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Simple Summary: Patients near the end of life often receive aggressive care, which may be of low
value. For patients with advanced cancers, it is standard clinical practice to estimate the prognosis to
inform treatment decisions and improve end-of-life care. However, clinical estimates of prognosis
may be imprecise and rapidly become out-of-date if clinical factors that evolve over time are not
incorporated. Patient prognosis is commonly estimated based on a clinician’s subjective assessment
of patient reserve, such as performance status. We propose a spline-smoothed landmarking approach
to dynamically estimate survival probabilities based on objective, evolving patient features. The
proposed method allows predictions at any time during the patient disease course and demon-
strates dramatically improved prediction accuracy compared to methods using clinical features at a
fixed time. The proposed approaches can assist clinicians and patients in appropriately regulating
treatments to improve outcomes and quality of life.

Abstract: Patients with terminal cancers commonly receive aggressive and sub-optimal treatment
near the end of life, which may not be beneficial in terms of duration or quality of life. To improve
end-of-life care, it is essential to develop methods that can accurately predict the short-term risk of
death. However, most prediction models for patients with cancer are static in the sense that they
only use patient features at a fixed time. We proposed a dynamic prediction model (DPM) that
can incorporate time-dependent predictors. We apply this method to patients with advanced non-
small-cell lung cancer from a real-world database. Inverse probability of censoring weighted AUC
with bootstrap inference was used to compare predictions among models. We found that increasing
ECOG performance status and decreasing albumin had negative prognostic associations with overall
survival (OS). Moreover, the negative prognostic implications strengthened over the patient disease
course. DPMs using both time-independent and time-dependent predictors substantially improved
short-term prediction accuracy compared to Cox models using only predictors at a fixed time. The
proposed model can be broadly applied for prediction based on longitudinal data, including an
estimation of the dynamic effects of time-dependent features on OS and updating predictions at any
follow-up time.

Keywords: time-dependent features; landmarking; dynamic prediction; overall survival; IPCW AUC;
model-based calibration

1. Introduction

Lung cancer is the most common cancer worldwide and the third most common
cancer in the United States of America (USA) [1,2]. Meanwhile, it is the leading cause of
cancer-related death in both men and women in the USA [3,4]. Non-small-cell lung cancer
(NSCLC) is the most common type of lung cancer, making up ~84% of all lung cancer
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diagnoses. Advanced lung cancer usually refers to stage 3B or 4, and ~58% of NSCLC
patients are already advanced when they are diagnosed [5]. Generally, advanced lung
cancer will develop into a progressive terminal disease, with a 5-year survival rate of under
7% [6]. For patients with advanced or metastatic cancer, it is standard clinical practice
to estimate the prognosis as a means to assess tolerance to therapy and the usefulness of
treatment. Several studies have shown an increasing trend in continuing aggressive care
for patients near the end of life, which is costly and may be of low value [7,8]. It is essential
to develop methods that can accurately recognize when a patient is approaching the end of
life.

In most studies, the proposed survival prediction models for patients with lung cancer
are static prediction models [9–11]. Traditional static prediction models take available
patient features at a fixed time, commonly the time of diagnosis or initiation of therapy. At
a time when well-structured electronic databases were not commonly available, these static
predictions were often the best prognostic tools available. However, with the development
of technology, substantial longitudinal clinical information on patients has become avail-
able in electronic health records, which has highlighted the limitations of static prediction
models. First, static prediction models are not able to take advantage of longitudinal mea-
sures that reflect evolving patient features. Intuitively, it may be beneficial to incorporate
the most recent clinical features, such as lab values, biomarkers, or measures of patient
reserve, such as performance status, into estimates of a patient’s present prognosis. Second,
static survival prediction models, which only use baseline information, cannot account for
the changing at-risk patient population. While a static model may be suitable for patients
at baseline, its application to a patient who has lived 6 months after baseline may lead to a
biased prediction. A static model may not capture the varying association between clinical
factors and outcomes over patient disease course. Here, we propose a dynamic prediction
modeling approach that can address the above issues.

Landmarking is a dynamic prediction approach, as described by Van Houwelin-
gen [12]. The fundamental idea of landmarking is to adaptively construct a model using
a collection of patients who are still at risk at each corresponding time point [13]. For the
survival prediction of patients with advanced NSCLC, besides fixed patient demographics,
longitudinal factors and medication history are potential predictors. The landmarking
approach allows the inclusion of a relatively large number of time-dependent predictors in
the model without introducing excessive computation. Further, a modeling strategy based
on the cohort of at-risk patients is transparent and is intuitively appealing to physicians
and researchers without extensive training in statistics. Joint modeling is another widely
used approach to dynamic prediction. However, joint modeling requires the complete
specification of models for longitudinal factors, a model for the survival outcome, and a
method to link them, which presents concerns about model mis-specification. Importantly,
it is commonly infeasible to correctly specify models for all of the time-dependent predic-
tors simultaneously. Further, survival prediction using the joint modeling method often
requires numeric integration and substantial computation. Meanwhile, it has been shown
that the computation for fitting joint models with only a few time-dependent predictors
may be infeasible or unstable, especially when the available sample is small and the lon-
gitudinal predictors are measured sparsely [14]. In order to avoid imposing restrictive
models for time-dependent predictors and link the functions that need comprehensive
subject knowledge, we chose to adopt the landmarking approach.

Our research was motivated by the end-of-life care problem for patients with advanced
NSCLC and was based on real-world electronic health record (EHR) data. Numerous time-
dependent clinical factors were collected, including performance status and lab values.
Performance status is routinely used in clinical practice to evaluate how a patient’s disease
is progressing and affecting their daily living, determine treatment, and estimate their prog-
nosis [15]. However, performance status depends on the clinician’s subjective assessment
of the patient. One study illustrated that considerable variability exists in Eastern Clinical
Oncology Group (ECOG) performance status (PS) determined by clinicians [16]. Ideally,
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prognostic tools would be based on objective clinical factors, for example, lab values or
activity trackers. Unlike patient demographics such as date of birth and sex, clinical factors
that are measured at multiple time points may provide a window on evolving patient status.
We propose a spline-smoothed dynamic prediction model using the landmarking approach,
which has smoothly varying landmark-dependent associations and is easy to implement.
In actual practice, clinical visits are not lined up for each patient, which implies irregularly
spaced measurements of time-dependent clinical factors. The traditional landmarking
approach does not account for these irregularly spaced measurements. The proposed
method is able to deal with irregular and non-aligned measurements with no extra effort.

The proposed model can be widely applied for prediction based on longitudinal data,
including an estimation of the effects of time-dependent covariates on overall survival and
updating the survival prediction at any follow-up time with newly available information.
The proposed model may help clinicians provide accurate and objective estimates of patient
prognosis as well as inform treatment and care decisions. The remainder of this paper is
organized as follows. In Section 2, we formally describe the proposed approach as well
as measures of discrimination and calibration to assess predictive quality in the context
of dynamic prediction for survival outcomes. The proposed dynamic prediction model is
applied to longitudinal data to objectively estimate prognosis for patients with advanced
NSCLC from the USA Flatiron Health nationwide electronic health record-derived database.
Results and predictive performance comparisons are summarized in Section 3, with the
discussion and conclusions in Sections 4 and 5.

2. Materials and Methods
2.1. Data

Analyses were based on data from the USA Flatiron Health nationwide electronic
health record-derived, de-identified database comprising patient-level structured and un-
structured data curated via technology-enabled abstraction [17,18]. Overall survival analy-
ses were based on a composite mortality variable that aggregates EHR-derived structured
and unstructured information, as well as third-party death surveillance sources. At the time
we started the study, the de-identified data originated from approximately 280 USA cancer
clinics (~800 sites of care) [19]. The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Review Board of the University
of Utah, which includes a waiver of informed consent.

The study consisted of observations on patients receiving at least one line of treatment
for advanced NSCLC with advanced diagnosis dates from 1 January 2011 to 1 June 2019,
seen by 129 providers, at 127 community practices and two academic medical centers in
the USA. In addition, patients were restricted to those who had a visit or medication order
within 90 days of advanced diagnosis to minimize the potential impacts of patients who
were not primarily engaged with the relevant practice, for example, patients seeking a
second opinion. Patient data were collected through 1 June 2019, which provided at least
6 months of potential follow-up for all patients. Overall survival was from the initiation
of first-line therapy to the date of death and was censored at the last visit date or end of
most recent oral therapy. Our analyses considered a set of seven covariates assessed at or
before the initiation of first-line therapy (baseline hereafter): age, gender, smoking history,
targetable mutation status, race and ethnicity, histology, and first-line treatment; a set of
baseline biomarkers, lymphocyte counts and weight, which were taken from up to 30 days
prior to baseline until baseline; and two time-dependent predictors, albumin and ECOG
PS, which were collected at clinical visits. Patients who did not have any measurements of
the time-dependent predictors were excluded from the analyses.

2.2. Landmark Approach

In this study, we propose a spline-based Cox proportional hazards (PH) model along
with a landmarking approach that allows the incorporation of time-dependent covariates
and estimates dynamic effects over time [20]. The proposed method uses all patients
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remaining at risk at the landmark time for prediction and to estimate the parameters. A
landmark represents a time point in the disease course (on or after baseline) at which an
estimate of future patient prognosis is desired. For a single landmark, s, the postulated
model is:

hs(t|X(s), Z) = hs,0(t)exp
(
X′(s)βs + Z′θ

)
, f or t ≥ s. (1)

where, s is the landmark time of prediction and t (> s) is a future time of interest also
known as the horizon time. X(s) denotes the vector of (potentially) dynamic covariates
at landmark s, and βs is the vector of parameters (log hazard ratios) at landmark s. Z
denotes the vector of time-fixed covariates, and θ is the corresponding vector of parameters.
hs,0(t) is the baseline hazard rate for landmark s, and hs(t|X(s), Z) is the hazard rate with
particular covariates (X(s) and Z) at time t after s. In order to obtain smoothed time-varying
parameters, we propose a spline-based landmark model in which βs can be expanded as:

βs =
k

∑
i=1

αi ϕi(s), (2)

where k is the number of spline basis functions, and ϕi(s) represents the ith basis func-
tion [21,22]. The number of basis functions is determined according to the distribution of
landmarks of interest (Figure A1). Note that the baseline hazard rate also depends on the
landmark in this model. Here, we estimate baseline hazard rates separately for each integer
month landmark, which is a clinically meaningful time interval. The choice of when to
re-estimate baseline hazard rates should be adapted to the specific context of individual
studies. Clearly, a static prediction model is a special case of the DPM when there is only
one particular landmark time of interest (i.e., baseline).

While landmarks can be any time at which prediction of survival is needed, we
considered landmarks of interest as integer months after baseline, aligned with the time
unit for the re-estimation of baseline hazard rates. For a specific landmark, the presently
available predictors and history would be appropriate for use in the dynamic prediction
model. When there are multiple measurements for a predictor within a particular month
of interest, the most recent value for that month was used for prediction. We generated
a longitudinal dataset in which each measurement time was converted into months after
baseline (i.e., the landmark). We used this dataset to fit spline-based landmark models with
robust standard errors clustered by patient to account for repeated measurements within
each patient [23].

2.3. Prediction Accuracy Assessment

Time-to-event outcomes are common in medical applications, and risk prediction
(prognosis) is of great interest to clinicians and researchers. Assessing the performance of a
prediction model is essential. Two key elements of predictive model assessment are model
discrimination and model calibration [24].

2.3.1. Discrimination

Discrimination characterizes the model’s ability to accurately rank subjects’ risk of
events from low to high. In the analyses for binary outcomes, a frequently utilized model
discrimination statistic is the area under the receiver operating characteristic (ROC) curve
(AUC), or equivalently (for binary outcomes), the concordance statistic (C-statistic) [24].
An ROC curve plots the sensitivity against 1-specificity for all possible cutoffs, which
can separate subjects as having a predicted outcome or not using the predicted proba-
bilities [25]. The C-statistic is the proportion of subject pairs that have agreement on the
order of predicted survival probabilities and observed time-to-event lengths among all
ordered pairs [26]. Various extensions of C-statistic and AUC are available in the context of
right-censored time-to-event outcomes [27,28]. Here, an inverse probability of censoring
weighted (IPCW) AUC proposed by Hung and Chiang is used to estimate AUC at fixed
time horizons [29]. The goal of IPCW is to correct the selection bias caused by censoring
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in time-to-event outcomes. The observations on uncensored subjects at a particular time
are weighted via the conditional probability of being uncensored. The time-dependent
AUC and C-statistic respectively provide a summary of accuracy at a specified time and
an overall measure of predictive accuracy. In this study, longitudinal lab values were
considered in the prediction models and lab values would commonly change over time,
which may limit their value for long-term prediction. Here, we were interested in the
prediction of near-term patient outcomes; therefore, AUC for predicting events over a short,
fixed time horizon was opted for, instead of the C-statistic that examines concordance
across all observed horizon times.

The data were divided into training and validation sets. Two-thirds of the patients
were randomly selected into the training set, and the remaining patients were in the
validation set. Models were developed in the training set while the validation set was
used for model assessment. A Cox PH model was utilized to estimate the probability of
censoring conditional on age and gender. In order to be able to assess the landmarking
DPM, we proposed the following time-dependent IPCW AUC. As near-term events are
what we were most interested in, model performance was assessed for predicting patient
events in the future at horizons of half a month, 1 month, 3 months, and 6 months across
landmark times of 0 through 12 months from first-line initiation.

For patient i, let Ti denote the true, potentially unobserved time-to-event (overall sur-
vival, here), Ci the censoring time, δi = I(Ti ≤ Ci) the indicator of death, T̃i = min(Ti, Ci)
the observed time, X(s) time-dependent covariates at landmark time s, Z time-fixed co-
variates, and ns the number of patients at risk at landmark s. Let Ŝs(t|X(s), Z) denote the
estimated survival probability of living beyond t into the future from landmark time s
conditional on predictors X(s) and Z. Let Ŝs,C(t) = P(Ci > t|Xi(s), Z, T̃i >s) denote the
estimated censoring probability at the horizon time t from the landmark time s. Further, let
u denote a possible cutoff for flagging a patient as having a predicted event on or before
time t after landmark time s. Then, the IPCW sensitivity and specificity are:

ˆSes(u, t) =
∑ns

i=1 I{Ŝs(t|Xi(s), Z, T̃i>s)<u, T̃i≤s+t} δi
ns Ŝs,C(T̃i)

∑ns
i=1 I{T̃i≤s+t} δi

ns Ŝs,C(T̃i)

,

Ŝps(u, t) =
∑ns

i=1 I{Ŝs(t|Xi(s), Z, T̃i>s)≥u, T̃i>s+t} 1
nsŜs,C(t)

∑ns
i=1 I{T̃i>s+t} 1

nsŜs,C(t)

(3)

The area under (ROC) ˆ(t) curve is then:

ˆAUC(t)=
∑ns

i=1 ∑ns
j=1 I{Ŝs(t | Xi(s), Z, T̃i > s) < Ŝs(t | Xj(s), Z, T̃j > s)} ∗ I{T̃i ≤ t, T̃j > t} δi

n2
s Ŝs,C(T̃i)Ŝs,C(t)(

∑ns
i=1 I{T̃i ≤ t} δi

ns Ŝs,C(T̃i)

)(
∑ns

j=1 I{T̃j > t} 1
ns Ŝs,C(t)

) . (4)

Ties may occur in real-word data, therefore the term I{Ŝs(t|Xi(s), Z, T̃i > s) < Ŝs(t|Xj(s), Z, T̃j > s)}

above can be replaced by I{Ŝs(t|Xi(s), Z, T̃i > s) < Ŝs(t|Xj(s), Z, T̃j > s)}+ 1
2 I{Ŝs(t|Xi(s), Z, T̃i > s) = Ŝs(t|Xj(s), Z, T̃j > s)}

to account for any ties.

2.3.2. Calibration

Model calibration is another aspect of the quality of a prediction model. Calibration
refers to how accurately the model’s predictions match actual event rates. The Hosmer–
Lemeshow (HL) goodness-of-fit test is a well-known method for a calibration assessment
in the binary setting. It is commonly computed by dividing the study population into
10 groups using deciles of the predicted risk scores based on the predictive model whose
calibration is being assessed [30]. A model-based approach proposed by Crowson et al. is
asymptotically equivalent to the HL test for binary outcomes and views the calibration in
a regression context. The model calibration process is more complex for a time-to-event
prognostic model given the spectrum of at-risk times across patients. One important
advantage of the model-based approach is the natural extension to Cox models for time-
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to-event outcomes [31]. In this study, a method that also requires separating the study
population into groups was applied.

As the proposed DPM is built on a Cox model, the martingale residuals at landmark s
can be computed by mi,s = δi − ei,s for each subject i, where δi is the indicator of death for
subject i and ei,s represents the expected number of events estimated at landmark s [32].
In detail, ei,s = Hs,0(t)exp(X(s)′βs + Z′θ), where Hs,0(t) is the baseline cumulative hazard
at landmark s. The martingale residuals can be interpreted as the difference between the
observed number of events and the expected number of events under the Cox model. In
other words, the martingale residuals estimate the number of observed events that are
not predicted by the model [33]. A good prediction model tends to have smaller absolute
martingale residuals. The quantity that is required for validation at landmark s for subject i
in the model-based calibration method is log(ei,s). In a survival analysis setting, Poisson
regression is the appropriate method for a model-based assessment of calibration. It is
well known that a Poisson regression with pre-specified hazard rates within specified
time intervals is equivalent to a Cox model [34]. The reason for not using a Cox model in
calibration is that it would confound the evaluation of absolute risk by calculating a new
baseline hazard. When using the model-based calibration approach, one challenge of using
the predicted number of events to build groups is the incorporation of the follow-up time,
which may vary across patients. Instead, predicted survival probabilities at a fixed horizon
time of 1 month were employed to build groups in our study. In a well-calibrated model,
the observed and expected number of events should agree up to sampling variability across
groups of patients.

The model-based endpoint for calibration can be expressed as:

E(δi) = exp
{

γ1, s ∗ group1 + . . . + γq,s ∗ groupq + log(ei,s)
}

(5)

where q is the number of risk strata groups, commonly 10 risk groups for the HL test. As
described above, groups are identified using the survival probabilities at a fixed horizon
time. The coefficient before the expected number of events (ei,s) is forced to be 1, and no
intercept is estimated in the model. Then, if any of the coefficients of the groups (any of the
γs) has a statistically significant difference from 0, it means the predicted number of events
in that group is not well aligned with the observed number of events.

2.4. Bootstrap

Patient-wise bootstrapping with 100 iterations was applied to construct 95% confi-
dence intervals for the IPCW AUC at half-month, 1-month, 3-month, and 6-month horizons
in the patient’s future from disease course landmarks of 0 through 12 months from first-line
initiation. Prediction models were built using the training data. Within each bootstrap itera-
tion, a random sample with a replacement of patients was obtained based on the validation
dataset, and the within-bootstrap IPCW AUC was estimated using this sample [35].

2.5. Model Building

In order to compare the predictive performance of a spectrum of dynamic prediction
models, a few variations to predictive modeling were considered. The first approach utilizes
a Cox PH model with fixed covariates including age, gender, smoking history, targetable
mutation status, race/ethnicity, histology, first-line treatment, baseline weight, ECOG PS,
lymphocyte counts, and albumin. The second approach utilizes a dynamic prediction
model with time-dependent ECOG PS and/or albumin. The third approach utilizes a
dynamic prediction model with the time-dependent covariates as well as the baseline
covariates (those that were included in the first modeling approach). The first approach
is a static multivariable prediction model, the second approach is a dynamic prediction
model without fixed covariates, and the third approach is a dynamic prediction model with
baseline covariates. Cox PH models stratified by the landmarks provide separate baseline
hazard rates at different landmarks. The proposed DPM allows the effect of time-dependent
covariates to vary smoothly across landmarks.
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3. Results
3.1. Patients, Baseline Characteristics, and Summary of Overall Survival (OS)

The procedure for identifying the analytic cohort is depicted in a flowchart in
Appendix A (Figure A2). In the Flatiron Healthcare database, 36,318 advanced NSCLC
patients were selected, who also met the criteria outlined in Section 2. Patients who did
not have information on the factors that were included in the Cox model using baseline
covariates and did not have at least one day of follow-up after baseline were excluded.
The primary analysis included 14,605 patients. The patient characteristics at baseline are
summarized in Table 1. The mean age at baseline was 68.2 years; 46.3% (n = 6769) of
patients were female; 89.5% (n = 13,071) had a history of smoking; 71.9% (n = 10,498) were
non-Hispanic white; and 67.9% (n = 9917) had non-squamous cell carcinoma histology.
Targetable mutations were reported in 8.4% (n = 1228) of the study population. ECOG PS
at baseline was <2 for 79.2% of the cohort (n = 11,563). In total, 50.9% (n = 7436) of patients
received first-line chemotherapy, 13.7% (n = 1999) received first-line immunotherapy, 7.1%
(n = 1031) received first-line tyrosine kinase inhibitors, and 3.2% (n = 473) received study
drugs as their first-line therapy. The median overall survival for our study population was
11.6 months (95% confidence interval (CI): 11.3–12.0), the 6-month survival probability
was 0.689 (95% CI: 0.682–0.697), and the 1-year survival probability was 0.490 (95% CI:
0.482–0.498) (Figure 1).

Table 1. Summary of patient characteristics at baseline.

Patient Characteristic Overall (n = 14,605)

Age at initiation of first-line therapy (year) (mean (SD)) 68.2 (9.6)
Albumin at initiation of first-line therapy (g/dL) (mean (SD)) 3.7 (0.5)

Lymphocyte at initiation of first-line therapy (109/L) (mean (SD)) 1.4 (0.7)
Weight at initiation of first-line therapy (kg) (mean (SD)) 74.9 (18.4)

Gender
Female 6769 (46.3%)
Male 7836 (53.7%)

Histology *
NSCC 9917 (67.9%)
NOS 671 (4.6%)
SCC 4017 (27.5%)

Smoking status History of smoking 13,071 (89.5%)
No history of smoking 1534 (10.5%)

Race/ethnicity

White/non-Hispanic 10,498 (71.9%)
Asian/non-Hispanic 295 (2.0%)
Black/non-Hispanic 1197 (8.2%)

Hispanic 340 (2.3%)
Other 2275 (15.6%)

Targetable mutation Mutated type 1228 (8.4%)
Wild type/undocumented 13,377 (91.6%)

ECOG PS at initiation of
first-line therapy

<2 11,563 (79.2%)
≥2 3042 (20.8%)

First-line treatment group

Chemotherapy 7436 (50.9%)
Chemotherapy + monoclonal

antibody ** 1831 (12.5%)

Chemoimmunotherapy 1734 (11.9%)
Immunotherapy 1999 (13.7%)

Tyrosine kinase inhibitor 1031 (7.1%)
Any study 473 (3.2%)

Other 101 (0.7%)
* NSCC—non-squamous lung cancer, SCC—squamous cell lung cancer, NOS—not otherwise specified.
** About 97% of the monoclonal antibody was bevacizumab, and others included necitumumab, ramucirumab,
trastuzumab, etc.
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3.2. Dynamic Prediction Models Considering Only One Time-Dependent Variable

Considering the number of patients at risk at each landmark and the number of events
occurring afterward, the dynamic effects of each time-dependent covariate were estimated
from baseline to 12 months after baseline. A decrease of 1 g/dL in albumin (in serum or
plasma) was a negative prognostic feature associated with OS, and the harmful association
became stronger as more time passed from baseline (Figure 2). For example, a decrease
in albumin of 1 g/dL at baseline, with all other covariates constant, was associated with
an increase in the hazard of death by 72% (hazard ratio (HR) = 1.72, 95% CI: 1.61–1.83).
At 12 months after baseline, a decrease in albumin of 1 g/dL, with all other covariates
constant, was associated with an increase in the hazard of death by 133% (HR = 2.33,
95% CI: 2.06–2.62). We compared the DPM including baseline covariates with a model
specifying a constant HR for albumin (i.e., time-varying albumin but constant HR for
albumin decrease) across time using a Wald test and found evidence that the model with
time-varying albumin and time-varying HR for albumin decrease was a better fit for the
data (p < 0.001). This suggests that the prognostic impact of albumin strengthens over
time. As the patient time passes from baseline, the dynamic HR for decrease in albumin
from the DPM with only time-dependent albumin (second approach), converges to that
from the DPM with both time-dependent albumin and baseline covariates (third approach),
suggesting that the confounding effects of baseline covariates may gradually attenuate.

Time-dependent ECOG PS had a negative prognostic association with OS, which
strengthened over time, similar to albumin (Figure 2). An increase in ECOG PS of 1 unit,
with all other covariates constant, was associated with an increase in the hazard of death
by 38% (HR = 1.38, 95% CI: 1.33–1.43) at baseline, and with a 70% increase in the hazard
of death (HR = 1.70, 95% CI: 1.61–1.80) at 12 months after baseline. Note that the ECOG
PS scores used in modeling ranged from 0 to 4, therefore HRs for increasing/decreasing
ECOG PS only applied within that range. A similar Wald test for time-varying association
for albumin was applied to ECOG PS, and the result suggested that the prognostic impact
of ECOG PS may strengthen across the disease course (p < 0.001).

In order to make the IPCW AUCs from different models comparable, when considering
a particular time-dependent variable, the three candidate models were built based on the
same patients who were available at baseline. Moreover, the predicted survival probabilities
were estimated at the same future times after baseline. For example, if the DPM is evaluated
at a horizon time of 1 month for the landmarks of 1, 2, . . . , 12, then the baseline Cox model
should be evaluated at the corresponding horizon times of 2, 3, . . . , 13 months after baseline.
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The IPCW AUCs for DPMs evaluated at a horizon time of 1 month are shown in Figure 3.
This figure indicates that the discriminative quality based on the model using a time-
dependent variable is better than the model using only baseline covariates. Specifically, the
IPCW AUCs for a horizon time of 1 month from both DPMs using time-dependent albumin
(second and third approaches) were higher than those from the baseline Cox model (first
approach). The differences in AUCs were small for the three models early in the course
of disease; then, the differences expanded between the DPMs and the baseline Cox model
later in the course of disease. Meanwhile, AUCs for the two DPMs were almost the same
over the disease course. Bootstrapping was used to obtain 95% CIs on the AUCs and
to compare AUCs among models. AUCs from the DPM including both time-dependent
albumin and baseline covariates (third approach) were statistically significantly better than
that from the baseline Cox model (first approach) after a landmark of 1 month. Notably,
compared to the AUCs from the baseline Cox model, the pattern of AUCs from DPMs
using time-dependent ECOG PS was different from what was observed in the DPMs using
time-dependent albumin. In particular, AUCs from the DPM using only time-dependent
ECOG PS (second approach) were lower than those from the baseline Cox model (first
approach) when the landmarks were prior to 6 months from baseline and were higher
when the landmarks were after 6 months from baseline. AUCs from the DPM using both
time-dependent ECOG PS and baseline covariates (third approach) were almost always
higher than those from the baseline Cox model, and the improvements were statistically
significant for almost all landmarks. Moreover, the IPCW AUC from the DPM with only
time-dependent ECOG PS (second approach) converged toward that from the DPM with
both time-dependent ECOG PS and baseline covariates (third approach) over the disease
course. Comparisons between time-dependent albumin and ECOG PS suggest that albumin
may be of similar strength, or perhaps even more discriminating, regarding the prognostic
factor to ECOG PS. The IPCW AUCs for DPMs evaluated at horizon times of 0.5, 3, and
6 months are shown in the Appendix A (Figures A3–A5).
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Comparing the IPCW AUCs at horizon times of 0.5, 1, 3, and 6 months, we found that
the predictive performance declined with an increasing time horizon across all candidate
models. Furthermore, the AUC measured at horizon times of 0.5 and 1 month for DPMs
was substantially higher than that for the baseline Cox model, while the AUCs measured
at horizon times of 3 and 6 months for DPMs were similar to or even worse than that for
baseline Cox model. These findings suggest that time-dependent albumin and ECOG PS
may be able to considerably improve short-term prediction but may be less relevant for
longer-term prognosis.
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Figure 3. IPCW AUC and 95% CIs for survival prediction at horizon time 1 month from models
using time-dependent albumin (left), and ECOG PS (right). p values at the top of each plot are for
comparing the DPM using both the time-dependent variable and baseline covariates and the baseline
Cox model at landmarks of 2, 6, and 12 months.

Based on IPCW AUC, the DPM with both baseline and time-dependent covariates
(third approach) is the most favored model across the scenarios. Therefore, model calibra-
tion was assessed for the DPM with both time-dependent variables and baseline covariates
at landmarks of 1, 3, and 6 months. Patients in the validation set who were at risk at a
particular landmark were partitioned into 10 groups on the basis of the predicted survival
probabilities at a horizon time of 1 month. The 95% CIs of the coefficients for all the groups
at each landmark crossed the diagonal identity line, suggesting that the DPMs perform
well in terms of calibration (Figure 4). In addition, a Wald test was applied to examine
whether there existed a group in which the observed number of events was statistically
different from the predicted number of events. p values for the DPM using time-dependent
albumin and baseline covariates at landmarks of 1, 3, and 6 months were 0.438, 0.500, and
0.409, respectively, and p values for the DPM using time-dependent ECOG PS and baseline
covariates at landmarks of 1, 3, and 6 months were 0.084, 0.598, and 0.863, confirming what
is observed in Figure 4.

Cancers 2022, 14, x  11 of 17 
 

 

groups at each landmark crossed the diagonal identity line, suggesting that the DPMs 
perform well in terms of calibration (Figure 4). In addition, a Wald test was applied to 
examine whether there existed a group in which the observed number of events was sta-
tistically different from the predicted number of events. p values for the DPM using time-
dependent albumin and baseline covariates at landmarks of 1, 3, and 6 months were 0.438, 
0.500, and 0.409, respectively, and p values for the DPM using time-dependent ECOG PS 
and baseline covariates at landmarks of 1, 3, and 6 months were 0.084, 0.598, and 0.863, 
confirming what is observed in Figure 4. 

 
Figure 4. Calibration plot comparing observed and predicted deaths from DPMs using time-de-
pendent albumin (left), ECOG PS (right), and baseline covariates for patients with advanced NSCLC 
at landmarks of 1, 3, and 6. Observed hazards for each group of patients and confidence intervals 
were estimated from a Poisson regression model. The dashed line is the identity line. p values are 
from the Wald test wherein all the coefficients of a group are 0 or not. 

3.3. Dynamic Prediction Model Considering Multiple Time-Dependent Variables 
The proposed DPM allows the incorporation of more than one time-dependent pre-

dictor. It is conceivable to acquire a more accurate DPM with more available information. 
A DPM was fit using patients with both time-dependent albumin and ECOG PS, and the 
number of patients with available data at baseline was reduced by more than 10% com-
pared to the numbers of patients used above. The dynamic hazard ratios for albumin de-
crease and ECOG PS increase were similar to those displayed in the DPM with only one 
time-dependent predictor. Importantly, the time-dependent IPCW AUC for this DPM was 
slightly higher than that for the DPM with only time-dependent albumin and much better 
than that for the DPM with time-dependent ECOG PS over the disease course. Specifically, 
the IPCW AUC for the DPM with both time-dependent albumin and ECOG PS was sta-
tistically significantly higher than that for the DPM with only time-dependent albumin at 
landmarks of 0 through 7. The IPCW AUCs for the DPMs after a landmark of 3 months 
were statistically significantly higher than that for the baseline Cox model. In the calibra-
tion plot, a few of the 95% CIs did not cover the identity line, and p values of the Wald test 
at landmarks 1 and 6 were less than 0.05, which suggests that the model incorporating 
both time-varying albumin and ECOG PS may have been slightly mis-calibrated (Figure 
5). 

Figure 4. Calibration plot comparing observed and predicted deaths from DPMs using time-
dependent albumin (left), ECOG PS (right), and baseline covariates for patients with advanced
NSCLC at landmarks of 1, 3, and 6. Observed hazards for each group of patients and confidence
intervals were estimated from a Poisson regression model. The dashed line is the identity line.
p values are from the Wald test wherein all the coefficients of a group are 0 or not.
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3.3. Dynamic Prediction Model Considering Multiple Time-Dependent Variables

The proposed DPM allows the incorporation of more than one time-dependent pre-
dictor. It is conceivable to acquire a more accurate DPM with more available information.
A DPM was fit using patients with both time-dependent albumin and ECOG PS, and
the number of patients with available data at baseline was reduced by more than 10%
compared to the numbers of patients used above. The dynamic hazard ratios for albumin
decrease and ECOG PS increase were similar to those displayed in the DPM with only one
time-dependent predictor. Importantly, the time-dependent IPCW AUC for this DPM was
slightly higher than that for the DPM with only time-dependent albumin and much better
than that for the DPM with time-dependent ECOG PS over the disease course. Specifically,
the IPCW AUC for the DPM with both time-dependent albumin and ECOG PS was sta-
tistically significantly higher than that for the DPM with only time-dependent albumin at
landmarks of 0 through 7. The IPCW AUCs for the DPMs after a landmark of 3 months
were statistically significantly higher than that for the baseline Cox model. In the calibration
plot, a few of the 95% CIs did not cover the identity line, and p values of the Wald test at
landmarks 1 and 6 were less than 0.05, which suggests that the model incorporating both
time-varying albumin and ECOG PS may have been slightly mis-calibrated (Figure 5).

Cancers 2022, 14, x  12 of 17 
 

 

 
Figure 5. IPCW AUC and calibration plot for the DPM with time-dependent albumin and ECOG 
PS. p values at the top of the left plot are for comparing the DPM using both time-dependent varia-
bles and baseline covariates and the baseline Cox model at landmarks of 2, 6, and 12 months. p 
values in the right plot are from the Wald test wherein all the coefficients of a group are 0 or not. 

4. Discussion 
The ultimate goal of this study is to improve end-of-life care by providing an accurate 

prognosis based on a patient’s evolving clinical factors. We have presented a framework 
for constructing spline-based dynamic prediction models using a landmarking approach 
and time-dependent methods for assessing model performance. Near-term prediction us-
ing a DPM was significantly improved compared to a static model. The developed DPM 
can be applied to other longitudinal studies, especially to data with irregularly spaced 
measurements. In a previous study, a kernel-based DPM using landmarking was pro-
posed that can also deal with irregular measurements [36]. Compared with the kernel ap-
proach, the approach proposed in this study may be easier to implement and can use ex-
isting statistical software. Additionally, when working with a large real-world dataset and 
multiple time-dependent predictors, our model is less computationally demanding. Im-
portantly, the DPM can be used to predict future survival not only for new patients at 
baseline but also for patients at follow-up visits. 

Figure 5. IPCW AUC and calibration plot for the DPM with time-dependent albumin and ECOG PS.
p values at the top of the left plot are for comparing the DPM using both time-dependent variables
and baseline covariates and the baseline Cox model at landmarks of 2, 6, and 12 months. p values in
the right plot are from the Wald test wherein all the coefficients of a group are 0 or not.
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4. Discussion

The ultimate goal of this study is to improve end-of-life care by providing an accurate
prognosis based on a patient’s evolving clinical factors. We have presented a framework
for constructing spline-based dynamic prediction models using a landmarking approach
and time-dependent methods for assessing model performance. Near-term prediction
using a DPM was significantly improved compared to a static model. The developed
DPM can be applied to other longitudinal studies, especially to data with irregularly
spaced measurements. In a previous study, a kernel-based DPM using landmarking was
proposed that can also deal with irregular measurements [36]. Compared with the kernel
approach, the approach proposed in this study may be easier to implement and can use
existing statistical software. Additionally, when working with a large real-world dataset
and multiple time-dependent predictors, our model is less computationally demanding.
Importantly, the DPM can be used to predict future survival not only for new patients at
baseline but also for patients at follow-up visits.

The results illustrate that, particularly later in the disease course, the prediction
accuracy of a DPM using time-dependent albumin is comparable to, and perhaps even
better than, that of a DPM using time-dependent ECOG PS. It may be possible to further
improve prediction accuracy by incorporating other time-dependent clinical factors in
the DPM. Moreover, it is ideal to obtain a DPM with only objective clinical factors which
performs similarly to or even better than a DPM including ECOG PS. The study was
restricted by the limited collection of other appealing biomarkers (e.g., absolute lymphocyte
count, neutrophil count) and clinical factors. For example, the use of noninvasive ventilation
or supplemental oxygen might also be important to support end-of-life care and palliate
discomfort for patients with advanced NSCLC [37]. When data on enough patients are
available, it may be valuable to build a DPM incorporating all available information. A
DPM may provide clinically valuable evidence for physicians to assist their routine practice.
With the increasing applications and development of EHR databases, there will be more
and better data available in the future.

The proposed DPM is built under the framework of landmarking, which does not
require strong assumptions regarding the data generating mechanism. However, the ap-
proach still needs a working model, this being a spline-based Cox model in this study, and
the working model may be mis-specified to a degree at some landmarks. This drawback is
shared by other landmark models [36]. From a practical perspective, the working model
in the landmarking approach can be flexibly and carefully specified after gathering infor-
mation about the study hypotheses and population. In a complicated problem, dynamic
prediction using the landmarking approach is still feasible and useful, but implementation
may be difficult for the joint modeling approach, which needs strong assumptions on the
data generating process.

A model-based calibration method was applied in this study because it could be easily
extended to the Cox model. It may be valuable to use some other calibration methods
and compare them in the future. The results in this study show a good calibration of the
DPMs. It is believable that when the proposed DPM is applied in other settings, such as the
data from other countries or data collected in the future, the quality of model calibration
may decline. This means that we should be careful about model generalization. Then, the
DPM needs to be re-calibrated to be able to provide reliable predictions. Further study for
calibrating the DPM as well as full external validation is needed.

A major strength of our study was the use of longitudinal lab values, ECOG PS,
and relatively robust mortality data from the Flatiron Health nationwide real-world EHR
database, which is broadly representative of advanced NSCLC patients in the US [17].
There were several limitations to this paper. Firstly, the proposed DPM used spline basis
functions. In this paper, Wendland basis functions were used and the number of basis
functions was determined according to the range of landmarks. The choice of basis function
and number of nodes was decided by the authors’ preference. Second, the proposed DPM
did not consider the dependence of measurement times on the patient’s clinical factors.
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As this paper is interested in short-term prediction, this problem may not influence the
accuracy of prediction in a meaningful way. Third, we believe including longitudinal
treatment information may improve long-term survival. However, along with the disease
course, there will be more missingness on the longitudinal predictors, which could reduce
the prediction accuracy of DPMs. In summary, the proposed DPM may be practically
valuable in improving end-of-life care.

5. Conclusions

In terms of their ability to discriminate poor and better prognosis NSCLC patients,
the performance of prediction models can be substantially improved by incorporating
time-varying patient features and associations that vary over the disease course, especially
for near-term prediction. Remarkably, the DPM using time-dependent albumin may be as
good as, or even better than, using time-dependent ECOG PS, which is desirable because
albumin is an objective clinical measurement unlike ECOG PS. A DPM using both time-
dependent albumin and ECOG PS performs slightly better than when using either alone or
in combination with baseline features.
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Figure A3. IPCW AUC and its 95% CI for the DPM using time-dependent albumin assessed at
horizon time of 0.5 month (left), 3 months (middle), and 6 months (right). P values at the top of each
plot are for comparing the DPM using both time-dependent albumin and baseline covariates and the
baseline Cox model at landmarks of 2, 6, and 12 months.
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