
Arteriosclerosis, Thrombosis, and Vascular Biology

Arterioscler Thromb Vasc Biol is available at www.ahajournals.org/journal/atvb

Arterioscler Thromb Vasc Biol. 2020;40:2045–2053. DOI: 10.1161/ATVBAHA.120.314513 September 2020  2045

 

Correspondence to: Stuart D. Katz, MD, MS, Leon H. Charney Division of Cardiology, 530 First Ave, Skirball 9R, New York, NY 10016. Email stuart.katz@
nyulangone.org

For Sources of Funding and Disclosures, see page 2050.

© 2020 American Heart Association, Inc.

BRIEF REVIEW

COVID-19 and the Heart and Vasculature
Novel Approaches to Reduce Virus-Induced Inflammation in Patients With  
Cardiovascular Disease
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Ravichandran Ramasamy, Harmony R. Reynolds, Binita Shah, Judith Hochman, Glenn I. Fishman, Stuart D. Katz

ABSTRACT: The coronavirus disease 2019 (COVID-19) pandemic presents an unprecedented challenge and opportunity for 
translational investigators to rapidly develop safe and effective therapeutic interventions. Greater risk of severe disease in 
COVID-19 patients with comorbid diabetes mellitus, obesity, and heart disease may be attributable to synergistic activation 
of vascular inflammation pathways associated with both COVID-19 and cardiometabolic disease. This mechanistic link 
provides a scientific framework for translational studies of drugs developed for treatment of cardiometabolic disease as 
novel therapeutic interventions to mitigate inflammation and improve outcomes in patients with COVID-19.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.
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An outbreak of the novel severe acute respiratory syn-
drome (SARS) coronavirus-2 causing coronavirus 
disease 2019 (COVID-19) originally emerged from 

Wuhan, Hubei province in China, in December 2019.1 On 
March 11, 2020, COVID-19 was declared a pandemic 
by the World Health Organization, and by July 30, 2020, 
the virus had infected over 17 million people worldwide 
across 216 countries with over 668 000 fatalities.2

SARS coronavirus-2 is a single-stranded envel-
oped RNA virus similar in structure and pathogenic-
ity to SARS coronavirus from the 2002 SARS and the 
2012 Middle East respiratory syndrome coronavirus 
outbreaks.3 SARS-coronavirus-2 binds its S protein to 
ACE2 (angiotensin-converting enzyme 2) on the sur-
face of cells and relies on the cellular serine protease 
TMPRSS2 to prime the S protein for host cell entry.4 
ACE2 is expressed in type II alveolar cells of the lung 
and is highly expressed in cardiac myocytes, cardiac 
pericytes, and vascular endothelium.5,6 ACE2 converts 
angiotensin II to Ang (1–7; angiotensin 1–7) and 
exerts vasodilatory, natriuretic, anti-inflammatory, and 
antioxidant effects.7,8

CARDIOVASCULAR COMORBIDITIES OF 
COVID-19
In the original SARS outbreak, the presence of preexist-
ing cardiovascular disease was independently associated 
with an increased risk of death.9,10 Reports from China 
noted similar risks for a more severe clinical course in 
COVID-19 patients with hypertension, diabetes mellitus, 
or cardiovascular disease at baseline.11–13 Data from 2 
cohorts derived from academic medical centers in New 
York City identified age, obesity, and the presence of 
preexisting heart disease as strong predictors for hos-
pitalization among COVID-19 patients.14,15 National data 
from the Centers for Disease Control reported diabetes 
mellitus and cardiovascular disease as the most common 
comorbid conditions in hospitalized or intensive care unit 
patients.16 Registry data from United Kingdom healthcare 
systems also identified advanced age, obesity, diabetes 
mellitus, and hypertension as risk factors for more severe 
COVID-19 morbidity and mortality.17,18 In contrast, higher 
body mass index was not associated with increased mor-
tality risk in hospitalized COVID-19 patients in a single 
center in New York City.19 In this prepublication report, 
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age and increased blood levels of proinflammatory cyto-
kines were independently associated with decreased 
survival.

CARDIOVASCULAR MANIFESTATIONS OF 
COVID-19 INFECTION
Three distinct phases of COVID-19 are described begin-
ning with mild upper respiratory syndrome, a parenchymal 
pulmonary phase characterized by marked hypoxemia, 
and progression to a hyperinflammatory prothrombotic 
phase with multiorgan dysfunction and thromboem-
bolism in a subset of patients.13,20,21 Elevation in serum 
cardiac biomarkers (troponin, brain natriuretic peptide) is 
common in hospitalized patients. Patients may present 
with COVID-19 and electrocardiographic findings con-
sistent with ST-segment–elevation myocardial infarction 
with or without obstructive coronary lesions.11,22 Iso-
lated cases of suspected acute myocarditis have been 
reported in COVID-19 patients based on clinical findings 
of typical electrocardiographic changes, elevated bio-
markers, echocardiographic wall motion abnormalities, 
cardiac magnetic resonance imaging, and hemodynamic 
instability.23–25 However, histological changes consistent 
with myocarditis have not been identified in autopsy 
specimens.26–28 A New York City autopsy series reported 
platelet-fibrin thrombi in the cardiac microvasculature 
and venules and cases of venous thrombosis associated 
with regional myocardial infarction.29

Vascular complications of COVID-19 have also been 
reported including stroke, cutaneous chilblains-like 
lesions on the toes, and case reports of systemic vascu-
litis resembling Kawasaki disease in children with severe 
COVID-19 (pediatric multisystem inflammatory syn-
drome).30–36 Other autopsy series of COVID-19 patients 
report evidence of viral particles within vascular endo-
thelial cells and diffuse vascular endothelial cell injury in 
lung, heart, kidney, and intestinal tissues.37,38 The inflam-
matory response to viral infections upregulates expres-
sion of tissue factor, markers of thrombin generation 
and platelet activation, complement activation, and risk 
of intravascular thrombosis.22,39,40 Whether, and to what 
degree, the clinically recognized cardiovascular manifes-
tations of COVID-19 are a result of direct viral injury, pro-
longed hypoxemia, vascular endothelial cell infection or 
inflammation, cardiac pericyte infection, or intravascular 
thrombosis remains unknown.

POTENTIAL PATHOPHYSIOLOGIC AND 
PHARMACOLOGICAL LINKS BETWEEN 
CARDIOMETABOLIC DISEASE AND 
COVID-19 INFECTION
Innate immunity is increasingly recognized to mediate 
vascular inflammation and atherosclerosis progression, in 
part, via upregulation of the NLRP3 (nucleotide-binding 
oligomerization domain, leucine-rich repeat–containing 
receptor family pyrin domain-containing 3) inflamma-
some pathway in settings of hypercholesterolemia, 
diabetes mellitus, obesity, and atherosclerosis develop-
ment.41–46 This pathway regulates maturation and secre-
tion of the proinflammatory cytokine IL (interleukin)-1β. 
In the LDL (low-density lipoprotein)-receptor knockout 
hypercholesterolemic mouse, activation of the NLRP3 
inflammasome by exposure to the Western diet modu-
lates long-term immune function by a transcriptomic 
and epigenetic reprogramming of myeloid precursors, 
so-called trained innate immunity.47–49 As a result, the 
myeloid precursors, and their derived cells, exhibit an 

Nonstandard Abbreviations and Acronyms

ACE2 angiotensin-converting enzyme 2
Ang 1–7 angiotensin 1–7
COVID-19 coronavirus disease 2019
DPP4 dipeptidyl peptidase-4
GLP-1 glucagon-like peptide-1
GLP-1-RA  glucagon-like peptide-1 receptor 

antagonists
IL interleukin
IL-1R1 interleukin-1 receptor, type 1
IL-1Ra interleukin-1 receptor antagonist
IRF inferon regulator factor
LDL low-density lipoprotein
NF-κB nuclear factor-kappa B
NLRP3  nucleotide-binding oligomerization 

domain, leucine-rich repeat–contain-
ing receptor family pyrin domain-con-
taining 3

NT-proBNP  N-terminal pro-B-type natriuretic 
peptide

SARS severe acute respiratory syndrome
SGLT2 sodium-glucose cotransporter 2

Highlights

• Patients with diabetes mellitus, obesity, and heart 
disease are at a greater risk for severe complica-
tions of coronavirus disease 2019 (COVID-19).

• Vascular inflammation and trained immunity asso-
ciated with cardiometabolic diseases may increase 
risk of hyperinflammatory response to COVID-19 
infection.

• Drugs with anti-inflammatory properties devel-
oped for the treatment of cardiometabolic disease 
are being evaluated in clinical trials of COVID-19 
patients.
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enhanced inflammatory response upon secondary chal-
lenge with microbial ligands. Accordingly, NLRP3 inflam-
masome activation and trained immunity in association 
with cardiovascular risk factors and disease might confer 
increased risk of a hyperinflammatory response that aug-
ments the effects of COVID-19–induced inflammation or 
COVID-19–induced immune modulation of ACE2/Ang 
(1–7) signaling (Figure).50–53 This double-hit hypothesis 
is concordant with epidemiological observations linking 
cardiometabolic conditions to increased risk of severe 
complications of COVID-19 and provides a scientific 
framework for translational studies of drugs developed 
for treatment of cardiometabolic disease as novel thera-
peutic interventions in patients with COVID-19.

ALDOSE REDUCTASE INHIBITION
Aldose reductase—the first and rate-limiting step of the 
polyol pathway—channels excess glucose away from 
energy metabolism in cardiomyocytes and vascular 

cells during hyperglycemia and ischemia.54,55 Increased 
metabolic flux through the polyol pathway may medi-
ate progression of diabetes mellitus–related end-organ 
complications due to increased osmotic stress, altered 
redox homeostasis, and augmented NF-κB (nuclear fac-
tor-kappa B) signaling and NLRP3 inflammasome acti-
vation.54–58 Transgenic mice expressing human aldose 
reductase exhibit increased expression of the transcrip-
tion factor early growth response 1 and increased vascu-
lar proinflammatory and prothrombotic signaling.59 Aldose 
reductase inhibition protects both diabetic and nondia-
betic hearts in experimental ischemia/reperfusion injury 
models, protects against lipopolysaccharide-induced 
cardiac dysfunction, reduces lung injury in experimental 
sepsis-induced inflammation, and reduces hyperglyce-
mia-induced inflammasome activation in THP-1 mono-
cytic cells and in the streptozotocin-induced diabetes 
mellitus mouse model.56,60–63 A double-blind, randomized 
placebo-controlled clinical trial of an aldose reductase 
inhibitor (zopolrestat) in diabetic patients demonstrated 

Figure. Possible mechanisms contributing to increased risk of severe complications in coronavirus disease 2019 (COVID-19) 
patients with comorbid cardiometabolic disease.
NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat–containing receptor family, pyrin domain-containing 3) inflammasome 
activation and trained immunity in association with cardiovascular disease and risk-enhancing conditions such as hypercholesterolemia, 
diabetes mellitus, and obesity might confer increased risk of a hyperinflammatory response that augments the effects of COVID-19–induced 
inflammation or COVID-19–induced immune modulation of ACE2 (angiotensin-converting enzyme 2)/Ang (1–7; angiotensin 1–7) signaling. 
This double-hit hypothesis is concordant with epidemiological observations linking cardiometabolic conditions to increased risk of severe 
complications of COVID-19 infection and provides a scientific framework for translational studies of drugs developed for the treatment of 
cardiometabolic disease as novel therapeutic interventions in patients with COVID-19 infection. Potential targets to reduce excessive COVID-
19–induced inflammation in patients with cardiometabolic disease are listed in bolded text. DAMP indicates damage-associated molecular 
pattern; IL, interleukin; LDL, low-density lipoprotein; PAMP, pathogen-associated molecular pattern; and SARS-CoV-2, severe acute respiratory 
syndrome coronavirus-2.
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a significant increase in left ventricular ejection fraction 
during exercise when compared with placebo.64

AT-001 is a novel aldose reductase inhibitor in devel-
opment to assess its safety and efficacy on functional 
capacity, biomarkers, and echocardiographic measures 
of cardiac structure and function in diabetic patients 
(NCT04083339). In a randomized proof-of-concept 
study conducted in diabetic patients, AT-001 therapy for 
28 days reduced blood levels of sorbitol and NT-proBNP 
(N-terminal pro-B-type natriuretic peptide) levels when 
compared with placebo.65 A phase 2 open-label trial 
of 14 days of AT-001 therapy in COVID-19 diabetic 
patients with heart disease is ongoing to assess the 
safety and serial biomarkers of inflammation and cardiac 
injury (NCT04365699).

SGLT2 INHIBITORS
SGLT2 (sodium-glucose cotransporter 2) inhibitors 
inhibit glucose reabsorption in the proximal convoluted 
tubule of the kidney.66 This class of agents reduces risk 
of cardiovascular morbidity and mortality and progression 
of nephropathy in diabetic patients.67–71 SGLT2 inhibitors 
induce transcriptomic reprogramming mimicking a fast-
ing state with increased fatty acid utilization and keto-
genesis.72 This metabolic shift in response to SGLT2 
inhibition is hypothesized to be associated with activation 
of SIRT-1 (Sirtuin 1) and HIF-1α (hypoxia-inducible fac-
tor-1 alpha) signaling, enhanced autophagy, decreased 
oxidative stress, and decreased NLRP3 inflammasome 
activation.73,74

The observed improvement in cardiorenal outcomes 
with SGLT2 inhibition is greater than that expected 
from the modest improvement in glycemic control 
reported in clinical trials.73 Dapagliflozin reduces hos-
pitalizations and death in heart failure patients with or 
without diabetes mellitus.75 In light of these putative 
cytoprotective mechanisms not related directly to glyce-
mic control, and its association with reduced cardiovas-
cular risk in both diabetic and nondiabetic populations, 
dapagliflozin might reduce the inflammatory response 
in viral infections and sepsis and, therefore, decrease 
the risk of morbidity and mortality in COVID-19. This 
hypothesis will be tested in the DARE-19 trial (Dapa-
gliflozin in Respiratory Failure in Patients With COVID-
19; NCT04350593)—an international double-blind, 
placebo-controlled study of 900 COVID-19 patients.

INCRETINS
The DPP4 (dipeptidyl peptidase-4) inhibitors and GLP-
1-RAs (GLP-1 [glucagon-like peptide-1] receptor antag-
onists) are pharmacological agents used to modulate 
the incretin pathway of gut hormones. DPP4 inhibitors 
improve glycemic control by inhibiting the degradation 

of GLP-1—a gut hormone secreted by intestinal neu-
roendocrine cells that stimulates postprandial insulin 
secretion.76 The GLP-1-RAs are either endogenous or 
exogenous analogues of GLP-1. Prospective random-
ized placebo-controlled cardiovascular outcome trials of 
several GLP-1-RAs have demonstrated reduction in risk 
of major adverse cardiac events and reduction of car-
diovascular death with liraglutide.71,77,78 Pharmacological 
augmentation of incretin pathway signaling may improve 
cardiac outcomes, in part, by immunomodulatory path-
ways. DPP4 is a transmembrane glycoprotein expressed 
in cardiac and vascular tissues, kidneys, adipocytes, and 
inflammatory cells.79 DPP4 upregulates T-cell CD86 
(cluster of differentiation 86) expression and nuclear 
signaling via the NF-κB pathway and increases inflam-
masome expression and activity.80 Inhibition of DPP4 
increases incretin signaling, which in turn reduces pro-
inflammatory and prothrombotic signaling in response 
to endotoxin in experimental models of sepsis.81,82 Lin-
agliptin was shown to attenuate cardiac dysfunction in 
diabetic mice with sepsis,83 but there are no available 
data demonstrating a protective effect for DPP4 inhibi-
tors in patients with sepsis. A meta-analysis of 74 stud-
ies showed no increased risk for respiratory infections 
associated with DPP4 inhibitors when compared with 
placebo or other antidiabetic agents.84

Immunomodulation by incretin signaling might provide 
therapeutic benefit for diabetic patients with COVID-19 
illness. Two open-label randomized studies in diabetic 
patients with COVID-19 are planned to determine the 
effects of linagliptin and insulin versus insulin alone on 
glycemic control, COVID-19 disease progression, and 
hospital outcomes (NCT04341935 and NCT04371978).

COLCHICINE
Colchicine is an anti-inflammatory medication to treat 
gout, familial Mediterranean fever, and pericarditis. Col-
chicine decreases neutrophil-endothelial adhesion, neu-
trophil-platelet interaction, and neutrophil and NLRP3 
inflammasome activation.85,86 In observational studies 
of gout patients, colchicine treatment is associated with 
reduced high-sensitivity C-reactive protein and reduced 
risk of cardiovascular events.87–89 In a double-blind ran-
domized study, a short-term course of colchicine 1.8 
mg administered at the time of percutaneous coronary 
intervention did not reduce postprocedure biomarkers 
of myocardial injury when compared with placebo but 
reduced postprocedure rises in IL-6 and C-reactive pro-
tein 24 hours after dosing.90 In patients with coronary 
artery disease and stable symptoms or recent myocardial 
infarction, colchicine 0.5 mg daily decreased the risk of 
adverse cardiovascular outcomes end point when com-
pared with placebo.91,92

Given this profile of putative anti-inflammatory 
mechanisms and cardiovascular risk reduction, the 
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COLCORONA trial (Colchicine Coronavirus SARS-CoV2 
Trial) is currently recruiting ≈6000 subjects in a multina-
tional, randomized, double-blind, placebo-controlled trial 
to evaluate the safety and efficacy of colchicine in out-
patients diagnosed with COVID-19 (NCT04322682). 
There are 9 additional international trials of colchicine in 
COVID-19 listed on https://www.clinicaltrials.gov.

IL-1 INHIBITORS
The Toll-like receptor family plays a critical role in induc-
ing innate immune signaling in response to microbial 
components (pathogen-associated molecular pat-
terns), or damage-associated molecular patterns that 
occur with sterile inflammation and cell injury, includ-
ing atherosclerosis and ischemic myocardial injury.93–95 
Activation of these transmembrane receptors initiates 
signaling that ultimately leads to activation of the tran-
scription factors NF-κB, IRF (inferon regulator factor)-3, 
and IRF7 and induction of antibacterial and antiviral 
gene expression. Among the genes upregulated are 
pro–IL-1β and components of the NLRP3 inflamma-
some, which upon assembly activates caspase-1–medi-
ated IL-1β and IL-18 secretion, and a form of cell death 
called pyroptosis. IL-1β is a potent proinflammatory cyto-
kine that acts via the IL-1R1 (IL-1 receptor, type 1) to 
induce fever, activation of innate and adaptive immune 
cell responses, the acute-phase response, and leuko-
cyte-endothelial cell interactions.96 This proinflammatory 
signaling cascade is counterbalanced by IL-1Ra (IL-1 
receptor antagonist), which binds to IL-1R1 without 
causing the conformational change required for IL-1R3 
to bind, thereby abrogating transmembrane signaling. 
Anakinra is a recombinant form of IL-1Ra that was first 
approved for rheumatoid arthritis and is used to treat a 
variety of rheumatic and cardiovascular conditions. It is 
commonly used as a second-line agent for refractory 
pericarditis and has shown promising results in phase 2 
studies of acute myocardial infarction and chronic heart 
failure.97–99 There are 2 ongoing trials of anakinra to 
prevent disease progression and cytokine storm sever-
ity in COVID-19 (NCT04362111 and NCT04341584).

Canakinumab is a human monoclonal antibody that 
targets IL-1β and neutralizes its downstream inflam-
matory effects (including generation of IL-6) impli-
cated in the pathogenesis of atherothrombosis.100 The 
Canakinumab Anti-Inflammatory Thrombosis Outcomes 
Study trial randomized over 10 000 patients with prior 
myocardial infarction and demonstrated a reduction in 
major adverse cardiovascular events (and cancer-related 
mortality) with canakinumab versus placebo.101 How-
ever, this benefit was offset by increased risk of fatal 
infection and sepsis. A phase 2 single-center study of 
canakinumab is currently recruiting COVID-19 patients 
with evidence of myocardial injury (NCT04365153). 
Patients will be randomized to the intervention drug 

or placebo with a primary outcome of time to clinical 
improvement or hospital discharge.

HMG-COA REDUCTASE INHIBITORS 
(STATINS)
Immunomodulatory effects of statins contribute to their 
reduction of cardiovascular disease risk beyond LDL 
cholesterol-lowering effects and thereby might also 
attenuate the inflammatory response in COVID-19. 
Inhibition of HMG-coenzyme A reductase exerts down-
stream effects on the mevalonic acid pathway leading 
to a reduction in geranylgeranylation and farnesylation 
of GTPases responsible for immune cell migration, cyto-
kine production, and T-cell signaling.102,103 Statins reduce 
IL-6–induced expression of C-reactive protein at the 
transcriptional level and repress major histocompatibility 
complex class II molecule expression on antigen-pre-
senting cells thereby decreasing the activation of T lym-
phocytes.104,105 The effects of various statins on NLRP3 
inflammasome activation differ according to dose and 
pharmacokinetic properties.106,107 Simvastatin and mev-
astatin have been reported to inhibit oxidized LDL–
mediated inflammasome activation in human endothelial 
cells by activation of nuclear pregnane X receptors.108,109 
Statin use is associated with reduced risk of influenza-
related hospitalization and death in observational stud-
ies.110–112 Conversely, a prospective randomized clinical 
trial of rosuvastatin for treatment of sepsis-associated 
adult respiratory distress syndrome was stopped early 
due to futility.113 In light of these data derived from 
non–COVID-19 populations, a randomized trial of pre-
emptive administration of standard medications used in 
acute coronary syndrome (including atorvastatin, anti-
platelets, and anticoagulants) in patients hospitalized 
with COVID-19 illness is currently recruiting partici-
pants (NCT04333407). A smaller randomized study in 
statin-naive patients with COVID-19 aims to assess the 
efficacy of atorvastatin to mitigate disease progression 
(NCT04380402).

CONCLUSIONS
The COVID-19 pandemic presents an unprecedented 
challenge and opportunity for translational investigators 
to rapidly develop safe and effective therapeutic inter-
ventions based on limited preclinical data. As of May 
10, 2020, >1000 clinical trials in COVID-19 patients 
are registered on the World Health Organization data-
base (https://clinicaltrials.gov/ct2/who_table). This 
brief review describes a small representative sample 
of clinical trials targeting cardiometabolic inflamma-
tory pathways as a novel strategy to improve outcomes 
in COVID-19 patients. Numerous trials testing other 
classes of drugs that target angiotensin II signaling, IL-6 
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signaling, or other vascular inflammation signaling path-
ways are omitted due to limited space. The results of 
these clinical trials and ongoing observational biospeci-
men studies may provide clues to elucidate potential 
mechanistic links between cardiometabolic disease and 
host response to COVID-19 and identify novel targets 
for intervention in COVID-19 patients with comorbid 
cardiometabolic disease.
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