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Abstract

Background: Landmark-based approaches of two- or three-dimensional coordinates
are the most widely used in geometric morphometrics (GM). As human face hosts
the organs that act as the central interface for identification, more landmarks are
needed to characterize biological shape variation. Because the use of few anatomical
landmarks may not be sufficient for variability of some biological patterns and form,
sliding semi-landmarks are required to quantify complex shape.

Results: This study investigates the effect of iterations in sliding semi-landmarks and
their results on the predictive ability in GM analyses of soft-tissue in 3D human face.
Principal Component Analysis (PCA) is used for feature selection and the gender are
predicted using Linear Discriminant Analysis (LDA) to test the effect of each
relaxation state. The results show that the classification accuracy is affected by the
number of iterations but not in progressive pattern. Also, there is stability at 12
relaxation state with highest accuracy of 96.43% and an unchanging decline after the
12 relaxation state.

Conclusions: The results indicate that there is a particular number of iteration or
cycle where the sliding becomes optimally relaxed. This means the higher the
number of iterations is not necessarily the higher the accuracy.

Keywords: Facial landmarks, Sliding semi-landmarks, 3D faces, Multi-point warping,
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Background
Geometric Morphometrics approach differs from traditional morphometrics because it

was predicated on the statistical theory of shape and utilizes geometric information

collected through the landmark coordinates. This produces various powerful and flex-

ible statistical procedures for shape investigation [1], which are directly interpreted

using graphic visualizations [2]. The data obtained during landmarks acquisition follow

homology rules, such that, all landmarks must be the same number and be positioned

in the same order throughout the specimen. These landmarks can be replicated from

subject to subject based on common geometry, common function, and common
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morphology [3]. With the introduction of Thin Plate-Spline (TPS) and Iterative Closest

Point (ICP), the corresponding landmarks of the beginning and target form appear pre-

cisely in the corresponding positions and landmark correspondence can now be repeat-

edly registered in the neighborhood of a landmark [4, 5].

GM of landmarks of 2D or 3D coordinates are the most commonly applied in mor-

phometrics [5, 6]. Through the projection from a reference form, semi-landmarks could

be placed semi-automatically by estimating the positions on the target surface [7]. This

makes the application of semi-landmarks in geometric analysis of curves and surfaces

easy, providing more precise quantification structure which are not available for clas-

sical landmark-based [8]. In landmark-based geometric analysis, after the differences

due to location, scale and orientation are removed, with the help of Generalized Pro-

crustes Analysis (GPA) [9, 10], shape can be defined as the information remaining in a

configuration of landmark points [11, 12]. This produces a set of subjects in partial

Procrustes superimposition with respect to a common reference form [13, 14].

Facial landmarking is a crucial step in the facial analysis for biometrics and numerous

other applications. Because 3D data contain more information and are less sensitive to

illumination and occlusion than that of 2D, the use of 3D data to improve facial ana-

lysis has become a trend in computer vision [15]. Consequently, in the course of

extracting facial features for facial analysis, the problem of landmarks has been exten-

sively studied in faces. In [16], a literature of some algorithms were presented based on

occlusion detection which may be provoked by hair or external objects; such as hats,

glasses, scarves, or by the subject’s hands. Hence, due to the decrease in performance

when facial area is partially occluded, facial changes are important factors to be consid-

ered by face recognition systems [16]. A novel automatic method for facial landmark

localization was proposed in [17] to improve performance recognition in human face.

The method relies on geometrical properties of 3D facial surface that work on complete

face by displaying different emotions in the presence of occlusions. A total of 8 ana-

tomical landmarks (subnasale, pronasale, alare, nasion, endocanthion, exocanthion,

inner and outer eyebrows) were selected one-by-one for the study. Under constant geo-

metrical condition, the method double-checks to ensure alare, nasion, and pronasale

are correctly localized, else the process starts afresh. A novel fusion pipeline was pre-

sented in [18] to address the problem of extreme head pose estimation from intensity

images in a monocular setup. The method integrates and updates the covariance of

Kalman Filter in every frame. A set of key-points is used to carry out tracking tech-

nique and extracts points in the head region. The method proved suitability cases with

occlusions and extreme head rotations by relying on the alignment of facial landmarks

in each frame.

Geometric analysis of curves and surfaces were made possible through the application

of semi-landmarks. Where many structures cannot be quantified and larger areas of

many biological objects cannot be captured using classical landmarks, semi-landmarks

now provide a more precise quantification [19]. More so, it has been proven in [20]

that only anatomical landmarks are insufficient to investigate shape variation of some

biological patterns, thus, the method of sliding semi-landmarks was introduced. The

sliding semi-landmarks were developed to be placed on surfaces or curves [8, 11] by

minimizing bending energy [21, 22] or Procrustes distance [6, 23] which should be

homologous throughout the subjects [24].
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To perform the sliding of landmarks in 3D, several software packages are currently

available. To name but a few, Edgewarp [25], EVAN toolbox (http://evan-society.org),

Viewbox [26], Mathematica [23], and R packages: geomorph [27] and Morpho [28], etc.

Sliding semi-landmarks have been used in the study of bones surface such as articular

and the diaphysis [22] and curves, providing descriptors of outlines and crests [29, 30].

In [6], sliding semi-landmarks were used to investigate craniofacial and dental variation

in human by minimizing bending energy and Procrustes distance. Sliding semi-landmarks

that are relaxed against a symmetrized mean were used in [31] to circumvent the problem

of asymmetry caused by manual semi-landmarks, using bending energy to investigate

nasal soft tissue reconstruction. To evaluate difference software packages for semi-

landmark, sliding semi-landmarks were used in [20] to analyze the workflow complexity

and time consumption to complete the sliding task and accounted for the duration to per-

form each task. However, asides this work, to the best of our knowledge, no study has pre-

sented any research in accounting for the time (duration) to perform the sliding of semi-

landmark task for soft-tissue facial analysis. Furthermore, no study has investigated the

effect of iteration in sliding semi-landmark for accuracy prediction.

This work aims to investigate whether the number of iteration in sliding semi-

landmarks has effect on the predictive result or classification accuracy in geometric mor-

phometric analyses of soft-tissue landmark-based in 3D human face. This is done by pro-

jecting the surface semi-landmarks from the template object to the target objects and

iteratively sliding the semi-landmarks to a point relaxed. Here we used five relaxation

states (one, six, twelve, twenty-four, and thirty) to ensure convergence and optimum

smoothness. PCA was used as dimensionality reduction and feature selection due to the

many number of facial points. The results for each relaxation state are further analyzed to

predict the classification accuracy using LDA; and the visualization was performed using

relative warp of the principal components. Figure 1 shows the architectural diagram of

the application of multi-point warping for sliding iterations in 3D.

Methods
Dataset description

The dataset consists of 80 (40 males and 40 females) randomly selected sujects in wave-

front obj format from Stirling/ESRC 3D Face Database [32]. The 3D facial scans which

Fig. 1 Architectural diagram of the application of multi-point warping for sliding iterations in 3D
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are intended to facilitate research in face recognition, expression recognition, sexual

dimorphism, and perception were acquired in neutral position.

Template mesh and target warping

To build the template, we manually located 16 anatomical points on a 3D mesh (Fig. 2),

following the landmark standard in [33, 34]. The landmarks description can be found in

[35]. The modeling of the template and sliding of semi-landmarks was performed in

Viewbox 4.0 [26] using geometric morphometric tools based on the methodology in [35–

38]. The anchor anatomical points were not subjected to sliding but were used to build

the warping fields for the minimization of bending energy. We chose the pronasale to

begin the sliding process because of its invariance to facial expression, pose correction

and easy detection [39, 40]. Using this point, 484 semi-landmark were automatically gen-

erated which overlapped on the pronasale point and later uniformly spread on the facial

surface with 1.5 mm radius. This was chosen to accomodate all the 500 points.

By applying the TPS warping, the semi-landmarks slid along the curves and surfaces

of the mesh on each target by minimizing the bending energy. The process went

through different iterative steps based on the five relaxation states (Fig. 3) to optimally

and homologously relax the sliding points. Minimization of the bending energy makes

the sliding points homologous to the template configuration. See the studies in [35, 36]

for detailed implementation of the sliding and warping tasks.

Fig. 2 A three-dimensional mesh template with the location of the prominent point at the center of the
face for pose-invariant correction. The 16 fixed anatomical landmarks are shown in red color. The blue color
on the Pronasale indicates the point at which the semi-landmarks begin the sliding process
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Time estimation

The time for initial surface projection, sliding of each set of iterations against Procrus-

tes consensus was measured using a timer. All analyses were run on a desktop com-

puter (Dell Optiplex 7010) with a Intel® Core i5–3470 CPU, 8Gb of memory, running

on Windows 7 Professional (64 bit).

Feature selection, visualization and Clasification

The data analysis, visualization and classification were performed using PAST 3.0 [41].

The features are selected by dimensionality reduction using Principal Components

Analysis (PCA). The PCA yielded 97PCs in total and we chose the first 30PCs which

have the highest ranking eigenvectors for each set which accounted for more than 95%

variance. But for the visualization of the change in variation, the first PC of the relative

warp which accounted for the highest variation was plotted. Linear Discriminant Ana-

lysis (LDA) was used to classify the selected PCs since it is easy to implement and no

parameter tuning or adjustment required. It has been successfully used in the previous

studies to classify gender in morphometrics [42–44].

Results
Time estimation

The times measured for surface projection and iterative sliding for relaxation for each

set against Procrustes mean shape are presented in Table 1. The time patterns indicate

that the higher the number of iterations the longer the processing time.

Fig. 3 Sliding point warped on target facial surface. a Initia projection. b One iteration. c Six iterations.
d Twelve iterations. e Twenty-four iterations. f Thirty iterations
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PCA visualization and classification

The first 2PCs of the PCA explain more than 50% of the variance for each sliding

set: one iteration (PC1 = 34.15%, PC2 = 19.79%); six iterations (PC1 = 34.15%, PC2 =

19.79%); twelve iterations (PC1 = 34.41%, PC2 = 18.42%); twenty-four iterations

(PC1 = 33.99%, PC2 = 18.30%); and thirty iterations (PC1 = 33.58%, PC2 = 18.46%).

To visualise the pattern of variation in each relaxation state of the iterative sliding,

the relative warp of the first principal component of each sliding set is presented

(Fig. 4a-3e); alongside with the scatterplot of the PC1 vs PC2 (Fig. 4f), showing the

distribution of specimens in morphological space. The selected PC scores are sub-

jected to LDA to predict the gender in PAST software for each sliding set as

shown in Table 2 and the gender were maximally discriminated.

Table 1 Duration of each tasks of the semi-landmark sliding procedure on the whole dataset

Sliding Time

Initial Projection (s) 480

1 Iteration (s) 144

6 Iterations (s) 3040

12 Iterations (min) 96

24 Iterations (min) 160

30 Iterations (min) 320

Fig. 4 Relative warp of the first principal component of each sliding set and Scatterplot. a One iteration.
b Six iterations. c Twelve iterations. d Twenty-four iterations. e Thirty iterations. f Scatterplot of the first two
principal components
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Discussion
In this study, sliding semi-landmarks iteration was investigated. The approach minimized

bending energy on a set of five iterative states (one, six, twelve, twenty-four, and thirty).

The sliding task was necessary for the comparison of shapes and forms. Because the use

of manual semi-landmarks may not be appropriate to measure shape variation when sur-

faces and curves on the target are not homologous. Each iterative state task was per-

formed separately. The duration for subsequent iterative relaxation operations for each

iterative state was computed and presented. The timing follows a consecutively progres-

sive patterns such that the initial surface projection takes 480 s, one iteration takes 144 s,

six iterations takes 3040, twelve iterations takes 96min, twenty-four iterations takes 160

min, and thirty iterations takes 320min. To the best of our knowledge, duration in sliding

semi-landmark for soft-tissue 3D in human face has not been proposed in any literature

asides the work presented in [20], where time difference was computed and analysed be-

tween two software packages (Morpho and Edgewarp) for the same sliding tasks.

The principal components between relaxation state one and relaxation state six show

no observable difference in variation (PC1 = 34.15%, PC2 = 19.79%), both contains exactly

the same percentage variances throughout the PC variables. Meanwhile, there is a slight

difference in percentage variance in other relaxation states; though a noticeable decline

occurs in PC1 from twelve relaxation state to thirty relaxation state. The relative warp

visualisations show no observable difference between one and six relaxation states. But

there is observable difference among twelve, twenty-four and thirty relaxation states. The

distribution of specimens in morphological space shows a strong overlapping for one and

six relaxation states. Both the black triangles and the blue square boxes sit on each other

in the morphospace. But there is observable spread among the rest relaxation states.

Using LDA, the gender was maximally discriminated [45]. This was applied to test

the accuracy of each relaxation state and possibly answer the hypothesis question, “does

the number of iteration in sliding semi-landmarks have effect on the predictive result

or classification accuracy?” The first two states (one and six) have exactly equal accur-

acy (94.64%); meaning that, the number of cycles has no effect on both states. Same is

observed for twenty-four and thirty states, having exactly the same accuracy (92.86%).

We noticed stability at twelve relaxation state with highest accuracy of 96.43% and a

constant decline after the twelve relaxation state. This is an indication that the higher

the number of cycles does not in any way indicate the higher the classification accur-

acy. It also means that there is a particular number of iteration or cycle where the slid-

ing becomes optimally relaxed.

The model performance was measured using precision, sensitivity and specificity

while the dataset was divided into 70% training and 30% testing, as no parameter turn-

ing is required in LDA. Table 3 presented the performance metric reports with 12

Table 2 Accuracy of each relaxation state using LDA

Iteration cycle Accuracy (%)

1 Iteration 94.64

6 Iterations 94.64

12 Iterations 96.43

24 Iterations 92.86

30 Iterations 92.86
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iteration state having the highest sensitivity (0.961) and specificity (0.966). This is an

indication that the sliding process is best relaxed at twelve iterations when the bending

energy was minimized.

Conclusions
In conclusion, this study investigates the predictive ability of sliding semi-landmarks

using various iterative states and duration of time requires in performing the sliding

tasks for each state. However, it is observed that the classification accuracy was affected

by the number of iterations but not in progressive pattern (i.e. the higher the number

of iterations is not necessarily the higher the accuracy). This study is based on Stirling/

ERSC dataset which is European population, therefore the methods and results pro-

posed may be tested in other populations. Furthermore, there is a noticeable challenge

in the annotation of the eyeball in Viewbox 4.0 when the eyes are opened. Though, it

does not affect the annotation of endocanthion and exocanthion. This will be looked

into in our future studies.
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