), but it is largely unclear why ictal activity spreads only

sometimes. Previous work indicates that interictal high-frequency oscillations

(HFOs), traditionally subdivided into ripples (80–250 Hz) and fast ripples

(250–500 Hz), are a promising biomarker of epileptogenicity. We aimed to

investigate whether HFOs correlate with the emergence of seizure activity and

whether they differ between focal seizures (FSs) with impaired awareness and

BTCSs. Methods: We retrospectively analyzed 15 FSs and 13 BTCSs from seven

patients with mesial temporal lobe epilepsy, each of them with at least one

BTCS and at least one FS. Representative intervals of intracranial electroen-

cephalography from the seizure onset zone (SOZ) and remote non-SOZ areas

were selected to compare pre-ictal, complex focal, tonic-clonic, and postictal

periods. Ripples and fast ripples were visually identified and their density, that

is, percentage of time occupied by the respective events, computed. Results:

Ripple and fast ripple densities increased inside the SOZ after seizure onset

(P < 0.01) and in remote areas after progression to BTCSs (P < 0.01). Postictal

SOZ ripple density dropped below pre-ictal levels (P < 0.001). Prior to onset of

bilateral tonic-clonic movements, ripple density inside the SOZ is higher in

BTCSs than in FSs (P < 0.05). Interpretation: Ripples and fast ripples correlate

with onset and spread of ictal activity. Abundant ripples inside the SOZ may

reflect the activation of specific neuronal networks related to imminent spread

of seizure activity.

Introduction

Seizures are not only the key feature defining epilepsy,1

their occurrence is also a major determinant of patients’

safety and quality of life. This applies in particular to sei-

zures that culminate in bilateral tonic-clonic movements.2

To improve treatment of individual patients, we aim for

(1) understanding the mechanisms underlying seizure

generation and spread,(2) identification of biomarkers

that correlate with seizure severity and even more (3)

have a prognostic value regarding the progression to a

bilateral tonic-clonic seizures (BTCS).

Previous work indicates that analysis of high-frequency

oscillations (HFOs) might help us tackle these problems –

both from a basic science and from a clinical perspective.

According to animal model studies, HFOs reflect key

stages of pathophysiology in epileptogenic networks. The

two traditionally distinguished subtypes have been linked

to clearly discernible mechanisms: While ripples are likely

due to synchronous firing coordinated by inhibitory cur-

rents3–5 (see6 for a review), fast ripples might mirror in-

and out-of-phase firing of different pyramidal cell clus-

ters7–9 (see10 for a review). Moreover, HFOs are promising

biomarkers of epileptogenicity. Several studies in epilepsy

surgery patients suggest that resection of HFO-generating

areas is associated with seizure-free outcome,11–14 thus

indicating their potential for delineation of the epilepto-

genic zone. Besides, HFO rates increased after reduction of
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antiepileptic medication.15 It seems noteworthy, however,

that these studies are based on interictal data. Evidence on

ictal HFOs in humans is comparably limited, even though

high-frequency activity was initially described at the start

of seizures.16 This may at least partly be due to the fact

that sharp transients and wideband amplitude increases

can make identification of “true” HFOs challenging.17

Only recently, the relationship between HFOs and elec-

troencephalography (EEG) seizure onset patterns has been

studied.18,19

We aimed to address this gap of knowledge in patients

with mesial temporal lobe epilepsy (MTLE), which is the

most frequent focal epilepsy.20 Specifically, we asked

whether ripple and fast ripple densities correlate with sei-

zure severity and whether they might be useful biomark-

ers for predicting progression to BTCSs.

Methods

Patient selection

We considered all patients with drug-resistant MTLE

who, as part of their evaluation for epilepsy surgery, had

undergone intracranial EEG recordings at the Freiburg

Epilepsy Center between 2010 and 2016. From these,

subjects with a video-EEG recording of at least one focal

seizure (FS) with impaired awareness and one BTCS

were selected. This study was approved by the Ethics

Commission at the University Medical Center Freiburg

and written informed consent was obtained from all

patients.

Selection of seizures and intervals

Seizure onset was defined as the start of a mesial tem-

poral lobe seizure onset pattern, consisting typically of

repetitive high-amplitude spikes or low-voltage fast

activity.21 BTCSs were required to be characterized by

clear tonic-clonic movements bilaterally. As has been

suggested previously, we divided them into a focal part

and a bilateral tonic-clonic part (bilat. TC).22 If bilateral

tonic limb posturing or behavioral vocalization occurred

before bilateral tonic-clonic movements, this was con-

sidered to be the onset of the bilateral tonic-clonic

part.23

We aimed to analyze data representative of the differ-

ent stages of a seizure. 30 sec intervals were therefore

selected as follows (Fig. 1):

(1)Pre-ictal: 30 sec prior to seizure onset

(2a)Focal part (focalFS and focalBTCS): If this stage was

• longer than 2:10 min: Initial 10 sec of each of the

first 3 min after seizure onset

• shorter than 2:10 min, but longer than 1:10 min:

Initial 20 sec of the first and initial 10 sec of the sec-

ond minute

• shorter than 1:10 min: Initial 30 sec after seizure

onset

2b Bilateral tonic-clonic part: same procedure as for (2a),

but after onset of bilateral tonic-clonic movements

3 Postictal: 30 sec after the end of ictal activity

We therefore only included FSs of at least 30 sec

duration and BTCSs with focal and bilateral tonic-clonic

parts of at least 30 sec each. Seizures that arose less

than 1 h after a previous seizure were excluded. A max-

imum of three seizures per patient of either type were

included to minimize bias toward patients with many

seizures.

Intracranial EEG recordings and selection of
channels

Intracranial electrodes (Ad-Tech Medical Instrument Cor-

poration, Racine, WI, USA) had been implanted based on

their estimated value for clinical decision-making in the

individual patient. The mesial temporal lobe was investi-

gated by at least two stereotactic depth electrodes (hip-

pocampus and amygdala) in five patients and one depth

electrode (hippocampus) plus a subdural grid and several

strip electrodes in two patients. Intracranial EEG was

recorded using Profusion EEG (Compumedics Limited,

Abbotsford, Victoria, Australia). The sampling rate was

2 kHz and recordings were band-pass filtered from 1.6 to

800 Hz.

Intracranial electrode contacts with a clearly ictal pat-

tern within 2 sec of seizure onset were considered as rep-

resentative of the seizure onset zone (SOZ). They were

selected by a neurologist as part of the clinical routine

and thus independently of this research study. We also

selected five bipolar channels remote from the SOZ in

each patient (“non-SOZ”).

HFO identification

HFOs were visually identified by two reviewers indepen-

dently based on previously established procedures.11,15,24

In brief, we used the Harmonie Reviewer software to

review bipolar montages of neighboring intracranial elec-

trode contacts. The screen was vertically split, and finite

impulse response-filtered traces were displayed at maxi-

mum temporal resolution (0.4 sec on each half) to mark

ripples (80–250 Hz) on the left and fast ripples

(>250 Hz) on the right. An event was only regarded as an

HFO if consisting of at least four oscillatory cycles. Two

events were regarded as distinct if separated by at least
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two non-HFO cycles,11 that is, without clear oscillatory

activity for an interval corresponding to at least two

cycles of the, respectively, analyzed oscillation. HFOs that

co-occurred with epileptic spikes were included, but we

took great care to exclude events associated with artificial

sharp transients.17

Data analysis

Further computations were performed with custom-writ-

ten routines in Matlab (Mathworks, Natick, MA). HFO

density was defined as the percentage of time occupied

by HFOs, as described previously.15,18 For group

analyses, we considered the bipolar channel with maxi-

mum HFO density as representative of the, respectively,

examined seizure, interval, and location (“SOZ” vs.

“non-SOZ”).

Statistical hypothesis testing

The data were considered to be not normally distributed.

We therefore specified the median as a measure of central

tendency and the range as a measure of dispersion. The

two-sided Wilcoxon signed-ranks test was applied for

paired data and the two-sided Wilcoxon rank sum test

for unpaired data. The Holm-Bonferroni method was

Figure 1. Study design. (A) Schematic illustration of our approach. We analyzed HFOs during the course of bilateral tonic-clonic seizures (BTCS;

Fig. 3) and focal seizures with impaired awareness (FS; Fig. 4) and compared analogous parts (Figs. 5 and 6). (B) Selection of 30 sec intervals from

focal and bilateral tonic-clonic parts. Three 10 sec segments were chosen to obtain data representative of the whole part irrespective of its

duration. We distinguished three cases. See methods section for a detailed description.
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used to correct for multiple comparisons. A significance

level of 5% was chosen.

Results

Seizure and patient characteristics

We reviewed 119 consecutive patients with drug-resistant

focal epilepsy who, as part of their evaluation for epilepsy

surgery, had undergone intracranial EEG recordings. Fif-

teen FSs and 13 BTCSs from seven patients (six females,

one male; age: median 37 years, range 22–50 years; see

Table 1 for more clinical data) fulfilled the inclusion cri-

teria. Clinical and EEG findings were always suggestive of

a mesial temporal SOZ. Representative examples of visu-

ally identified HFOs are shown in Figure 2.

Ripples during the course of seizures

HFO densities were first compared between different

stages of BTCSs (Fig. 3; P values specified in the text

below) and FSs (Fig. 4; P values specified below if incon-

sistent with findings from BTCSs). Seizure onset was

associated with a significant increase in ripple density

inside the SOZ (P = 0.003, Wilcoxon matched-pairs

signed-ranks test), but not in selected remote areas

(P = 0.62). After progression to the bilateral tonic-clonic

part, in turn, ripple density increased only in these non-

SOZ regions (P = 0.008), while remaining stable inside

the SOZ (P = 1). Postictal intervals were characterized by

a marked decrease in ripple density inside the SOZ

(P < 0.001) and in BTCSs also remote from it

(P = 0.003; FS: P = 0.06). In either subgroup, ripple

Table 1. Clinical data.

ID Sex Age MRI SOZ NFS NBTCS Semiology prior to progression to a BTCS

1 m 50 H head + A enlargement R H ant, A R 4 1 Oral automatisms

2 f 39 H sclerosis R H ant, H post, A R 3 6 Oral + manual automatisms, focal tonic, vocalization

3 f 37 s/p temporal pole resection

without AHE R

H ant, A R 1 3 Oral automatisms, focal tonic

4 f 52 H sclerosis L H L 5 1 Oral + manual automatisms, focal tonic

5 f 29 FCD MTL L H ant, H post, A L 6 6 Oral + manual automatisms

6 f 23 normal H L 1 2 Speech arrest, vocalization

7 f 22 H atrophy R H ant + A R 2 1 Oral + manual automatisms, focal tonic, vocalization

A, amygdala; ant, anterior; FCD, focal cortical dysplasia; H, hippocampus; L, left; MTL, mesial temporal lobe; NFS/ NBTCS, number of FSs/BTCSs dur-

ing evaluation period, post, posterior; R, right; s/p, status post.

Figure 2. Representative examples of visually identified ripples and fast ripples during the course of a BTCS. Bold horizontal bars above band-

pass filtered traces indicate event duration. Data were selected from the same seizure and from the same SOZ and non-SOZ channels.
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density dropped below pre-ictal levels inside the SOZ

(P < 0.001), but not in non-SOZ areas (P = 0.52).

Fast ripples during the course of seizures

In analogy with ripple density, seizure onset was followed

by a distinct increase in fast ripple density inside the SOZ

(P < 0.001, Wilcoxon matched-pairs signed-ranks test),

but not in non-SOZ regions (P = 0.81) – irrespective of

whether or not seizures generalized (Figs. 3 and 4). After

progression to a BTCS, fast ripple density increased glob-

ally, that is, both inside (P = 0.04) and remote from the

SOZ (P = 0.001). Postictal intervals were characterized by

a pronounced decrease in fast ripples (SOZ: P < 0.001,

non-SOZ: P = 0.03), which was specific to the SOZ in

FSs (SOZ: P < 0.001, non-SOZ: P = 0.84). In none of the

subgroups, however, fast ripple density dropped below

pre-ictal levels (SOZ: P = 0.07, non-SOZ: P = 0.23).

Comparison of FS versus BTCS

Finally, it was investigated whether FSs and BTCSs have

different HFO subtype densities during comparable sei-

zure stages. Ripple density inside the SOZ was higher in

Figure 3. HFOs during the course of BTCSs. Ripple density increased after seizure onset inside the SOZ (left, top; P = 0.003) and after

progression to a BTCS in remote areas (left, bottom; P = 0.008). Postictal intervals were characterized by a pronounced drop (SOZ: P < 0.001;

non-SOZ: P = 0.003). Note the suppression of SOZ ripples compared to pre-ictal levels (P < 0.001). Fast ripple density inside the SOZ increased in

parallel to the clinical progression of seizures (right, top; pre-ictal vs. focal: P < 0.001; focal vs. bilat. TC: P = 0.04), and only after progression to

a BTCS in remote areas (right, bottom; P = 0.001). Postictal intervals were characterized by a pronounced drop (SOZ: P < 0.001, non-SOZ:

P = 0.03), but not below pre-ictal levels. *indicates a statistically significant difference.
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the focal part of BTCSs than in the focal part of FS. This

difference was significant irrespective of whether groups

were compared at the level of patients (P = 0.03, Wil-

coxon matched-pairs signed-ranks test; Fig. 5) or seizures

(P = 0.04; Wilcoxon rank sum test; Fig. 6). Fast ripple

density, in contrast, was not significantly different

(P = 0.69). In non-SOZ channels, neither ripple

(P = 0.30) nor fast ripple (P = 0.63) density differed sig-

nificantly between FS and BTCS. The two seizure sub-

groups also had similar ripple and fast ripple densities in

pre- and postictal intervals (Table 2). A characterizing

feature of BTCS prior to actual onset of bilateral tonic-

clonic movements may thus be their higher ripple density

inside the SOZ.

Discussion

The main novel findings of this study are that (1) ripple

and fast ripple densities increase inside the SOZ after sei-

zure onset, and in remote areas after progression to a

BTCS, (2) postictal SOZ ripple density drops below pre-

ictal levels and, most importantly, that (3) already prior

to onset of bilateral tonic-clonic movements, ripple den-

sity inside the SOZ is higher in BTCSs than in FSs.

HFOs mirror onset and spread of seizure
activity

We found that in human MTLE patients, ripple and fast

ripple densities increase inside the SOZ following seizure

Figure 4. HFOs during the course of FS. Ripple density (left, top; P = 0.002) and fast ripple density (right, top; P < 0.001) inside the SOZ (top)

increased after seizure onset. Postictal intervals were characterized by a drop (ripples: P < 0.001; fast ripples: P < 0.001). Note the suppression of

SOZ ripples compared to pre-ictal levels (P < 0.001). No significant differences were found in remote areas (bottom). *indicates a statistically

significant difference.
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onset. This finding is consistent with previous studies in a

rodent model of MTLE25 and in a heterogeneous group

of patients with a wide range of seizure onset patterns

and underlying pathologies.18 The seizure onset-associated

increase remained confined to the SOZ – in remote areas,

HFO subtype densities increased only after progression to

a BTCS. Ripples and fast ripples are thus, in addition to

their significance as interictal biomarkers,11,12,14,15 also

associated with ictal activity. Our study focused on fre-

quencies traditionally defined for HFO analysis,therefore,

and even though we took great care to exclude “false”

HFOs,17 an effect on both HFO subtypes could theoreti-

cally have been due to wideband power increases. Alterna-

tively, one might conclude that the cellular mechanisms

underlying the two HFO subtypes, that is, synchronous

firing and coordinating inhibitory currents (reflected by

ripples)3–5 and out-of-phase firing of different pyramidal

cell clusters (reflected by fast ripples),7–9 are also involved

in the generation and spread of seizures.

Postictal suppression of SOZ ripples

We report that ripple density inside the SOZ drops below

pre-ictal levels after the end of seizures. SOZ fast ripples

and HFOs in remote regions were not significantly

altered, suggesting that ripple-generating networks are

specifically silenced in the area that the seizure originated

from. Interpretation of this finding is not trivial – even

more – because it is still unclear which are the key mech-

anisms underlying seizure termination (see26 for a

Figure 5. Predictive value of HFOs inside the SOZ regarding the progression to BTCS. Each dot corresponds to one patient. (Top, left) Prior to

secondary onset of bilateral tonic-clonic movements, ripple density was higher in BTCSs when compared to FSs. (Top, right) Fast ripple density

was similar in the two groups. (Bottom, right) Ripple and (bottom, left) fast ripple densities were not significantly different. *indicates a

statistically significant difference.
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review). One possibility is that postictal hypoperfusion

and hypoxia play a role,27 and that such metabolic stress

is particularly critical for ripple-generating parvalbumin-

positive basket cells due to their high energy demand.28

There is, though, also evidence for hyperperfusion after

seizures29–31, thus, more complex neuronal interactions

might as well be the cause. The suppression of ripples at

least differentiates the postictal state from physiological

slow-wave sleep and might reflect that a patient with

post-seizure drowsiness is still in a pathological state asso-

ciated with cognitive impairment – and not yet in a phys-

iological sleep-like mode. Whether our finding is also of

lateralizing value for clinicians, as has been reported for

postictal delta32 or EEG suppression,33 could be examined

as part of a future investigation.

Figure 6. Prior to progression to a BTCS, SOZ ripple density was also higher in BTCSs if compared to FSs at the seizure level (P = 0.04).

*indicates a statistically significant difference.

Table 2. Summary of comparison of HFO densities between FS and

BTCS for pre- and postictal intervals. For clarity, only P values (Wil-

coxon matched-pairs signed-ranks test) are specified.

Ripples

pre-ictal

Ripples

postictal

Fast ripples

pre-ictal

Fast ripples

postictal

SOZ 0.94 0.13 0.69 0.84

Non-SOZ 0.30 0.69 0.50 0.13
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Predictive value of SOZ ripples regarding
progression to BTCSs

Our study reveals that SOZ ripple density in initial ictal

intervals was higher if seizures progressed to BTCSs,

than if they did not. No significant differences were

found for fast ripples, or HFOs in remote areas. These

results suggest that propagation is, at least to some

degree, determined by network activity located inside the

SOZ, rather than in remote areas. This would be consis-

tent with previous data-driven work underlining the

impact of the SOZ on seizure spread.16 Whether pro-

gression to BTCSs is indeed promoted by HFOs or, as

previous work choosing a different methodological

approach suggests, primarily by slower activity34 may

differ considerably between localization and type of a

lesion. At the cellular level, there are at least two, some-

what divergent, interpretations of our finding: Prior to

propagation of ictal activity, SOZ ripples could reflect

rhythmic GABAergic currents that (1) support propaga-

tion of seizures, via synchronization of principal neu-

rons, or (2) reflect compensatory inhibition. Irrespective

of the underlying mechanisms, our results indicate that

ripples might be a helpful biomarker for estimating the

risk of progression to a BTCS. Taking into account the

considerable overlap between FSs and BTCSs, however,

one would not expect that an algorithm which solely

relies on SOZ ripple density could be sufficiently perfor-

mant for clinical application. We rather suggest that this

parameter could be integrated in recently described mul-

tivariate approaches.16,34

Limitations and outlook

The current study is limited in some ways, and additional

work is needed to fully investigate the role of HFOs dur-

ing seizures. HFOs may reflect certain aspects of network

activity, but for a complete picture of the underlying

complex interactions, the occurrence of HFOs could be

correlated to other frequency bands – at least to the

neighboring ones, that is, high gamma34,35 and very

HFOs.36,37 A combination with single-unit analyses, as

recently conducted for a subtype of seizure onsets in

MTLE patients,38 might ultimately verify current hypothe-

ses on cellular mechanisms.

The fact that we identified HFOs visually may limit

applicability of this tool in a clinical routine setting.

Sharp transients, wideband increases in signal power, and

seizure-associated artifacts still challenge automated detec-

tion, but with ongoing progress in the field of algorithm

development, we might overcome this obstacle. If HFOs

were to be used for prediction of BTCSs, solely relying on

HFO density might not be promising. But our data

suggest that this parameter could contribute to a device

with acceptable performance, if combined, for example,

with analyses of distinct morphological HFO features or

applied on preselected seizure entities.19 Whether this

becomes true, it can be concluded from the present study

that HFOs mirror onset, termination, and also imminent

spread of seizure activity, and that they can hence be con-

sidered as a biomarker reflecting not only epileptogenic-

ity, but also different aspects of ictogenicity.
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