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It is a vital task to design an integrated machine learning model to discover cancer
subtypes and understand the heterogeneity of cancer based on multiple omics data. In
recent years, some multi-view clustering algorithms have been proposed and applied
to the prediction of cancer subtypes. Among them, the multi-view clustering methods
based on graph learning are widely concerned. These multi-view approaches usually
have one or more of the following problems. Many multi-view algorithms use the original
omics data matrix to construct the similarity matrix and ignore the learning of the
similarity matrix. They separate the data clustering process from the graph learning
process, resulting in a highly dependent clustering performance on the predefined
graph. In the process of graph fusion, these methods simply take the average value of
the affinity graph of multiple views to represent the result of the fusion graph, and the rich
heterogeneous information is not fully utilized. To solve the above problems, in this paper,
a Multi-view Spectral Clustering Based on Multi-smooth Representation Fusion (MRF-
MSC) method was proposed. Firstly, MRF-MSC constructs a smooth representation
for each data type, which can be viewed as a sample (patient) similarity matrix. The
smooth representation can explicitly enhance the grouping effect. Secondly, MRF-MSC
integrates the smooth representation of multiple omics data to form a similarity matrix
containing all biological data information through graph fusion. In addition, MRF-MSC
adaptively gives weight factors to the smooth regularization representation of each
omics data by using the self-weighting method. Finally, MRF-MSC imposes constrained
Laplacian rank on the fusion similarity matrix to get a better cluster structure. The above
problems can be transformed into spectral clustering for solving, and the clustering
results can be obtained. MRF-MSC unifies the above process of graph construction,
graph fusion and spectral clustering under one framework, which can learn better data
representation and high-quality graphs, so as to achieve better clustering effect. In
the experiment, MRF-MSC obtained good experimental results on the TCGA cancer
data sets.

Keywords: multi-view clustering, cancer subtypes prediction, multi-omics data, spectral clustering, smooth
representation, graph fusion
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INTRODUCTION

Cancer is a malignant and heterogeneous disease caused by
changes in cellular and molecular expression, epigenetics,
transcription, and proteome levels (Burrell et al., 2013). This
heterogeneity is reflected in the fact that the same type of
cancer will produce subtypes with different representations,
which will further affect the clinical treatment plan and prognosis
(Bedard et al., 2013). With the development and maturity of
the new generation of sequencing technologies, a large number
of multi-omics biological data have been collected in some
public data sets and are easily accessible to researchers (Schuster,
2008). The Cancer Genome Atlas (TCGA) is a landmark cancer
genomics project that stores biological information including
mRNA expression data, methylation data, miRNA expression
data, and gene mutation data from more than 30 type of cancers
and thousands of cancer patients. Therefore, it is particularly
important to build a clustering model that makes full use of these
biological information to solve the problem of discovering cancer
subtypes (Akbani et al., 2014).

In recent years, some effective multi-view clustering methods
have been designed and applied to biological data (Shen et al.,
2010; Zhang et al., 2012; Mo et al., 2013; Wang et al., 2014;
Meng et al., 2016; Ma and Zhang, 2017; Shi et al., 2017;
Guo et al., 2019; Yu et al., 2019). In order to achieve the
task of clustering, scholars initially focused on feature selecting
and feature dimensionality reduction techniques. They all used
different strategies to transform or project high-dimensional data
into low-dimensional feature space and then realized clustering
through K-means. For example, iCluster (Shen et al., 2010) is
a Gaussian hidden variable model, and its extended version,
iClusterPluse (Mo et al., 2013), is an effective and classical
multi-omics data clustering method. It considers that different
variable types follow different linear probability relationships,
and then constructs a joint sparse model to complete feature
selecting and sample clustering tasks. However, iClusterPlus has
an obvious drawback: it includes a pre-selecting process for genes
that filters out important information, and the clustering results
are sensitive to this operation. In order to solve the problem
of data preprocessing, many classical dimensionality reduction
techniques are applied to the proposed clustering algorithms,
e.g., Principal Component Analysis (PCA; Ding and He, 2004),
Non-negative Matrix Factorization (NMF; Zhang et al., 2012),
etc. Shi et al. (2017) applied the improved PCA to design Pattern
Fusion Analysis (PFA) method, which projects each data set into a
low-dimensional feature space with local patterns while reducing
noise. Then PFA uses the dynamic collimation algorithm to
achieve the fusion of feature space.

The above methods only focus on the characteristics of
each kind of omics data, without considering the structural
characteristics of the data, which can reveal the potential
similarity between samples and has great guiding significance
for the study of data representation. Considering that the
sample (patient) size of the biological data is much smaller
than the feature (gene) size, some methods for cancer subtype
prediction based on graph learning have been designed. Based
on cancer samples, graph learning can quickly construct similar

graphs and eventually transform them into spectral clustering
problems to achieve clustering. For example, Wang et al.
(2014) proposed a widely used clustering algorithm for multi-
omics data, named as Similarity Network Fusion (SNF). SNF
uses the exponential similarity kernel method to construct a
sample similarity network for each data type instead of the
dimensionality reduction process, and then uses the nonlinear
information fusion technology to integrate these networks into
a single similarity network. Inspired by SNF, Ma and Zhang
(2017) proposed Affinity Network Fusion (ANF) method, which
constructs K-nearest neighbor similar networks of patients for
each data type, and then fused these networks based on random
step size method. Other algorithms based on graph learning
are also very effective in the recognition of cancer subtypes.
For example, Yu et al. (2019) proposed Multi-view Clustering
using Manifold Optimization (MVCMO), which uses linear
search on Stiefel manifold space to solve the spectral clustering
optimization problem.

The above methods all use the original omics data matrix to
construct the similarity matrix, and fuse the obtained multiple
similarity matrices, ignoring the learning of the similarity
matrix. In the process of graph fusion, the similarity between
sample points is usually different in different views. Some
existing algorithms simply take the average value of the affinity
graph of multi-omics to represent the result of the fusion
graph, and the rich heterogeneous information is not fully
utilized. In addition, most of the graph-based multi-view
clustering methods separate the data clustering process from
the graph learning process, which makes the graph construction
independent of the clustering task, leading to the clustering
performance highly dependent on the predefined graph. In
this paper, we design a Multi-view Spectral Clustering method
based on Multi-smooth Representation (MRF-MSC) for the
exploration of cancer subtypes. MRF-MSC combines graph
learning, graph fusion and spectral clustering into one framework
to avoid the above problems. Firstly, MRF-MSC uses the graph
regularization method to calculate the smooth representation of
each omics data type. The original feature space raw data can
be effectively projected into the corresponding sample similarity
subspace. The smooth representation can explicitly enhance
the grouping effect, that is, it enhances the similarity between
samples of the same category and reduces the similarity between
samples of different categories (Hu et al., 2014). Secondly, the
multi-smooth representation matrices of multi-omics data are
integrated to form a fused similarity matrix. Considering that
each omics data is of different importance to the prediction
of cancer subtypes, MRF-MSC adaptively weights the smooth
regularization representation of each omics data by using the self-
weighting method in the process of graph fusion. Finally, MRF-
MSC optimizes the fused similarity matrix through constrained
Laplacian rank to learn a new block diagonal matrix with k
connected components (k is the number of classes), which is
beneficial for clustering. This problem can be solved by using
spectral clustering (Ng et al., 2001). Spectral clustering is a
classical data clustering method and widely used in multi-
view clustering algorithms (Nie et al., 2016; Kang et al., 2020;
Feng et al., 2021; Ge et al., 2021) recently. In order to verify
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FIGURE 1 | The framework of MRF-MSC. (A) Multiple omics data. (B) Smooth representation. (C) Similarity graph fusion. (D) Spectral clustering.

the effectiveness of MRF-MSC, cancer subtypes prediction
experiments were carried out on TCGA data sets. The results
showed that MRF-MSC was able to obtain more significant
clinical differences in cancer typing. In the Breast Invasive
Carcinoma (BRCA) analysis, the MRF-MSC results validated
previous clinical studies and identified biologically significant
cancer subtypes.

MATERIALS AND METHODS

In this paper, we design a MRF-MSC for cancer subtypes
prediction. The framework of MRF-MSC as shown in Figure 1.
Given multi-omics data sets, we first calculate the similarity
matrix with smooth representation for each data set to measure
the similarity between sample points. Then, the graph fusion
and self-weighted methods are used to integrate the multi-
smooth representation into a fused similarity matrix. Finally,
constrained Laplacian rank and spectral clustering are adopted
to optimize the fused similarity matrix, and the clustering results
can be obtained.

Smooth Representation of Multi-Omics
Data
Given a set of cancer multi-omics data X = {X1,X2, · · · ,Xt

} ,
Xv
∈ Rmv

×n, where t is the number of data sets, Xv is the v-th
omics data, mv indicates that the v-th dataset has m features,
n is the number of samples. In order to obtain the final fused
similarity graph, we need to calculate the similarity matrix of each
omics data Z= {Z1,Z2, · · · ,Zt

} , Zv
∈ Rn×n. This enables the

raw omics data to be aggregated into their respective subspaces.

TABLE 1 | Detailed information on five types of cancer multi-omics data
sets in Wang et al. (2014).

Cancer type Number of genes Number of samples

mRNA Methylation miRNA

GBM 12,042 1,305 534 215

BRCA 17,814 23,094 354 105

KIRC 17,899 24,960 329 122

LSCC 12,042 23,074 352 106

COAD 17,814 23,088 312 92

Take a single omics data Xv as an example, we introduce
a self-representation method to measure the similarity between
samples:

Xv
= XvZv

+ Ev (1)

where Zv is coefficient matrix which encodes the similarity
between the data samples, Ev is error matrix. For Eq. 1, we
explicitly strengthen the grouping effect between samples by
smooth representation. This can enhance the similarity between
samples of the same category and reduce the similarity between
samples of different categories. The smooth representation can be
roughly written as

min
Zv

∣∣∣∣Xv
− XvZv∣∣∣∣2

F + α�
(
Zv) s.t. Zv

≥ 0 (2)

where α is a hyperparameter, � is the regularization term of the
smooth representation. If two sample points are close to each
other in the original feature space, then they should also maintain
this property in the new feature space. That is, for samples i
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TABLE 2 | Detailed information on five types of cancer multi-omics data
sets in Rappoport and Shamir (2018).

Cancer type Number of genes Number of samples

mRNA Methylation miRNA

GBM 12,042 5,000 534 271

BRCA 20,531 5,000 1,046 622

KIRC 20,531 5,000 1,046 181

LSCC 20,531 5,000 1,046 337

COAD 20,531 5,000 705 213

and j, the following rules should be satisfied:
∣∣∣∣∣∣xvi − xvj

∣∣∣∣∣∣
2
→ 0⇒∣∣∣∣∣∣zv

i − zv
j

∣∣∣∣∣∣
2
→ 0, where xv and zv is the vector of Xv and Zv,

respectively. The smooth representation regularization term in
Eq. 2 can be defined as

�
(
Zv)
=

1
2

n∑
i=1

n∑
j=1

wv
ij

∣∣∣∣∣∣zv
i − zv

j

∣∣∣∣∣∣
2
= tr

(
ZvLt (Zv)T) (3)

where tr is the trace of the matrix, and T is the transpose of
the matrix, wv

ij is an element in the weight matrix Wv that
measures the similarity between sample points. Lv

= Dv
−Wv

is the Laplacian matrix, where Dv is a diagonal degree matrix

which diagonal elements satisfy dv
ii =

n∑
j=1

wv
ij. Now, there’s a lot of

ways to calculate Wv. Here, we construct Wv by using the most
common used K-nearest neighbor method. Finally, Eq. 2 can be
written as:

min
Zv

∣∣∣∣Xv
− XvZv∣∣∣∣2

F + αtr
(
ZvLv (Zv)T

)
s.t. Zv

≥ 0 (4)

Through Eq. 4, the smooth representation Zv of each omics data
can be obtained.

The Fusion of Multi-Smooth
Representations
How to integrate similar graphs in graph learning and make full
use of the information of different data sets is the key of multi-
view clustering method. After obtaining smooth representations
Z= {Z1,Z2, · · · ,Zt

} of multi-omics data, we want to learn a
fused similarity graph S that minimizes the difference between

S and Zv. Then the graph fusion process of multi-smooth
representations can be denoted as:

min
Zv,S

t∑
v=1

∣∣∣∣S− Zv∣∣∣∣
F s.t. Zv

≥ 0 (5)

Considering that each omics data is of different importance
to the prediction of cancer subtypes, we assign weighting
factors ε= {ε1,ε2, · · · ,εt

} to Z= {Z1,Z2, · · · ,Zt
} . εv describes

the contribution of the v-th smooth representation of each omics
data to the graph fusion task. If Zv is closer to S, then its
corresponding contribution weight εv is larger, which can reduce
the impact of poor quality smooth representation on S. Here, we
adopt the self-weighting method in Nie et al. (2017) to carry out
adaptive weighting for the smooth representation. The weighting
factor of each smooth representation can be automatically tuned
without any additional parameters.

Take the derivative of Zv in Eq. 5 and set the derivative to zero,
we have

t∑
v=1

εv ∂
(∣∣∣∣S− Zv∣∣∣∣

F
)

∂Zv = 0 (6)

where
εv
=

1
2
(∣∣∣∣S− Zv∣∣∣∣

F
) (7)

Since εv is calculated by Zv, Eq. 6 cannot be solved directly.
However, if εv is assigned a fixed value as the weighting factor
of each smooth representation, then Eq. 6 can be used to solve
the following problems:

min
Zv,S

t∑
v=1

εv ∣∣∣∣S− Zv∣∣∣∣2
F s.t. Zv

≥ 0 (8)

In Eq. 8, since both Zv and S are goals to be solved, we
cannot directly optimize the objective function. We can obtain
the objective function of multi-smooth representation fusion by
combining Eqs 4, 5 as:

min
Zv,S

t∑
v=1

(∣∣∣∣Xv
− XvZv∣∣∣∣2

F + αtr
(
ZvLv (Zv)T

)
+ βεv ∣∣∣∣S− Zv∣∣∣∣2

F

)
s.t. Zv

≥ 0 (9)

where β is a hyperparameter.
By solving the above problem, we can learn the smooth

representations and fused similarity graph of multi-omics data.

TABLE 3 | Comparison of P-values of survival analysis between MRF-MSC and other algorithms on five cancer multi-omics data sets in Wang et al. (2014).

Cancer types Methods

MRF-MSC iClusterPlus PFA SNF ANF MVSCO

GBM 1.71E-5 2.98E-2 1.82E-4 5.01E-5 5.83E-4 1.42E-3

BRCA 1.31E-5 5.52E-2 3.10E-4 6.91E-4 3.62E-4 3.54E-4

KIRC 1.70E-2 1.14E-1 7.45E-2 2.90E-2 4.97E-2 1.96E-2

LSCC 6.58E-4 5.17E-2 1.13E-2 1.10E-2 8.92E-3 9.13E-3

COAD 8.24E-4 4.96E-2 6.71E-2 2.42E-3 9.02E-3 8.51E-3

The best results have been highlighted in bold.
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FIGURE 2 | Kaplan–Meier survival curves of MRF-MSC on the cancer types in Wang et al. (2014). (A) GBM, (B) BRCA, (C) KIRC, (D) LSCC, and (E) COAD.

TABLE 4 | Comparison of P-values of survival analysis between MRF-MSC and other algorithms on five cancer multi-omics data sets in Rappoport and Shamir (2018).

Cancer type Methods

MRF-MSC iClusterPlus PFA SNF ANF MVSCO

GBM 1.43E-6 3.83E-3 – 7.69E-6 2.17E-1 6.59E-4

(k = 2) (k = 10) (k = 2) (k = 3) (k = 2)

BRCA 5.25E-13 1.55E-2 3.54E-9 4.38E-9 2.30E-11 4.26E-12

(k = 4) (k = 4) (k = 3) (k = 3) (k = 5) (k = 3)

KIRC 7.10E-6 2.10E-2 2.93E-3 2.53E-2 4.22E-3 2.71E-4

(k = 4) (k = 4) (k = 3) (k = 2) (k = 2) (k = 3)

LSCC 9.13E-4 4.63E-3 1.10E-1 9.45E-2 2.19E-2 1.37E-2

(k = 2) (k = 3) (k = 3) (k = 2) (k = 2) (k = 2)

COAD 2.63E-1 7.05E-1 3.21E-1 1.52E-1 7.68E-2 1.29E-1

(k = 3) (k = 2) (k = 2) (k = 3) (k = 3) (k = 2)

The best results have been highlighted in bold. –Denotes that the algorithm cannot get the clustering result on the data.
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FIGURE 3 | Kaplan–Meier survival curves of MRF-MSC on the cancer types in Rappoport and Shamir (2018). (A) GBM, (B) BRCA, (C) KIRC, (D) LSCC, and
(E) COAD.

In addition, the smooth representation is dynamically weighted
during the fusion process, which effectively reduces the influence
of the smooth representation of low-quality omics data on the
fused similarity graph.

Multi-View Spectral Clustering Based on
Multi-Smooth Representation Fusion
After calculating the fused similarity graph S, although we can
directly cluster S based on spectral clustering, the S obtained by

Eq. 9 may not be optimal for the final clustering task. So, we
attempt to optimize the clustering structure of S.

Ideally, a graph that is best for clustering tasks should
have exactly k connected components, that is, data points are
formed into k clusters. This can be done according to the
following theorem.

Theorem 1. The number of connected components k of the
graph S is equal to the multiplicity of zero eigenvalues of its
Laplacian matrix L S .
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FIGURE 4 | The distribution of subtypes obtained by MRF-MSC on the subtypes: Basal-like, Luminal A, Luminal B and HER2-enriched.

Since the elements in S are non-negative, then LS is a
positive semi-definite matrix. Denote σi (LS) is the i-th minimum
eigenvalue of LS, we can obtain the optimal solution of S through

the following constrained Laplacian rank method:
k∑

i=1
σi (LS) = 0

and rank (LS) = n− k, where rank (LS) is the rank of LS. By Ky
Fan’s theorem (Fan, 1949), we have

k∑
i=1

σi (LS) = min
F,FTF=I

tr
(
FTLSF

)
(10)

where F is the first k minimum eigenvalues correspond to
eigenvectors of LS. The right side of Eq. 10 is the objective
function of spectral clustering. Therefore, Eq. 10 establishes
the connection between the desired fused graph structure and
spectral clustering. The optimization of Eq. 10 results in the fused
similarity graph S with exact k connected components.

According to Eqs 9, 10, we combine the smooth representation
of multi-omics data, the fusion of multi-smooth representation
and multi-view spectral clustering into one framework, and
propose the MRF-MSC. The objective function of MRF-MSC can
be written as

min
Zv,S,F

t∑
v=1

(∣∣∣∣Xv
− XvZv∣∣∣∣2

F + αtr
(
ZvLv (Zv)T

)
+

βεv ∣∣∣∣S− Zv∣∣∣∣2
F

)
+ λtr

(
FTLSF

)
s.t. Zv

≥ 0, FTF = I (11)

where α, β, and λ are hyperparameters.
We conclude that MRF-MSC has the following advantages in

predicting cancer subtypes using multi-omics data.

(1) The characteristic of biological data is that the sample
size is much smaller than the feature size. The smooth

representation of the omics data not only retains the
characteristic of the original data, but also effectively
obtains the similarity between the sample points, which
provides a relatively high quality subspace representation
for the subsequent graph fusion process.

(2) In general, multi-omics data come from different platforms,
which leads to different contribution of each omics data to
clustering results. In the process of similar graph fusion,
MRF-MSC uses self-weighting to perform multi-smooth
representation fusion. In this way, the complementarity
of various biological information is realized, the influence
of noise data is reduced, and the quality of fused similar
graph is improved.

(3) We introduce spectral clustering into MRF-MSC, which
can improve the accuracy of the final result. In this joint
MRF-MSC framework, the constrained Laplacian rank is
used to constrain the structure of the fusion similar graph to
obtain a graph structure that is conducive to the clustering
task. Moreover, we use the learned graph structure to guide
the construction of the graph, so that this mutual learning
and iterative method can improve the final clustering result.

Optimization of MRF-MSC
We can optimize Zv, S and F step by step according to Eq. 11
through the idea of iterative optimization.

(1) Fixing S and F to solve Zv

Based on Eq. 11, we can get the objective function Eq. 9 about
Zv. It is observed that in Eq. 9, Zv is independent for each omics
data. Therefore, we can update Zv separately for each omics data.
Taking the derivative of Zv in Eq. 9, we have

((
Xv)T Xv

+ βεvI
)
Zv
+ αZvLv

=
(
Xv)T Xv

+ βεvS (12)
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The above equation is a standard Sylvester equation with unique
solution. We can easily get the solution result of Zv:

Zv
=

((
Xv)T Xv

+ βεvI + αLv
)−1 ((

Xv)T Xv
+ βεvS

)
(13)

(2) Fixing Zv and F to solve S
Based on Eq. 11, we can get the objective function of S as

follows:

min
S

t∑
v=1

βεv ∣∣∣∣S− Zv∣∣∣∣2
F + λtr

(
FTLSF

)
(14)

According to tr
(
FTLSF

)
=
∑
i,j

1
2

∣∣∣∣fi − fj
∣∣∣∣2

2 sij, where sij is the

elements of S, we define gij =
∣∣∣∣fi − fj

∣∣∣∣2
2 and gi is a vector whose

j-th element equal to gij. So, the Eq. 14 can be calculated by
column

min
si

t∑
v=1

βεv ∣∣∣∣si − zv
i
∣∣∣∣2

F +
λ

2
gT

i si (15)

Taking the derivative of si in Eq. 15, we can obtain the solution
of si:

si =

t∑
v=1

εvzv
i −

λg i
4β

t∑
v=1

εv
(16)

(3) Fixing Zv and S to solve F
Based on Eq. 11, we can get the objective function of F as

follows:
min

F
λtr

(
FTLSF

)
s.t. FTF = I (17)

In the above formula, the optimal solution of F is the k
eigenvectors corresponding to the first k minimum eigenvalues.
After the iterative optimization, we take each row of the final F
as a new representation of each sample, and use the K-means
algorithm to calculate the clustering results.

We use pseudo-code to summarize the MRF-MSC solution
process in Algorithm 1.

Algorithm 1: MRF-MSC algorithm.

Input: cancer multi-omics data X = {X1,X2, · · · ,Xt
} , the number of cancer

subtypes k, the maximum number of iterations MaxIter, K is the number of
neighbors in KNN, hyperparameters α, β and λ.
Output: smooth representation of each omics data Zv, fused similarity graph S,
eigenvectors F.

Initialize S = I, εv
= 1

/
t.

Repeat
Update Zv according to Eq. 13,

Set zv
ij = max

(
zv

ij , 0
)

for every element zv
ij in Zv,

Update S according to Eq. 16,
Update F by optimizing Eq. 17
Update εv according to Eq. 7,
Until meeting stop condition
Stop condition: the maximum number of iterations MaxIter is reached or the
relative change of S is less than 10−3.

RESULTS AND DISCUSSION

Multi-Omics Data Sets
In order to prove the effectiveness of the MRF-MSC algorithm
in cancer subtype prediction, we applied MRF-MSC to the
cancer multi-omics data downloaded and preprocessed from
TCGA by Wang et al. (2014) and Rappoport and Shamir
(2018). We conducted experiments on five cancer types:
BRCA, Glioblastoma Multiforme (GBM), Lung Squamous Cell
Carcinoma (LSCC), Kidney Renal Clear Cell Carcinoma (KIRC),
and Colon Adenocarcinoma (COAD). Each cancer contains
three types of cancer expression data from different platforms:
mRNA expression, DNA methylation, and miRNA expression.
The details on five types of cancer multi-omics data sets in
Wang et al. (2014) and Rappoport and Shamir (2018) are
shown in Tables 1, 2, respectively. For these cancer types, we
also downloaded the patient’s clinical information, including all
cancer survival data, and BRCA somatic mutation data, copy
number data, and clinical data of drug treatments for subsequent
analysis and algorithm comparison. The clinical information of
BRCA was downloaded from the cBioPortal database.1

Evaluation Metrics
We chose the P-value based on the Cox log-rank model in the
survival analysis of cancer subtype prediction to measure the
MRF-MSC algorithm. For the characteristic that cancer samples
have no real labels, it is impossible to use accuracy to evaluate
the clustering results. In this case, survival analysis is necessary to
verify the degree of difference between cancer subtypes (Mantel,
1966). We established a Cox regression model to obtain the
P-value of the log-rank test of survival separation (Goel et al.,
2010). If the P-value is smaller, it means that the survival
rate between different clusters is more significant. Furthermore,
it shows that the greater the difference between clusters, the
more likely it is to get potential cancer subtypes with different
characteristics.

Comparison Algorithms and Parameter
Settings
For comparison, we selected five effective multi-view clustering
algorithms in the field of cancer subtype prediction as the
comparison algorithm: iClusterPlus, PFA, SNF, ANF, and
MVSCO. Their details are as follows.

(1) iClusterPlus (Mo et al., 2013). iClusterPlus considers that
different variable types follow different linear probability
relationships, and then constructs a joint sparse model to
complete the task of sample clustering and feature selection.

(2) PFA (Shi et al., 2017). PFA first uses the method of local
information extraction to project each omics data in a low-
dimensional space. Then, based on the idea of manifold
learning, a dynamic collimation method is constructed
to integrate low-dimensional spatial information into the
fused feature space. Finally, the K-means method is used to
find the label of the sample.

1http://www.cbioportal.org/
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TABLE 5 | The distribution of clustering results of MRF-MSC on three susceptible genes: TP53, PIK3CA, and ERBB2.

Susceptible genes Subtypes predicted by MRF-MSC

Cluster 1 (22) Cluster 2 (46) Cluster 3 (10) Cluster 4 (8) Cluster 5 (19)

TP53 17 8 9 0 5

PIK3CA 8 23 1 1 4

ERBB2 7 3 0 0 7

The values in this table represent the number of patients counted.

FIGURE 5 | Kaplan–Meier survival curves of drug response in Cluster 1 and Cluster 2. (A) Adriamycin treatment in Cluster 1, (B) Cytoxan treatment in Cluster 1,
(C) Adriamycin treatment in Cluster 2, and (D) Cytoxan treatment in Cluster 2.

(3) SNF (Wang et al., 2014). SNF first uses the exponential
similarity kernel method to define the similarity between
the sample points of each omics data. Then, it uses
the K-nearest neighbor method and a complete sparse
kernel measurement method to obtain the local similarity
graph and the global similarity graph of each omics
data, respectively. Finally, the information transfer
model based on the random walk idea is used to
fuse the local information and the global information.
Furthermore, spectral clustering method is used to cluster
the fused graph.

(4) ANF (Ma and Zhang, 2017). PFA is an improved version of
SNF. It constructs a K-nearest neighbor similar network for
each omics data, and then merges these networks based on
the random step method.

(5) MVSCO (Yu et al., 2019). MVSCO first draws on the
method of Zhang et al. (2012) to find the similarity between
sample points of each omics data, and then uses the current
search method in the Stiefel manifold space to optimize
the multi-view spectral clustering problem. Finally, the
K-means method is used to predict the label of the sample.

Here, we present the parameter selection range of MRF-MSC
algorithm and all comparison algorithms. Three hyperparameter
α, β and λ in MRF-MSC are set to α, β, λ ∈ [10−6, 106

].
iClusterPlus has two penalty parameters α and λ, where α is set
to 1 and λ is obtained by automatic learning. In MRF-MSC, SNF,
ANF, and MVSCO methods, the number of neighbors of KNN
is set to K ∈ [5, 50]. The hyperparameter α in SNF is set to α ∈

[0.3, 0.8]. We used the default parameter to run PFA algorithm.
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FIGURE 6 | The heatmap of differentially expressed genes in (A) mRNA
expression, (B) DNA methylation, and (C) miRNA expression data.

Results on Cancer Multi-Omics Data
Sets
Table 3 shows the comparison of P-values of survival analysis
between MRF-MSC and other algorithms on five cancer multi-
omics data sets in Wang et al. (2014), respectively. Since SNF is
currently recognized as the most representative cancer subtype
prediction algorithm, we used the number of clusters suggested
in SNF, that is, GBM is clustered into three categories, BRCA
is clustered into five categories, KIRC is clustered into three

categories, LSCC is clustered into four categories, and COAD
clustered into three categories. Compared with other algorithms,
MRF-MSC has the lowest P-value on all five types of cancer.
Figure 2 is the Kaplan–Meier survival analysis curve of MRF-
MSC on different cancers. Each curve describes the survival time
trend of each cancer subtype. The number of samples in each
group is also marked in the figure. Figure 2 shows that MRF-
MSC can get significantly different cancer subtypes on all types
of cancer.

Table 4 shows the comparison of P-values of survival analysis
between MRF-MSC and other algorithms on five cancer multi-
omics data sets in Rappoport and Shamir (2018), respectively.
These cancer data do not have the number of cancer subtypes
available for reference. Therefore, we have to determine the
number k of these cancer subtypes. iClusterPlus, SNF, and ANF
algorithms all have their own way of determining the number
of cancer subtypes. For the MRF-MSC, PFA, and MVSCO
algorithms, we use Silhouette score (Nguyen et al., 2017) as a
reference index for screening the number of cancer subtypes.
In the clustering problem, Silhouette analysis is used to study
the distance between clusters. Silhouette score measures the
closeness of points in the same class compared with points in
different classes, which provides a way to evaluate the number
of classes. In Table 4, the best P-value and the corresponding
number of clusters k of each algorithm for each cancer type
are given. On GBM, BRCA, KIRC, and LSCC data, MRF-MSC
algorithm has better experimental results than other algorithms.
Figure 3 is the Kaplan–Meier survival analysis curve of MRF-
MSC on different cancers. We can find that MRF-MSC can get
significantly different cancer subtypes on all types of cancer.
All these results demonstrate the effectiveness of the proposed
method in cancer subtype prediction.

Analysis on BRCA Data
Breast Invasive Carcinoma refers to a malignant tumor in which
cancer cells have penetrated the basement membrane of breast
ducts or lobular alveoli and invaded the interstitium. Many
scholars have carried out a series of studies and analyses on
the gene level, and have given specific subtypes and treatment
programs. Based on the microarray predictive analysis model,
Parker et al. (2009) proposed a 50-gene classifier (known as
PAM50) to classify BRCA into five subtypes: Basal-like, Luminal
A, Luminal B, HER2-enriched, and Normal-like. And each
subtype is associated with specific mutant genes. For example,
there are a large number of PIK3CA mutations in Luminal
A and Luminal B, while Basal-like and HER2-enriched are
mainly associated with TP53 mutation and ERBB2 amplification,
respectively (Koboldt et al., 2012).

On BRCA data set in Wang et al. (2014), we counted the
distribution of clustering results obtained by MRF-MSC on the
cancer subtypes: Basal-like, Luminal A, Luminal B, and HER2-
enriched in Figure 4. Note that, the clinical information for
Normal-like cannot be found in Parker et al. (2009). It can
be seen from Figure 4 that Basal-like is mainly distributed in
Cluster 1 and Cluster 3, Luminal A is mainly distributed in
Cluster 2 and Cluster 4, Luminal B is mainly distributed in
Cluster 5, HER2-Enriched is distributed in Cluster 1 and Cluster
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FIGURE 7 | Functional enrichment analysis on BRCA. Significantly different GO biological processes derived from driver genes of different cancer subtypes.

5. This shows that the cancer subtypes obtained by MRF-MSC
are related to these known cancer subtypes. Furthermore, we
counted the distribution of clustering results of MRF-MSC on
three susceptible genes: TP53, PIK3CA, and ERBB2 in Table 5.
From Table 5 we can find that there are a large number of TP53
mutations which is in line with the characteristics of the Basal-
like subtype. The mutation frequency of PIK3CA in Cluster 2
is much higher than the other clusters show that Cluster 2 is
related to the known subtypes: Luminal A and Luminal B. The
mutations of ERBB2 are mainly distributed on Cluster 1 and

Cluster 5, indicating that HER2-enriched subtype is related to
Cluster 1 and Cluster 5. The results in Figure 4 and Table 5
are mutually corroborated, proving that MRF-MSC can mine
meaningful cancer subtypes.

We also validated the obtained subtypes by comparing the
survival of different therapeutic agents in each subtype. We
downloaded BRCA drug data from TCGA database and selected
Adriamycin and Cytoxan for analysis. Since there are few or no
samples in Clusters 3, 4, and 5 for these two drugs, we only
established a Cox log-rank model on Cluster 1 and Cluster 2 to
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analyze the quality of drug response. Figure 5 shows the Kaplan–
Meier survival curves of drug response in Cluster 1 and Cluster
2. The treated samples and untreated samples are divided into
two groups. Clusters 1 and Cluster 2 both responded favorably to
Adriamycin and Cytoxan treatment. And the survival of patients
with treatment is better than that of patients without treatment.
The drug response of Cluster 2 to Adriamycin and Cytoxan
(the survival analysis P-values of the Cox log-rank model are
9.91 × 10−3 and 4.42 × 10−4, respectively) is better than that
of Cluster 1 (the survival analysis P-values of the Cox log-rank
model are 0.353 and 0.982, respectively).

Furthermore, differential expressed genes and GO enrichment
analysis on BRCA data are performed to compare differences
in characteristics between the five clusters obtained by MSR-
MSC. For each omics data, we first used Analysis of Variance
(ANOVA) method to select the significant differentially expressed
genes in five clusters. And the heatmap of differentially expressed
genes in mRNA expression, DNA methylation, and miRNA
expression data are shown in Figures 6A–C, respectively. The
specific information of these differentially expressed genes can
be found in Supplementary File 1. These differentially expressed
genes may be closely related to BRCA. For example, the increased
expression of GFRA3 (P-value = 3.71× 10−23) is associated with
lymph node metastasis and advanced tumor stage in BRCA (Wu
et al., 2013). mir-186 (P-value = 7.41 × 10−17) can regulate the
migration and erosion of BRCA by PTTG1 (Li et al., 2013), and
mir-197 (P-value = 2.71 × 10−17) targets the tumor-suppressor
FUS1 (Du et al., 2009).

Finally, we consider that the driver genes that affect these five
clusters should be different. Therefore, based on the DriverNet
method (Bashashati et al., 2012), we use BRCA mutation data,
copy number data and mRNA expression data to find the driver
genes of each cluster. We screened out the unique driver genes of
each cluster to construct GO enrichment analysis (Yu et al., 2012).
Figure 7 shows the functional enrichment analysis of four clusters
on BRCA. There are too few driver genes in Cluster 4 to form
a functional enrichment term. It can be seen that significantly
different GO biological processes derived from driver genes of
different cancer subtypes (FDR < 0.05). Driver genes in Cluster
1, 2, 3, and 5 are correlated with “cellular response,” “positive
regulation,” “biosynthetic process,” and “response to peptide” in
GO biological processes, respectively.

CONCLUSION

In the past few decades, many multi-view biological
data integration models based on graph learning, matrix
decomposition, network fusion, deep learning, nuclear methods
and other technologies have been designed and applied to
a wide range of bioinformatics topics (Li et al., 2016), such
as prediction of drug–target interactions (Liu et al., 2021),
identification of cancer driver genes (Bashashati et al., 2012) and
genotype-phenotype interactions (Qin et al., 2020). These studies
provide meaningful insights into the cause and development
of cancer. However, how to effectively mine cancer subtypes
with biological characteristics from multi-omics data is still a

challenging task for bioinformatics. In this paper, a new cancer
subtype prediction method was proposed, named as Multi-View
Spectral Clustering Based on Multi-smooth Representation
Fusion (MRF-MSC). In order to enable the data samples to retain
the original feature space and enhance the grouping effect during
data representation, we construct smooth representation for each
type of data. Then, based on the method of graph fusion, these
smooth representations are integrated into one space, and each
smooth representation is given a self-weighted weight to measure
their contribution. A fused similarity graph with a consistent
structure is obtained through optimization. Finally, constrained
Laplacian rank is performed on the fused similarity graph, and
the label of the sample is obtained through spectral clustering
optimization. We use real cancer data sets to demonstrate the
capabilities of MRF-MSC. MRF-MSC can effectively integrate
the information of multi-omics data, and is superior to several
state-of-the-art integration methods in given evaluation indexes.
On BRCA data, through various studies, we have verified that
the cancer subtypes predicted by MRF-MSC are significantly
different and have biological significance.

In addition, we also admit that MRF-MSC has its
shortcomings and limitations. It takes a lot of time to select
suitable hyperparameters in the optimization process. Moreover,
it is not suitable for binary data (somatic mutation), categorical
data (copy number states: loss/normal/gain), and it has no ability
to find important genes that affect each subtype. Therefore,
we will continue to work hard to improve and expand the
capabilities of the MRF-MSC algorithm and explore the
heterogeneity of cancer.
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