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The FTO gene harbors variation with the strongest effect
on adiposity and obesity risk. Previous data support arole
for FTO variation in influencing food intake. We con-
ducted a combined analysis of 16,094 boys and girls aged
1-18 years from 14 studies to examine the following: 1)
the association between the FTO rs9939609 variant (or
a proxy) and total energy and macronutrient intake; and
2) the interaction between the FTO variant and dietary
intake, and the effect on BMI. We found that the BMI-
increasing allele (minor allele) of the FTO variant was as-
sociated with increased total energy intake (effect per
allele = 14.3 kcal/day [95% CI 5.9, 22.7 kcal/day], P = 6.5 x
104, but not with protein, carbohydrate, or fat intake. We
also found that protein intake modified the association
between the FTO variant and BMI (interactive effect per

allele = 0.08 SD [0.03, 0.12 SD], P for interaction = 7.2 x
10~%): the association between FTO genotype and BMI
was much stronger in individuals with high protein intake
(effect per allele = 0.10 SD [0.07, 0.13 SD], P=8.2 x 10719
than in those with low intake (effect per allele = 0.04 SD
[0.01, 0.07 SD], P = 0.02). Our results suggest that the FTO
variant that confers a predisposition to higher BMI is as-
sociated with higher total energy intake, and that lower
dietary protein intake attenuates the association between
FTO genotype and adiposity in children and adolescents.

Common single nucleotide polymorphisms (SNPs) lo-
cated in the first intron of the gene associated with
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fat mass and obesity (FTO) are the first adiposity/
BMI-associated variants identified through genome-wide
association studies (GWASs) (1-3), and to date this
remains the locus with the largest influence on BMI in
adults, as well as in children and adolescents (4). The mech-
anism by which FTO variants influence adiposity is unclear.
Previous animal studies have suggested a role of Fto in
regulating energy homeostasis, but it is unknown whether
it influences energy intake (5,6) or energy expenditure
(7,8). In addition, it is not clear which gene’s function is
affected by the functional variants at this locus: FTO
itself or another gene located downstream or upstream
of FTO, such as IRX3 (9) and RPGRIP1L (10).

In many human studies (11-20), the BMI-increasing
allele of FTO variants has been reported to be associ-
ated with increased food intake, total energy intake, fat
or protein intake, suggesting that diet mediates the
association with BMI. However, these associations
have not been replicated in a number of other studies
(21-35). In addition, there is an increasing interest in
examining whether lifestyle factors influence the asso-
ciations between FTO variants and adiposity. While
there is evidence that physical activity reduces the
effect of FTO on BMI, at least in adults (36), the few
studies (12,20,26,32,34,35,37,38) that have investi-
gated interaction with dietary factors in relation to
BMI/obesity have generated conflicting results regard-
ing potential interactions. Our recent large-scale
meta-analysis (39) indicated that FTO variants were
associated with protein intake in adults and that under-
reporting of dietary intake in obese participants might
be a major issue in the analysis. Studies in children
are of particular interest in this regard, since this pop-
ulation is less biased by comorbidities, and their treat-
ment and exposure to environmental contributors is
shorter.

The relatively small sample size of individual studies,
the modest genetic effect size, and the inevitable mea-
surement errors might be major reasons for these
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inconsistent observations. Thus, studies with larger
sample sizes are needed to clarify interrelations among
FTO variants, dietary intake, and adiposity. Herein we
report the results of a combined analysis of 16,094 chil-
dren and adolescents from 14 studies to examine the
following: 1) whether the FTO rs9939609 variant (or
a proxy SNP) is associated with dietary intake of total
energy and macronutrients (protein, carbohydrate, and
fat); and 2) whether dietary intake influences the associ-
ation between the FTO variant and BMI.

RESEARCH DESIGN AND METHODS

Study Participants

The current analysis included cross-sectional data on
16,094 children and adolescents (15,352 whites, 478
African Americans, and 267 Asians) aged 1-18 years
from 14 studies (Supplementary Table 1). The study de-
sign, recruitment of participants, and data collection of
individual studies have been described in detail previously
(14,23,24,40-50). In each study, informed consent was
obtained from subjects’ parents or guardians and subjects
(if appropriate). Each study was reviewed and approved
by the local institutional review board.

Study-specific characteristics for each study are shown
in Supplementary Table 2. The ranges of mean values
across studies were as follows: age 1.1-16.4 years; BMI
16.2-24.7 kg/m?; total energy intake 1,017-2,423 kcal/day;
total protein intake 12.9-16.8% (percentage of total energy
intake); total carbohydrate 43.4-59.0%; and total fat intake
28.1-40.0%.

Assessment of BMI and Dietary Intake

BMI was calculated as body weight (kg)/height (m?). Body
weight and height were measured in all studies except for
one study which used self-reported data in a subsample
(Supplementary Table 3). For two studies (43,48) with chil-
dren younger than 2 years of age, length (height) was
measured to the nearest millimeter with children in a
supine position. Dietary intake (total energy, protein,
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carbohydrate, and fat) was assessed using validated food
frequency questionnaires (four studies), multiple-day die-
tary/food records (three studies), multiple-day 24-h recalls
(four studies), both dietary records and 24-h recalls (one
study), diet history determined by consulting and informa-
tion system (one study), or a brief-type self-administered
diet history questionnaire (one study) (Supplementary Ta-
ble 3). Macronutrient intake was expressed as the percent-
age of total energy intake.

Genotyping

FTO SNP rs9939609 or a proxy (linkage disequilibrium
r* = 1 in the corresponding ethnic group) was genotyped
using direct genotyping methods or Illumina genome-wide
genotyping arrays, or imputed using MACH (http://csg
.sph.umich.edu/abecasis/MACH/) with a high imputation
quality =1 (Supplementary Table 4). The studies pro-
vided summary statistics based on data that met their
quality control criteria for genotyping call rate, concor-
dance in duplicate samples, and Hardy-Weinberg equilib-
rium P value.

Statistical Analysis

A standardized analytical plan, which is described below,
was sent to study analysts from the 14 studies, and
analyses were performed locally. BMI was transformed to
age-standardized z score by sex in each study before anal-
ysis. A linear regression model under additive allelic
effects was applied to examine associations of FTO vari-
ant with BMI, total energy intake, and intake of fat, pro-
tein, and carbohydrate (expressed as the percentage of
total energy), adjusted for pubertal status (if available),
physical activity (if available), and eigenvectors (data from
GWASs only). We additionally adjusted for BMI when
evaluating the association between FTO variant and di-
etary intake. In addition, the difference in BMI between
the low- and high-dietary intake groups (dichotomized at
medians in each study) was also examined. Interactions
between FTO genotype and dietary intake and their effect
on BMI were tested by including the respective interac-
tion terms in the models (e.g., interaction term =
rs9939609 SNP X total energy intake [dichotomized at
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the medians in each study]). We examined the association
between FTO variant and BMI stratified by low- and
high-dietary intake groups (dichotomized at medians in
each study). All of the analyses were conducted in boys
and girls separately, except for one study that combined
the data from boys and girls, with sex as a covariate.
Analyses were also conducted in each race, and in cases
and controls separately if studies included multiple ances-
tries or had a case-control design.

Detailed summary statistics from each study were
subsequently collected, and we pooled B-coefficients and
SEs from individual studies using the Mantel-Haenszel
fixed-effects method, as well as the DerSimonian and
Laird random-effects method implemented in Stata, ver-
sion 12 (StataCorp LP, College Station, TX). The signifi-
cant P value was 0.005 after Bonferroni adjustment for 10
independent tests: FTO-BMI association (1 test); diet-BMI
associations (3 tests; we considered total energy, protein,
carbohydrate, and fat intake as 3 independent variables);
FTO-diet associations (3 tests); and FTO-diet interactions
(3 tests). Between-study heterogeneity was tested by the
Cochran Q statistic and quantified by the values for the
proportion of variance explained by interstudy differences
(). Low heterogeneity was defined as an I? value of 0-
25%, moderate heterogeneity as an I° of 25-75%, and
high heterogeneity as an I? of 75-100%. The P value for
heterogeneity was derived from a x” test. We also per-
formed stratified meta-analyses in subgroups according
to ethnicity (whites, African Americans, or Asians), sex,
age group (mean age <10 vs. =10 years), geographic re-
gion (North America, Europe, or Asia), study sample size
(n < 500 vs. n = 500), study design (population based vs.
case-control), dietary intake assessment method (dietary
records or 24-h recalls vs. food frequency questionnaire
or others), and adjustment for physical activity (yes vs. no).

RESULTS

FTO Variants and BMI

We found a significant association between the minor allele
(A-allele) of the FTO SNP rs9939609 (or its proxies) and
a higher BMI in all participants combined (effect per allele =

Table 1—Associations between FTO SNP rs9939609, BMI, and dietary intake in a fixed-effects meta-analysis of 16,097 children

and adolescents

Model 1* Model 21
B (95% Cl) P P B (95% Cl) P 2
BMI z score 0.07 (0.05, 0.09) 47 x 10710 40%
Total energy (kcal/day) 14.6 (6.3, 23.1) 6.5 x 10°* 0% 14.7 (6.3, 23.1) 6.5 x 10°* 6%
Protein (% of energy) 0.0 (0.1, 0.0) 0.10 0% 0.0 (—0.1, 0.0) 0.09 0%
Carbohydrate (% of energy) 0.0 (=0.1, 0.1) 0.96 24% 0.0 (=0.1, 0.1) 0.92 15%
Fat (% of energy) 0.1 (0.1, 0.2) 0.40 34% 0.1 (0.1, 0.2) 0.35 29%

Data are B-coefficients (95% ClI) per minor allele of FTO rs9939609 or a proxy (-2 = 1) are given for each trait. Analyses from individual
studies were conducted separately and then combined by meta-analysis of 16,097 children and adolescents (15,352 whites, 478
African Americans, and 267 Asians). /? values are also given. *Adjusted for age, pubertal status (if available), physical activity (if
available), region (if available), and eigenvectors (GWAS data only). tFurther adjusted for BMI based on model 1.
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0.07 SD [95% CI 0.05, 0.09 SDs], P = 4.7 X 10~ %) (Table 1).
The association was significant in 15,352 whites (effect per
allele = 0.08 SD [0.05, 0.10 SDs], P = 2.9 X 10~ "), but not
in 478 African Americans (effect per allele = —0.12 SD
[—0.26, 0.02 SDs], P = 0.08) or 267 Asians (effect per allele =
0.11 SD [—0.12, 0.09 SDs], P = 0.87), separately.

FTO Variants and Dietary Intake

The minor allele of the FTO variant was significantly
associated with higher total energy intake in all partici-
pants combined (effect per allele = 14.6 kcal/day [6.3, 23.1
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kcal/day], P = 6.5 X 10 %), with no heterogeneity among
studies (I? = 0%) (Table 1). This association was un-
changed after further adjustment for BMI (effect per
allele = 14.7 kcal/day [6.3, 23.1 kcal/day], P = 6.5 X
10™%). The association between FTO variant and total
energy intake was found in whites (P = 0.001) and Asians
(P = 0.01), but not in African Americans (P = 0.80), al-
though directions of associations were consistent across
ethnicities (P for heterogeneity = 0.07) (Fig. 1). In strat-
ified meta-analyses according to sex, age group, geo-
graphic region, study design, dietary intake assessment

Study
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Figure 1—Forest plot of the association between FTO SNP rs9939609 and total energy intake in a fixed-effects meta-analysis of 16,097
children and adolescents. The studies are shown in boys (_B), girls (_G), or mixed case patients (_Case) and control subjects (_Control) for
case-control studies and whites (_White) and African Americans (_AA) for studies with multiple ethnicities separately, sorted by sample size
(smallest to largest). The B represents the difference in total energy intake per minor allele of SNP rs9939609 or a proxy (/> = 1), adjusted for
age, pubertal status (if available), physical activity (if available), region (if available), and eigenvectors (GWAS data only).
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method, and adjustment for physical activity (Supplemen-
tary Fig. 1), the directions of the associations between
FTO variant and total energy intake were consistent
across subgroups. Of note, the association was stronger
in studies with a mean age for participants of =10 years
than in studies with a mean age of <10 years (effect per
allele = 25.3 vs. 4.2 kcal/day, P for heterogeneity = 0.014).
Since most studies had a mean age for participants of
>7.5 years and three studies had a mean age between
1.0 and 3.5 years, we further examined the association
between FTO variant and total energy intake according
to the following three categories of age: studies with
a mean age for participants between 1.0 and 3.5 years
(effect per allele = 2.4 kcal/day); studies with a mean age
for participants between 7.5 and 10 years (effect per allele =
10.6 kcal/day); and studies with a mean age for partici-
pants of =10 years old (effect per allele = 25.3 kcal/day).

We did not find evidence for associations between FTO
variant and intake of protein (P = 0.10), carbohydrate (P =
0.96), or fat (P = 0.40), and there was a low or moderate
heterogeneity among studies (? = 0%, 24%, and 34%,
respectively) (Table 1 and Supplementary Figs. 2, 3, and
4). Further adjustment for BMI did not notably change
the results.

We also performed meta-analyses for FTO variant and
dietary intake using the random-effects method, resulting
in similar findings (Supplementary Table 5).

Dietary Intake and BMI

Higher total energy and protein intake were significantly
associated with higher BMI (Supplementary Table 6). Dif-
ference in BMI between the high and low energy intake
groups was 0.04 SD (95% CI 0.01, 0.02 SDs, P = 0.004),
and difference in BMI between the high-protein intake
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and low-protein intake groups was 0.09 SD (0.07, 0.12
SDs, P = 5.0 X 10~ 9. There was no significant differ-
ence in BMI between the high—carbohydrate intake and
low—carbohydrate intake groups (difference in BMI = —0.02
SD [—0.05, 0.01 SDs], P = 0.12), and a nominally signif-
icant difference in BMI between the high-fat intake and
low—fat intake groups (difference in BMI = —0.03 SD
[—0.06, —0.001 SDs], P = 0.04).

Interaction Between FTO Variants and Dietary Intake
on BMI

We observed a significant interaction between FTO vari-
ant and dietary protein intake on BMI in all participants
combined (effect per allele for interaction = 0.08 SD [95%
CI 0.03, 0.12 SDs], P for interaction = 7.2 X 10~ %), show-
ing that lower protein intake attenuated the association
between the FTO variant and BMI, with no heterogeneity
among studies (I? = 0%) (Table 2). In stratified analysis by
low-protein intake and high-protein intake groups (di-
chotomized at medians of protein intake in each study:
ranging from 12.9% to 16.8% across studies). The associ-
ation between FTO variant and BMI among participants
in the low—protein intake group (effect per allele = 0.04
SD [95% CI 0.01, 0.07 SDs], P = 0.02) was significantly
weaker than that in the high—protein intake group (effect
per allele = 0.10 SD [0.07, 0.13 SDs], P = 8.2 X 109
(Table 2). Although the interaction was found in whites (P
for interaction = 0.001) but not in African Americans (P =
0.84) or Asians (P = 0.11) separately, there was no signif-
icant heterogeneity among these ethnic groups (P for het-
erogeneity = 0.53) (Fig. 2). In stratified meta-analyses
(Supplementary Fig. 5), we found similar interaction pat-
terns between FTO variant and protein intake on BMI
across subgroups divided by sex, age group, geographic

Table 2—Interaction between FTO SNP rs9939609 and dietary intake on BMI in a fixed-effects meta-analysis of 16,097 children

and adolescents

Association between FTO variant and BMI

Interaction effect

B (95% ClI) P 2 B (95% ClI) P 2
Total energy (kcal/day) —0.03 (—0.07, 0.02) 0.20 0%
Low-intake group 0.08 (0.05, 0.12) 29 x 1077 25%
High-intake group 0.05 (0.02, 0.08) 8.0 X 10°* 25%
Protein (% of total energy intake) 0.08 (0.03,0.12) 7.2x10* 0%
Low-intake group 0.04 (0.01, 0.07) 0.02 0%
High-intake group 0.10 (0.07, 0.13) 82x10 1 34%
Carbohydrate (% of total energy intake) 0.00 (—0.04, 0.04) 0.98 10%
Low-intake group 0.08 (0.05, 0.11) 1.6 X 10°° 20%
High-intake group 0.07 (0.04, 0.10) 99 x 10°® 26%
Fat (% of total energy intake) 0.00 (—0.05, 0.05) 0.89 0%
Low-intake group 0.08 (0.05, 0.11) 6.7 X 1077 24%
High-intake group 0.07 (0.03, 0.10) 41 x10°° 34%

Data are B-coefficients (95% Cl) per minor allele of FTO rs9939609 or a proxy (r2 = 1) for BMI (z score), adjusted for age, pubertal status
(if available), physical activity (if available), region (if available), and eigenvectors (GWAS data only). Analyses from individual studies
were conducted separately and then combined by meta-analysis of 16,097 children and adolescents (15,352 whites, 478 African
Americans, and 267 Asians). /? values are also given. High- and low-intake groups were defined by medians of each dietary intake
in each study. Medians of total energy intake ranged from 1,160 to 2,422 kcal/day, medians of protein intake ranged from 12.9% to
16.8%, medians of carbohydrate intake ranged from 44.2% to 59.0%), and medians of fat intake ranged from 28.0% to 41.0% across

studies.
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Figure 2—Forest plot of the interaction between FTO SNP rs9939609 and dietary protein intake on BMI in a fixed-effects meta-analysis of
16,097 children and adolescents. The studies are shown in boys (_B), girls (_G), or mixed case patients (_Case) and control subjects
(_Control) for case-control studies and whites (_White) and African Americans (_AA) for studies with multiple ethnicities separately, sorted
by sample size (smallest to largest). The B represents the difference in BMI per minor allele of SNP rs9939609 or a proxy (> = 1) comparing
participants in the high—protein intake group to those in the low—protein intake group, adjusted for age, pubertal status (if available),
physical activity (if available), region (if available), and eigenvectors (GWAS data only).

region, study design, dietary intake assessment method,
and adjustment for physical activity (all P for heterogene-
ity > 0.11).

We did not find substantive evidence for interactions
between FTO variant and total energy intake (P for in-
teraction = 0.20), carbohydrate intake (P for interac-
tion = 0.98), or fat intake (P for interaction = 0.89)
on BMI (Table 2 and Supplementary Figs. 6, 7, and
8). The heterogeneity among studies was low (I* =
0%, 15%, and 5%, respectively). In analyses stratified
by levels of dietary intake, associations between FTO

variant and BMI were similar in high- and low-intake
groups (Table 2).

In addition, since there was little or no heterogeneity
in interactions between FTO variant and dietary intake on
BMI across studies, the results were similar when we
performed meta-analyses using the random-effects
method (Supplementary Table 7).

DISCUSSION

We confirmed the association between an index SNP in
the FTO gene, rs9939609 (or its proxy), and BMI in white


http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db14-1629/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db14-1629/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db14-1629/-/DC1

diabetes.diabetesjournals.org

children and adolescents and in all participants combined,
but did not detect significant association in African Amer-
ican or Asian children and adolescents. This might be due
to the relatively small sample size used by studies of Af-
rican Americans or Asians included in the current analysis
and/or to different linkage disequilibrium patterns across
FTO intron 1 between different ethnic groups, particu-
larly in populations of African ancestry (4,51). Other in-
dex SNPs within FTO locus might be needed in future
studies of African American children and adolescents.

Although studies of FTO association with dietary in-
take in adults have been more numerous and often better
powered with larger sample sizes than similar studies
conducted in children and adolescents, the reported results
have been inconsistent (16-20,25-34). Our and other
studies even observed an inverse association between
FTO variant and total energy intake in adults, which might
be partly due to under-reporting of total energy intake
among individuals with a higher BMI (19,20,39). In the
current analysis, we demonstrated an association between
the BMlI-increasing allele of the FTO variant and higher
total energy intake. However, we did not observe a signifi-
cant association between FTO variants and percentages of
energy derived from protein, which has been observed in
adults (39), or other macronutrients.

An apparently stronger, and more consistently reported,
effect of FTO on total energy intake in children and ado-
lescents could have several explanations. The influence of
social desirability bias and the under-reporting issues are
smaller in children than in adults (52-54). It is possible
that the effect of FTO variation on appetite may be stron-
ger in children and adolescents than in adults. Consistent
with this hypothesis and with the idea that FTO genetic
effects might vary over the life course, previous studies
(49,55-60) have reported an increasing effect of FTO var-
iants on BMI from early childhood to adolescence, with
a subsequently decreasing effect throughout adulthood. Our
result is also consistent with this, as we observed a stronger
association between FTO variant and total energy intake in
studies of older children than in studies of younger children.

Several lines of evidence from animal and in vitro
studies are consistent with the observed association
between FTO variant and total energy intake in humans.
It has been reported that overexpression of Fto in mice
led to increased food intake (5), and Fto expression in
hypothalamus was regulated by feeding, fasting, and en-
ergy restriction (61-67). Further studies showed that glu-
cose and amino acid deprivation decreases Fto expression,
suggesting a role of FTO in cellular nutrient sensing
(68,69), possibly acting via hypothalamic mammalian tar-
get of rapamycin pathways known to regulate food intake
(70). A recent study (71) suggested a link among FTO,
ghrelin (a key mediator of ingestive behavior), and im-
paired brain food-cue responsivity in both animals and
humans. Interestingly, a recent study (9) has challenged
the established view of FTO as the major gene associated
with BMI and risk of obesity, reporting that the region of
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FTO intron 1 harboring the BMI-associated variants are
strongly associated with IRX3 gene (500 kbp downstream
of FTO intron 1) expression in cerebellar brain samples.
However, it has been pointed out that the cerebellum is
not primarily involved in food intake or appetite regula-
tion and FTO expression may function in a site-dependent
manner (72). In addition, another study (10) suggested
that RPGRIP1L, located >100 bp 5’ in the opposite tran-
scriptional orientation of FTO, may be partly or exclu-
sively responsible for the obesity susceptibility signal at
the FTO locus.

One novel finding of our study is the interaction
between the FTO variant and dietary protein intake on
BMI. The effect size of FTO variant on BMI in children
with a low-protein intake was much smaller than in chil-
dren with a high—protein intake, suggesting that low-
protein intake may attenuate the influence of FTO variation
on BMI. A study of 354 Spanish children and adolescents
reported a significant interaction between the FTO-
rs9939609 variant and dietary saturated fat intake on
BMI (38), and several adult studies also found interac-
tions between the FTO variant and total fat or saturated
fat intake on BMI and obesity risk (20,26,34), while no
significant interaction between the FTO variant and di-
etary intake was observed in our meta-analysis of adult
data (39). In addition, we previously found that dietary
protein intake might modify the effects of FTO variants
on changes in body composition, fat distribution, and ap-
petite in a 2-year weight-loss trial (73,74). A recent mouse
study (6) showed that loss of Fto gene altered protein
utilization and body composition; and consistently, other
studies (68,69) also suggest that FTO may influence body
composition through cellular sensing of amino acids. Given
the increasing evidence supporting the role of FTO in pro-
tein metabolism and body composition, future investiga-
tions on this topic might help to clarify the mechanisms
underlying the observed interaction between the FTO var-
iant and protein intake, and its effect on BMI.

Major strengths of our study include a large sample
size of >16,000 children and adolescents from 14 studies,
a wide range of studies with data from early childhood to
late adolescence, and the standardized analytical plan
across studies. There are some limitations in our study.
Our analysis was conducted based on cross-sectional data.
Measurement errors in dietary assessment are inevitable
since self-reported data on dietary intake are all subject to
bias. We only included dietary data on total energy and
macronutrient intake, but no data on specific foods or
more specific types of fatty acids or micronutrients, which
may potentially interact with the FTO variant as sug-
gested previously (26,34,38). We were unable to examine
other adiposity proxies, but were limited to the consider-
ation of BMI, which cannot distinguish body composition
and does not give any indication about body fat distribu-
tion. To the best of our knowledge, this is to date the largest
analysis of FTO variant and dietary intake in children and
adolescents, though more data are needed to further



2474  Dietary Intake, FTO Variants, and Adiposity

confirm our results. In particular, most of the children and
adolescents included in our analysis are individuals of Eu-
ropean ancestry (95% of all samples), and it is unknown
whether our results can be generalized to other ethnic
groups.

In summary, we demonstrated an association between
the BMI-increasing allele of FTO variant and total energy
intake based on data from 16,094 children and adoles-
cents. Our data also show that dietary protein intake may
modify the influence of FTO variants on BMI, offering
new insight into the interrelationships between FTO ge-
netic variants, dietary intake, and obesity.
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