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Abstract
Mechanistic models are a powerful tool to gain insights into biological processes.
The parameters of such models, e.g. kinetic rate constants, usually cannot be mea-
sured directly but need to be inferred from experimental data. In this article, we study
dynamical models of the translation kinetics after mRNA transfection and analyze
their parameter identifiability. That is, whether parameters can be uniquely determined
from perfect or realistic data in theory and practice. Previous studies have considered
ordinary differential equation (ODE) models of the process, and here we formulate a
stochastic differential equation (SDE)model. For bothmodel types, we consider struc-
tural identifiability based on the model equations and practical identifiability based
on simulated as well as experimental data and find that the SDE model provides bet-
ter parameter identifiability than the ODE model. Moreover, our analysis shows that
even for those parameters of the ODE model that are considered to be identifiable, the
obtained estimates are sometimes unreliable. Overall, our study clearly demonstrates
the relevance of considering different modeling approaches and that stochastic models
can provide more reliable and informative results.
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1 Introduction

mRNA transfection is the process of introducing mRNA into a living cell. mRNA
delivery has become increasingly interesting for biomedical applications because it
enables treatment of diseases bymeans of targeted expression of proteins and it is tran-
sient, avoiding the risk of permanently integrating into the genome (see e. g. Sahin et al.
2014). The most prominent applications of mRNA transfection are the mRNA-based
vaccines that are successfully used to fight the COVID-19 pandemic (DeFrancesco
2020; Borah et al. 2021). These successful use cases demonstrate the importance of a
precise understanding of the dynamics of the underlying processes.

We aim at facilitating further insights into the determinants of the mRNA deliv-
ery process and the translation kinetics through the use of mechanistic modeling and
parameter inference for such models from experimental data. Therefore, we consider
data from an mRNA transfection experiment using fluorescence reporters and fluo-
rescence microscopy which is one of the few ways to measure quantities within a
living cell over time (i. e. keeping it alive is necessary). Due to the discrete nature
of the molecular species within a cell and due to the fact that random fluctuations
play a key role (Elowitz et al. 2002; Raj and van Oudenaarden 2008), a continuous-
time, discrete-space Markov process, also called a Markov jump process (MJP), for
which the dynamics are described by the so-called chemical master equation (CME),
is widely accepted to be an appropriate stochastic description of the biochemical
processes within a cell (Schnoerr et al. 2017; Gillespie 1992). However, parameter
inference for MJPs is computationally very demanding and often infeasible (see e. g.
Warne et al. 2019). Therefore, several other representations of the biochemical kinetics
have been developed. Higham (2008) provides an accessible introduction to those.
To some extent they can be considered as approximations to the corresponding MJP.
The most commonly used representation is the reaction rate equation (RRE) which
is a system of ordinary differential equation (ODEs) and thus provides a determinis-
tic and state-continuous description of the kinetics. One approach that preserves the
stochastic nature of the underlying process is the approximation by Itô diffusion pro-
cesses. These are continuous-time, continuous-space stochastic processes described
by Itô-type stochastic differential equation (SDEs).

Single-cell fluorescence data from transfection experiments has been analyzed
based on ODE modeling in several previous studies, e. g. in Ligon et al. (2014),
Leonhardt et al. (2014), Fröhlich et al. (2018), and Reiser et al. (2019). In all of
these studies, several parameters of the considered ODE models for the translation
kinetics after mRNA transfection were not identifiable from the experimental data.
Moreover, the quality of the parameter estimates, i. e. whether the true kinetic rates are
adequately captured, is unclear. Using models that explicitly account for stochasticity
can help improve our ability to determine kinetic parameters from experimental data
(Munsky et al. 2009). There are two important notions with respect to parameter
identifiability (Raue et al. 2009): Structural identifiability exclusively considers the
structure of the model including the model of the observations and answers the ques-
tion whether the parameters can be uniquely determined if we are given perfect data,
i. e. an infinite amount of data observed without measurement error and continuously
in time. Whereas practical identifiability is concerned with the question whether the
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parameters can be determined from a specific data set (which is always finite and
usually subject to measurement error). Browning et al. (2020) have recently compared
parameter identifiability for ODE and SDE modeling approaches for example models
from different contexts based on simulated data and showed that SDE modeling does
improve the identifiability for the studied models.

Here, we formulate an SDE model of the translation kinetics after mRNA transfec-
tion and compare its parameter identifiability to that of the corresponding ODEmodel.
This approach serves two purposes at the same time: First of all, we aim to get further
biological insight into the kinetic processes. Second, we investigate and showcase the
benefit of SDE models over ODE models with respect to parameter identifiability on
the specific biological example. In doing so, we build on the work of others: While the
same ODE model has already been considered e. g. by Fröhlich et al. (2018) and Ball-
nus et al. (2017), we contrast it with the corresponding SDE dynamics. Inference from
fluorescence data for SDEmodels has also been conducted e. g. in Heron et al. (2007),
Finkenstädt et al. (2008), and Komorowski et al. (2009), however for an experimental
setup that also included the transcription process, other than in the experiments con-
sidered here. We add the focus on parameter identifiability and the exclusive use of
diffuse priors as novel aspects.

This article is structured as follows: In Sect. 2, we describe the experimental data
that motivated the study. In Sect. 3, we present the biochemical reaction network
which we want to consider for the translation kinetics after mRNA transfection and
formulate its ODE and SDE representation. After stating the assumed model of the
observations and summarizing the parameters that we would like to infer from these
observations in Sect. 4, we consider several approaches to assess structural identifi-
ability of the parameters for both model types in Sect. 5. We define the parameter
posteriors for both modeling approaches and study the practical identifiability of the
parameters based on simulated and experimental data in Sect. 6, and conclude with a
summary and discussion of our findings in Sect. 7. All relevant code to perform the
presented analysis is available on Github: https://github.com/fuchslab/Translation_
kinetics_after_transfection.

2 Experimental data

We consider data that has previously been analyzed (based on ODE modeling) and
published in Fröhlich et al. (2018). The data was generated in an experiment where
human hepatoma epithelial cells from the cell line HuH7were transfected with mRNA
encoding a green fluorescent protein (GFP). The cells were fixed on micro patterned
protein arrays and time lapse microscopy images of the cells were taken every 10 min-
utes over the course of at least 30 hours (i.e. there are at least 180 measurements
per cell). For the first hour, the cells were incubated with mRNA lipoplexes which
consist of (cationic) lipid membrane encapsulating GFP coding mRNA. Afterwards,
the cells were washed with cell culture medium such that no further lipoplex uptake
occurred. The time point at which the lipoplexes were taken up, dissolved and released
the mRNA as well as the number of mRNA molecules released are unknown. For the
considered experimental setup, individual lipoplexes carry on average 350 mRNAs
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Fig. 1 Trajectories of the mean fluorescence intensity for seven cells from the mRNA transfection experi-
ment in Fröhlich et al. (2018) for eGFP and d2eGFP (April 27, 2016), respectively

and the number of lipoplexes entering a single cell seems to be very low (Leonhardt
et al. 2014).

The releasedmRNAwas translated into a fluorescent protein which caused the cells
to fluoresce. For each image taken during the experiment, the fluorescence intensity is
integrated over squares occupied by one cell in order to obtain one value for the mean
fluorescence intensity per cell and time point (see Fröhlich et al. 2018, for further
details about the image analysis and Fig. 1 therein for an example image).

The experiment was conducted with two different types of GFP that differ in their
protein lifetime: enhanced GFP (eGFP) and a destabilized enhanced GFP (d2eGFP).
The data set contains measurements for more than 800 cells for each type of GFP.
Some trajectories of the mean fluorescence intensity are displayed in Fig. 1.

It was shown before that ODE models of the translation kinetics of an individual
cell are not globally identifiable with the available experimental data as described
above (Ballnus et al. 2017). Several of the ODEmodel parameters cannot be uniquely
determined based on one observed fluorescence trajectory. Fröhlich et al. (2018) use
a mixed-effect ODE model in order to incorporate the translation kinetics of sev-
eral cells and data for both different types of GFP (eGFP and d2eGFP). Through this
approach, they are able to improve parameter identifiability (by breaking the symmetry
between the degradation rate constants); however, their approach is computationally
very intense, necessitates distribution assumptions about the random effects, required
conducting the experiment with two types of GFP, and still leaves several param-
eters non-identifiable. Here, we are interested in the question whether the use of an
SDEmodel can improve the parameter identifiability evenwhen only one fluorescence
trajectory is observed.

3 Mathematical models of the translation kinetics

Following the introduction of mRNA into a living cell, i. e. after mRNA transfection,
the information contained in the mRNAmolecules is used for the production of (green
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fluorescent) proteins, which is the translation process. We will focus on modeling the
translation kinetics of one cell in order to study parameter identifiability based on one
observed fluorescence trajectory. Therefore, we only consider the (released) mRNA
and the GFP molecules explicitly:

X(t) =
(

X1(t)
X2(t)

)
amount of mRNA molecules,

amount of GFP molecules.

As the number of lipoplexes entering a cell is small (Leonhardt et al. 2014) and as
most observed fluorescence trajectory do not show a bi-phasic behaviour, we assume
that all mRNA molecules (within one cell) are released at once from the lipoplexes
and denote this initial time point by t0. Before t0, there are neither mRNA nor GFP
molecules, and at t0, an amount of m0 mRNA molecules is released, i.e.

X(t) ≡
(
0
0

)
for t < t0 and X(t0) =

(
m0
0

)
.

Conceivable extensions of this basic model are e. g. to include enzymatic degradation
of the mRNA and/or the protein, ribosomal binding to the mRNA for translation, and a
maturation step of the protein. However, we will only consider the basic configuration
as described above.

3.1 Markov jump process

Assuming that the matter within the cell is well-stirred and in thermal equilibrium, an
MJP is regarded to be the most adequate representation of this system after t0. In our
model, there are three possible reactions:

X1
θ1−→ ∅ degradation of mRNA,

X1
θ2−→ X1 + X2 translation,

X2
θ3−→ ∅ degradation of GFP

with kinetic rate parameters θ1, θ2, and θ3. Given the state vector X(t) =
(X1(t), X2(t))T , the propensity functions of the three reactions are

f1(X(t)) = θ1X1, f2(X(t)) = θ2X1, and f3(X(t)) = θ3X2,

i. e. the probability that reaction i occurs within the next time interval of length �t is
approximately fi (X(t))�t for i = 1, 2, 3.

If we denote the probability distribution of the random variable X(t) by

Pi, j (t) = P(X1(t) = i, X2(t) = j)
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for a fixed initial condition on X(t0), the corresponding CME reads

∂ Pi, j (t)

∂t
= θ1(i + 1)Pi+1, j (t) + θ2i Pi, j−1(t) + θ3( j + 1)Pi, j+1(t)

− (θ1i + θ2i + θ3 j)Pi, j (t).

Although the system contains only first-order reactions, there is no known closed-form
solution to the CME. Thus, the generation of model trajectories and the evaluation
of the likelihood of data given parameter values requires computationally demanding
stochastic simulations. This fact impedes efficient inference for this MJP and leads to
the consideration of other modeling approaches.

3.2 ODEmodel

The RRE is a system of ODEs that provides a deterministic and state-continuous
description of biochemical kinetics and can be derived as the large-volume limit of
the corresponding MJP (see e. g. Kurtz 1972). The following system of ODEs is a
deterministic approximation of the MJP modeling the dynamics as described above:

dX(t)

dt
=

( −θ1X1(t)
θ2X1(t) − θ3X2(t)

)
for t ≥ t0. (1)

This system has previously been formulated and analyzed e. g. in Leonhardt et al.
(2014). It admits the solution

X1(t) = m0 exp (−θ1(t − t0)) ,

X2(t) =
{

θ2m0
θ3−θ1

(
e−θ1(t−t0) − e−θ3(t−t0)

)
, for θ1 �= θ3,

θ2m0(t − t0)e−θ3(t−t0) , for θ1 = θ3.
(2)

Note that the solution for X2(t) is symmetric in the parameters θ1 and θ3. Moreover,
note that while it is common for the RRE to describe molecule concentrations; here,
we let X(t) denote molecule numbers. However, since the model that we consider
here contains only first-order reactions, this does not affect the interpretation of the
kinetic rate parameters (i. e. Eq. (1) would look the same for concentrations).

3.3 SDEmodel

While the ODE model of the translation kinetics after mRNA transfection had been
considered before, we are the first to formulate the stochastic but state-continuous
approximation to theMJP in Sect. 3.1 based on an (Itô) diffusion process. The approx-
imating diffusion process is described by an SDE which is known as the chemical
Langevin equation (CLE) in the context of biochemical kinetics (Gillespie 2000). The
CLE is derived based on the changes inmolecule numbers caused by the three possible
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reactions and on the corresponding propensities and reads:

dX(t) =
( −θ1X1(t)

θ2X1(t) − θ3X2(t)

)
dt +

(√
θ1X1(t) 0
0

√
θ2X1(t) + θ3X2(t)

)
dB(t)

(3)

for t ≥ t0 and where B(t) is a 2-dimensional standard Brownian motion. The solution
of Eq. (3) is not explicitly known and will be approximated based on the Euler-
Maruyama scheme as explained in Sect. A.1 of the supplementary material. See Fuchs
(2013) for a concise introduction to diffusion processes and several approaches to
derive general diffusion approximations.

4 Model parameters and observations

4.1 Model of the observations

In the experiment described in Sect. 2, neither the amount ofmRNAmolecules nor that
of GFP molecules can be measured directly. Instead, a fluorescence signal is observed
which is composed of a background fluorescence and a signal which is proportional
to the amount of GFP molecules. Moreover, previous studies assumed a constant
offset and multiplicative measurement noise in the recorded fluorescence trajectories
(Fröhlich et al. 2018). Therefore, denoting a trajectory of mean fluorescence intensity
observed at time points tk , for k = 1, . . . , K , by {yk}k=1,...,K , we assume that

yk = (scale · X2(tk) + offset) · εk, εk ∼ logN (0, σ 2),

where the random variables εk are independent.
Note that the observations depend only on the amount X2 of GFP molecules, but

not directly on the amount X1 of mRNA molecules.

4.2 Model parameters

Based on the observations {yk}k=1,...,K , we aim to infer the following unknown param-
eters:

• The three kinetic parameters θ = (θ1, θ2, θ3) that denote the rate constants for
mRNA degradation, translation, and GFP degradation,

• The initial amount m0 of mRNA molecules and the time point t0 at which it is
released,

• The scaling factor scale and the offset for the fluorescence signal,
• And the standard deviation σ of the measurement errors.

In the remainder of this work, we investigate how far such inference is possible in
theory and practice.
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5 Structural identifiability analysis

Our main interest lies in the question which of the model parameters for our two
model types (ODE and SDE) can be inferred from the experimental data as described
in Sects. 2 and 4. Here, we first focus on the parameters θ , m0, scale, and offset that
drive the dynamics of the process and the fluorescence signal.We analyze the structural
identifiability which only considers the model equations of the process dynamics and
the observation equation (not the actual data) and assumes that we are in a perfect
data situation, i. e. we have an infinite amount of data observed without measurement
error (Raue et al. 2009). Plainly speaking, structural identifiability analysis answers the
question whether different parameter combinations can lead to the samemodel output.
While for ODEmodels, there are analytical methods to assess structural identifiability,
no such methods exist for SDE models. Therefore, we consider several approaches
that do not directly assess the structural identifiability for our SDE model, but answer
related questions. In the following subsections, we consider a transformed version of
both model types, we make use of a surrogate model and the open source software
DAISY as has recently been suggested by Browning et al. (2020), and finally we also
study simulations of both model types.

5.1 Transformedmodels

We can reformulate the differential equations for both model types by setting

Z(t) =
(

Z1(t)
Z2(t)

)
:=

(
X1(t)
m0

scale · X2(t) + offset

)
,

which means that

Z(t) ≡
(

0
offset

)
for t < t0, and Z(t0) =

(
1

offset

)
.

Hence, the second component of the transformed process models the fluorescence
signal which we assume to be observed, meaning y = Z2.

Transformed ODEmodel

For the ODE model in Eq. (1), the transformed model reads

dZ(t)

dt
=

( −θ1Z1(t)
scale θ2m0Z1(t) − θ3(Z2(t) − offset)

)
for t ≥ t0, (4)
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and has the solution

Z1(t) = exp (−θ1(t − t0)) ,

Z2(t) =
{

scale θ2m0
θ3−θ1

(
e−θ1(t−t0) − e−θ3(t−t0)

) + offset , for θ1 �= θ3,

scale θ2m0(t − t0)e−θ3(t−t0) + offset , for θ1 = θ3.

The parameters scale, m0, and θ2 appear only as a product. Thus, it can already be
deduced from this equation that at most the product of the three parameters will be
identifiable but not the three parameters individually (Fröhlich et al. 2018). Moreover,
since only Z2(t) is observed and it is symmetric in the parameters θ1 and θ3 (i. e.
switching their values will lead to the same model output), these two parameters can
at most be locally identifiable if no further constraints are imposed on them as done
in Leonhardt et al. (2014).

Transformed SDEmodel

For the SDE model in Eq. (3), we apply the Itô formula (as stated in Sect. A.1 of the
supplementary material) to obtain the transformed model

dZ(t) =
( −θ1Z1(t)
scale θ2m0Z1(t) − θ3(Z2(t) − offset)

)
dt

+
(√

θ1
m0

Z1(t) 0

0
√
scale

√
scale θ2m0Z1(t) + θ3(Z2(t) − offset)

)
dBt for t ≥ t0. (5)

Note that here, the parameters scale andm0 also appear outside the product scale θ2m0.
Furthermore, there is no apparent symmetry between θ1 and θ3. Therefore, it might be
possible to gain more information about the individual parameters from data for the
SDE model than for the ODE model.

5.2 Using a surrogatemodel

Next, we want to use the open source software DAISY (Differential Algebra for Iden-
tifiability of SYstems, Bellu et al. 2007) to assess the structural identifiability of the
parameters in the two models of the translation kinetics. DAISY is a software tool
that implements a differential algebra algorithm to perform structural identifiability
analysis for systems of polynomial or rational ODEs and that also allows to include
unknown initial conditions. We use the transformed models from the previous sub-
section for the identifiability analysis. For the ODE model in Eq. (4), the analysis
with DAISY is straight forward since it is intended for the use for ODE models.
After applying DAISY, the obtained output shows that when considering the set of
parameters {θ, m0, scale, offset}, the model is non-identifiable. The DAISY output
also reveals that this non-identifiability is due to the fact that the parameters θ1 and θ3
are only locally identifiable and the parameters θ2, m0, and scale are not individually
identifiable, but only their product is. This confirms the assertions from the previous
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subsection. Moreover, we obtain that the remaining parameter offset is structurally
identifiable.

For SDE models, Browning et al. (2020) suggest to formulate a surrogate model
based on the moment equations of the diffusion process. The moment equations are
a system of ODEs, and thus, DAISY can be applied to this system. For the SDE (5),
let Mi j (t) = E

[
(Z1(t))i (Z2(t)) j

]
be the (mixed) moment of the diffusion process

of order i and j . The moments are obtained by applying the Itô formula (as stated
in Sect. A.1 of the supplementary material) to (Z1(t))i (Z2(t)) j and then taking the
expectation. Considering the first and the second moments of the process states results
in the following system of ODEs:

dM10(t)

dt
= −θ1M10(t), M10(t0) = 1,

dM01(t)

dt
= scale θ2m0 M10(t) − θ3 M01(t) + θ3offset, M01(t0) = offset,

dM20(t)

dt
= θ1

m0
M10(t) − 2θ1 M20(t), M20(t0) = 1,

dM02(t)

dt
= scale2θ2m0 M10(t) + θ3(scale

+ 2offset) M01(t) − 2θ3 M02(t)

+ 2scale θ2m0 M11(t) − scale θ3offset, M02(t0) = offset2,

dM11(t)

dt
= θ3offset M10(t) + scale θ2m0

M20(t) − (θ1 + θ3) M11(t), M11(t0) = offset,

where the equations for the two first moments M10 and M01 coincide with the ODE
model in Eq. (4). Since in the experiment, only the fluorescence signal is observed,
we consider the moments that only depend on the second component of the process,
i. e. M01 and M02, as output states for the identifiability analysis. Using DAISY, we
obtain that the surrogate model is globally identifiable, i. e. all six parameter values
could be uniquely determined if we were able to observe the moments M01 and M02
directly, infinitely long over time, and without measurement error. While this implies
that the parameters are structurally identifiable from moment measurements, it does
not directly answer our original question of whether the parameters of the SDE model
can be identified from perfect observations of a single fluorescence trajectory.

Moreover, as has already been pointed out, structural identifiability analysis
assumes a perfect data situation. From its results, we cannot conclude that the param-
eters will be identifiable from the actual experimental data (which is always finite and
usually subject to measurement error). In contrast, the notion of practical identifiabil-
ity is concerned with the question whether the parameters can be determined from a
specific data set (Raue et al. 2009) and we will address this question in Sect. 6.
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Fig. 2 The ODE trajectory and 20 SDE trajectories of the fluorescence intensity simulated for different
values of m0, θ2, and scale, while keeping their product constant at scale θ2m0 = 350. The remaining
parameters are set to θ1 = 0.11, θ3 = 0.03, offset = 8.9, and t0 = 0

5.3 Simulation-based assessment of parameter influence

Another attempt to assess parameter identifiability is to simulate from both model
types for different parameter settings and compare whether we see differences in the
simulation output. To obtain simulations from the ODE model, we use its solution
in Eq. (2). Since the ODE model is deterministic, each parameter setting yields one
unique output trajectory; whereas for the SDE model, we simulate several trajectories
for each parameter setting using the Euler-Maruyama scheme with a time step of 0.01
hours.

Keeping the product scale�2m0 constant

As already pointed out in Sect. 5.1, the trajectories of the fluorescence intensity for
the ODE model are identical if the product scale θ2m0 and the remaining parameters
are fixed, even when the individual factors scale, θ2, and m0 vary. To assess whether
this is (at least approximately) also the case for the SDE model, we simulate several
trajectories with different values for scale, θ2, and m0 while keeping their product
constant. For each parameter setting, we set the same random seed at the beginning
of the simulation. To ensure that the analysis is performed in a relevant regime, we
chose the parameters similar to the parameters estimated by Fröhlich et al. (2018):
scale θ2m0 = 350, θ1 = 0.11, θ3 = 0.03, offset = 8.9, and t0 = 0. Fig. 2 displays the
simulated trajectories.
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Fig. 3 TheODE trajectory and 20 SDE trajectories of the fluorescence intensity simulated for two parameter
combinations where the values of θ1 and θ3 are swapped. The remaining parameters are set to scale = 17.5,
θ2 = 0.1, m0 = 200, offset = 8.9, and t0 = 0

It is evident that the SDE trajectories behave differently for different combinations
of scale, θ2, and m0 which yield the same values of the product scaleθ2m0. For exam-
ple, when we keep m0 fixed while increasing scale and decreasing θ2, the variation
between but also within the trajectories increases. When we keep scale fixed while
decreasingm0 and increasing θ2, especially the variation between trajectories seems to
increase. And finally, whenwe keep θ2 fixedwhile decreasingm0 and increasing scale,
the variation between and within the trajectories increases. Our focus is on estimating
the parameters from individual observed trajectories. In this context, especially the
difference in the variation within the trajectories is relevant.

Swapping the degradation rate constants�1 and�3

The trajectories of the fluorescence intensity for theODEmodel are also identical if the
values for θ1 and θ3 are swappedwhile the remaining parameters are fixed.We simulate
trajectories for the parameter combinations (θ1, θ3) = (0.11, 0.03) and (θ∗

1 , θ∗
3 ) =

(0.03, 0.11), respectively, while setting the remaining parameters to scale = 17.5,
θ2 = 0.1, m0 = 200, offset = 8.9, and t0 = 0. For the SDE model, we again simulate
several trajectories for both parameter settings and set the same random seed at the
beginning of the simulation.

Figure 3 shows the ODE trajectory and several SDE trajectories in one panel for
each of the two parameter combinations separately. Whereas, Fig. 4 presents one SDE
trajectory for each of the two parameter combinations together in one panel. Again,
the SDE trajectories do behave differently for the different parameter combinations.
While there seems to be only little difference in the variation between the trajectories,
the variation within the trajectories is clearly higher for lower θ1 and higher θ3. This
indicates that it may be possible to uniquely determine the values of θ1 and θ3 even
when estimating from only one observed trajectory.
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Fig. 4 One trajectory of the fluorescence intensity for the SDEmodel simulated for each of the twoparameter
combinations where the values of θ1 and θ3 are swapped. The remaining parameters are set to scale = 17.5,
θ2 = 0.1, m0 = 200, offset = 8.9, and t0 = 0

6 Posterior properties and credible intervals

After having studied the structural properties of the ODE and SDE model in the
previous section; next, wewould like to assess the practical parameter identifiability by
trying to estimate the parameters from data as described in Sect. 4. We take a Bayesian
approach to parameter estimation because it allows for uncertainty assessment of
the parameter estimates and also for handling unobserved process components and
measurement error by using Markov chain Monte Carlo (MCMC) methods to sample
from the parameter posterior distribution. Therefore, in this section, we define the
parameter posterior densities for the two model types and study their properties based
onMCMC sampling results for simulated data generated without and with (simulated)
measurement error as well as for experimental data.

6.1 Formulation of the inference problem

In Bayesian statistics, we can formulate our assumptions and general knowledge about
the model parameters ξ ∈ � ⊆ R

p in terms of a prior distribution with probability
density p(ξ). After having observed dataD about the phenomenonwhichwe are trying
tomodel, we update our knowledge about the parameter and describe it by the posterior
distribution with density π (ξ |D). In our case, we consider dataD = {yk}k=1,...,K and
the vector of all unknown parameters is ξ = (θ , m0, scale, offset, t0, σ ). The relation
between the prior and the posterior density resulting from Bayes’ theorem is given by:

π (ξ |D) ∝ p (D | ξ) p (ξ) ,
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where p (D | ξ) denotes the density of the distribution of D conditioned on ξ and
is determined by the considered model. Viewed as a function of the parameter,
L (ξ |D) := p (D | ξ) is called the likelihood (function). Comprehensive introduc-
tions to Bayesian statistics can be found e. g. in Lee (2012) and Gelman et al. (2013).

To sample from the subsequently formulated posterior densities for the two model
types, we use the open source software Stan (Carpenter et al. 2017) which provides
an efficient C++ implementation of the Hamiltonian Monte Carlo (HMC) based No-
U-Turn Sampler (NUTS). See Sect. A.3 of the supplementary material for a brief
introduction to this topic. We use Stan through its R interface rstan (Stan Develop-
ment Team 2019).

Posterior of the ODEmodel

For the ODE model, there is a deterministic relationship between the process values
X(t) and the parameters θ , m0 and t0 (or between the fluorescence signal and the
parameters additionally including scale and offset, respectively).

Define the index k∗ := min{k ∈ {1, . . . , K }|tk ≥ t0} of the first observation time
point after the mRNAmolecules are released, then the posterior density π from which
we would like to sample is proportional to

π
(
θ, m0, scale, offset, σ

2, t0|{yk}k=1,...,K

)

∝
(

K∏
k=k∗

φ

(
log(yk)

∣∣∣∣log
(
scale

θ2m0

θ3−θ1

(
e−θ1(t−t0) − e−θ3(t−t0)

)
+offset

)
, σ 2

))

·
⎛
⎝k∗−1∏

k=1

φ
(
log(yk)

∣∣∣log (offset) , σ 2
)⎞
⎠

· p(θ1)p(θ2)p(θ3)p(m0)p(t0)p(scale)p(offset)p(σ 2), (6)

where φ(·|μ, η2) denotes the density of the normal distribution with mean μ and
variance η2 and the p(·) denote the parameter prior densities which we assume to be
independent.

If the priors p(θ1) and p(θ3) are symmetric to each other, then the posterior is also
symmetric with respect to the two degradation rate constants.

The scaling factor scale, the translation rate constant θ2, and the initial amount of
mRNA m0 appear only as a product in the likelihood function; therefore, as pointed
out before, at most their product scaleθ2m0 is identifiable.

Posterior of the SDEmodel

For the SDE model, the states X(tk), for k = 1, . . . , K , of the process conditioned
on the parameters θ , m0 and t0 are random numbers (for tk ≥ t0). Hence, we have to
marginalize over the process states to obtain the posterior density of the parameters
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which we want to infer:

π
(
θ, m0, scale, offset, σ

2, t0|{yk}k=1,...,K

)

=
∫
R
2×K+

π
(
θ, m0, scale, offset, σ

2, t0, {X(tk)}k=1,...,K |{yk}k=1,...,K

)

dX(t1) . . . dX(tK ).

Therefore, again defining k∗ := min{k ∈ {1, . . . , K }|tk ≥ t0}, we would need to
sample from

π
(
θ, m0, scale, offset, σ

2, t0, {X(tk)}k=1,...,K |{yk}k=1,...,K

)

∝
(

K∏
k=1

φ
(
log(yk)| log (scale · X2(tk) + offset) , σ 2

))

·
(

K−1∏
k=k∗

π (X(tk+1)|X(tk), θ)

)
π (X(tk∗)|θ, m0, t0)

⎛
⎝k∗−1∏

k=1

δ(‖X(tk)−(0, 0)T ‖)
⎞
⎠

· p(θ)p(m0)p(t0)p(scale)p(offset)p(σ 2),

where φ(·|μ, η2) denotes the density of the normal distribution with mean μ and
variance η2, δ(·) denotes the Dirac delta function, ‖ · ‖ denotes a norm (e. g. the l2-
norm), and the factors π (X(tk+1)|X(tk), θ), k = k∗, . . . , K −1, denote the transition
density of the process. However, the fact that the process X switches from a deter-
ministic regime before t0 to a stochastic one after t0 complicates the estimation of t0
together with the remaining parameters. Therefore, we will assume that t0 is deter-
mined beforehand, e. g. based on the estimates for the ODE model. Consequently, we
sample from

π
(
θ, m0, scale, offset, σ

2, {X(tk)}k=1,...,K |{yk}k=1,...,K , t0
)

∝
(

K∏
k=1

φ
(
log(yk)| log (scale · X2(tk) + offset) , σ 2

))

·
(

K−1∏
k=k∗

π (X(tk+1)|X(tk), θ)

)
π (X(tk∗)|θ, m0, t0)

⎛
⎝k∗−1∏

k=1

δ(‖X(tk) − (0, 0)T ‖)
⎞
⎠

· p(θ)p(m0)p(scale)p(offset)p(σ 2). (7)

While for the ODE model, the posterior distribution is only 8-dimensional and can
be sampled from directly; for the SDE model, we need to sample from a (7 + 2K )-
dimensional distribution and then marginalize over the 2K dimensions of the process
states to obtain the posterior distribution of the parameters of interest. Moreover,
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Fig. 5 One trajectory used in the simulation study that was simulated with Gillespie’s algorithm with
parameters θ = (0.2, 0.32, 0.01), m0 = 240, t0 = 0.96, scale = 1.8, and offset = 8.5, and for the green
dotted line, multiplicative measurement error with σ = 0.02 was added to the fluorescence intensity (FI)

there is no explicit exact expression for the transition density π (X(tk+1)|X(tk), θ);
wherefore, it will be approximated by a normal density based on the Euler-Maruyama
scheme as explained in Sect.A.1 of the supplementarymaterial. For this approximation
to be appropriate, we have to ensure that the time steps between observations are small
enough.Wedo so inSect.A.2 of the supplementarymaterial. Formore complexmodels
or lower-resolution data, approaches like pseudo-marginal methods would be required
instead of the Euler-Maruyama scheme.

6.2 Estimation based on simulated data

In order to assess how well we can recover the model parameters for both model
types from individually observed trajectories, we first work with simulated data that
is generated with Gillespie’s algorithm (Gillespie 1976, 1977).

6.2.1 Sampling results for simulated data without measurement error

For now, we assume the fluorescence intensity to be observed without measurement
error. We consider synthetic data generated with parameters θ = (0.2, 0.32, 0.01),
m0 = 240, t0 = 0.96, scale = 1.8, and offset = 8.5, which are based on the results by
Fröhlich et al. (2018) and thus represent realistic values. The data was simulated with
Gillespie’s algorithm over a time interval of 30 hours which yields trajectories similar
to the experimental data, and we use the fluorescence intensity at 181 equidistant time
points as observations to mirror the structure of the experimental data. The simulated
fluorescence intensity (without measurement error) is depicted by the blue dotted line
on the right hand side of Fig. 5. We use Stan to sample from the posterior distributions
of the ODE model and the SDE model given the simulated data. Since we assume the
data to be observedwithoutmeasurement error, the parameter offset can be determined
directly from the first observation. Therefore, we do not include measurement error
(and thus the parameter σ ) and the parameter offset in the posterior distribution of the
SDE model. Whereas for the ODE model, deviations of the observed data from the
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deterministic ODE trajectory have to be attributed to measurement error; therefore,
the parameter σ has to be included in the posterior distribution of the ODEmodel. We
also include the parameter offset for the ODE model in order to avoid degeneracy of
the posterior. For the SDE model, we use the mean estimate of t0 obtained from the
sample for the ODE model as the fixed value of t0. We assume the following prior
distributions: θi ∼N≥0(0, 52) for i = 1, 2, 3, m0∼N≥0(300, 3002), scale∼U(0, 30),
where N≥a(μ, η2) denotes the normal distribution truncated from below by a, and
additionally for theODEmodel, offset∼U(0, 30),σ∼U(0.001, 10), and t0∼U(0, 30).
These diffuse priors reflect our little prior knowledge.

For both model types, we generate 8 HMC chains of 5000 iterations and discard the
first half of the iterations as warm-up. Thus, we use a posterior sample of size 20,000
for each model type in the subsequent analysis. Tables 1 and 2 summarize the Stan
output of the posterior samples for the ODE and the SDEmodel, respectively, and also
include the true parameter values that were used to simulate the data for comparison.
The tables also contain the 2.5%-, 50%-, and 97.5%-quantiles of the samples. We use
the interval between the 2.5%- and the 97.5%-quantile as an estimate of the 95%-
credible interval (CI). This choice of CI will lead to one wide interval in case of a
bimodal density rather than the union of two narrow intervals as it would be the case
for a highest posterior density region. This is in line with relating the width of a CI
to parameter identifiability and becomes relevant for θ1 and θ3 in the ODE case, see
Fig. 6. For the ODEmodel, we see that the parameters offset and t0 are well estimated
since mean and median of the sample correspond to the true value, the CIs are very
narrow, the effective sample size (ESS) neff is high and R̂ is equal to 1. As expected,
the measurement error parameter σ is estimated to be higher than the true value of
zero. Of greater interest are the remaining parameters as we can compare the results
for them between the two model types.

We first focus on the two degradation rate constants θ1 and θ3. Our analysis in
Sect. 5 already showed that for the ODE model, these two parameters are only locally
identifiable and the likelihood function landscape is symmetric with respect to them in
the case of identical priors for both parameters. This symmetry is for the rather unin-
formative prior distributions also preserved in the posterior distribution and apparent
in the density plots in Fig. 6. The density estimates of the posterior sample for the ODE
model are clearly bimodal. The reason that the two modes are not exactly symmetric
here is that HMC chains usually are only able to explore one mode and in our example
5 out of the 8 chains happen to end up in themodewhere θ1 is higher than θ3 while only
3 chains converge to the other mode. For sampling methods which facilitate switching
between modes, e.g. adaptive parallel tempering, this was not observed (results not
shown). The fact that each HMC chain only samples from one of the modes is also
the reason for the extremely low ESSs and the very high values of R̂ for θ1 and θ3 in
Table 1. Moreover, note that neither of the modes and not even the ranges of all values
in the posterior sample cover the true parameter values of θ1 and θ3.

For the SDE model on the other hand, Fig. 6 and Table 2 show that the posterior
density is clearly unimodal with respect to θ1 and θ3, and mean and median of the
sample are close or equal to the true values. High ESSs and R̂ values equal to 1 are
achieved, from which we derive reliability of the 95% CI. These are narrow and cover

123



56 Page 18 of 38 S. Pieschner et al.

Ta
bl
e
1

Su
m
m
ar
y
of

th
e
St
an

ou
tp
ut

fo
r
th
e
O
D
E
m
od
el
gi
ve
n
si
m
ul
at
ed

da
ta
w
ith

ou
tm

ea
su
re
m
en
te
rr
or
;t
he

tr
ue

pa
ra
m
et
er

va
lu
es

th
at
w
er
e
us
ed

to
si
m
ul
at
e
th
e
da
ta
;a
nd

th
e
pr
io
r
di
st
ri
bu
tio

ns
us
ed

fo
r
th
e
St
an

sa
m
pl
in
g,
w
he
re

N
≥a

(μ
,
η
2
)
de
no

te
s
th
e
no

rm
al
di
st
ri
bu
tio

n
tr
un

ca
te
d
fr
om

be
lo
w
by

a
an
d
U(

l,
u
)
de
no

te
s
th
e
un

if
or
m

di
st
ri
bu
tio

n

T
ru
e
va
lu
e

Pr
io
r
di
st
ri
bu
tio

n
M
ea
n

c.
v
.

2.
5%

50
%

97
.5
%

n e
ff

R̂

θ 1
0.
20

N
≥0

(0
,
52

)
0.
11

0.
63

4
0.
02

0.
16

0.
17

4
26

.6
5

θ 2
0.
32

N
≥0

(0
,
52

)
1.
52

1.
37

0
0.
02

0.
64

7.
56

12
16

8
1.
00

θ 3
0.
01

N
≥0

(0
,
52

)
0.
07

0.
94

3
0.
02

0.
02

0.
16

4
33

.0
0

m
0

24
0.
00

N
≥0

(3
00

,
30

02
)

20
4.
62

1.
01

7
2.
26

13
5.
79

72
4.
38

10
98

4
1.
00

sc
al
e

1.
80

U(
0,

30
)

7.
02

1.
13

7
0.
07

3.
46

27
.2
8

98
06

1.
00

of
fs
et

6.
50

U(
0,

30
)

6.
50

0.
01

1
6.
37

6.
50

6.
64

17
11

3
1.
00

t 0
0.
96

U(
0,

30
)

0.
96

0.
00

2
0.
96

0.
96

0.
97

18
71

8
1.
00

σ
0.
00

U(
0.
00

1,
10

)
0.
03

0.
05

4
0.
02

0.
03

0.
03

16
09

1
1.
00

θ 2
m
0

76
.8
0

–
21

3.
08

2.
48

7
4.
57

35
.9
9

16
68

.0
6

11
08

7
1.
00

θ 2
sc
al
e

0.
58

–
6.
46

2.
87

5
0.
17

0.
92

55
.0
0

77
04

1.
00

m
0
sc
al
e

43
2.
00

–
10

33
.3
0

2.
18

1
16

.4
8

19
5.
96

79
75

.2
2

78
99

1.
00

θ 2
m
0
sc
al
e

13
8.
24

–
12

4.
67

0.
00

7
12

2.
96

12
4.
66

12
6.
38

13
29

9
1.
00

M
or
eo
ve
r,
c.
v.
de
no

te
s
th
e
co
ef
fic
ie
nt

of
va
ri
at
io
n
an
d
th
e
co
lu
m
ns

he
ad
ed

by
pe
rc
en
ta
ge
s
co
nt
ai
n
th
e
qu

an
til
es

of
th
e
re
sp
ec
tiv

e
pe
rc
en
ta
ge

va
lu
e
fo
r
th
e
po

st
er
io
r
sa
m
pl
e

123



Identifiability analysis for models... Page 19 of 38 56

Ta
bl
e
2

Su
m
m
ar
y
of

th
e
St
an

ou
tp
ut

fo
r
th
e
SD

E
m
od
el
gi
ve
n
si
m
ul
at
ed

da
ta
w
ith

ou
tm

ea
su
re
m
en
te
rr
or
,t
he

tr
ue

pa
ra
m
et
er

va
lu
es

th
at
w
er
e
us
ed

to
si
m
ul
at
e
th
e
da
ta
;a
nd

th
e
pr
io
r
di
st
ri
bu
tio

ns
us
ed

fo
r
th
e
St
an

sa
m
pl
in
g

T
ru
e
va
lu
e

Pr
io
r
di
st
ri
bu
tio

n
M
ea
n

c.
v.

2.
5%

50
%

97
.5
%

n e
ff

R̂

θ 1
0.
20

N
≥0

(0
,
52

)
0.
19

0.
10

8
0.
15

0.
19

0.
23

31
20

1.
00

θ 2
0.
32

N
≥0

(0
,
52

)
0.
39

0.
99

9
0.
09

0.
26

1.
48

20
6

1.
04

θ 3
0.
01

N
≥0

(0
,
52

)
0.
01

0.
16

7
0.
01

0.
01

0.
02

25
14

1.
00

m
0

24
0.
00

N
≥0

(3
00

,
30

02
)

34
4.
37

0.
58

9
57

.2
1

31
3.
25

80
0.
67

18
4

1.
05

sc
al
e

1.
80

U(
0,

30
)

1.
66

0.
17

2
1.
19

1.
62

2.
30

30
62

1.
00

θ 2
m
0

76
.8
0

–
82

.6
0

0.
17

8
55

.6
8

81
.6
9

11
3.
53

52
96

1.
00

θ 2
sc
al
e

0.
58

–
0.
61

0.
92

3
0.
17

0.
43

2.
21

17
8

1.
05

m
0
sc
al
e

43
2.
00

–
57

6.
69

0.
63

4
86

.0
8

51
1.
66

14
40

.4
1

23
2

1.
04

θ 2
m
0
sc
al
e

13
8.
24

–
13

3.
18

0.
08

3
11

2.
47

13
2.
74

15
6.
40

58
29

1.
00

T
he

pa
ra
m
et
er
s
σ
,o
ff
se
t,
an
d

t 0
ar
e
no
te
st
im

at
ed

he
re
.F

or
th
e
si
m
ul
at
ed

da
ta
w
ith

ou
tm

ea
su
re
m
en
te
rr
or
,n
o
m
ea
su
re
m
en
te
rr
or

is
as
su
m
ed

fo
r
th
e
SD

E
m
od
el
.T

hu
s,
th
er
e

is
no

σ
to

be
es
tim

at
ed
,a
nd

th
e
of
fs
et
is
de
te
rm

in
ed

di
re
ct
ly

fr
om

th
e
da
ta
an
d
no
te
st
im

at
ed
.M

or
eo
ve
r,
th
e
in
iti
al
tim

e
po
in
tt
0
is
pr
ed
et
er
m
in
ed

ba
se
d
on

th
e
m
ea
n
es
tim

at
e

of
th
e
sa
m
pl
e
fo
r
th
e
O
D
E
m
od

el

123



56 Page 20 of 38 S. Pieschner et al.

Fig. 6 Density estimates of the posterior samples for parameters θ1 and θ3 for the SDE (blue, lower triangle)
and ODE (green, upper triangle) model given simulated data without measurement error. Diagonal panels:
Marginal densities for the respective parameter and boxplots showing the 95% CI as box, the range of the
sample as whiskers, and the median as thick black line. Off-diagonal panels: Smoothed scatter plots of the
two-dimensional projections of the samples where darker hues signify higher density values. The dotted
lines represent the true parameter values that were used to simulate the data

the true parameter values. Thus, we can conclude that the parameters θ1 and θ3 are
identifiable for the SDE model here.

Next, we consider the translation rate constant θ2, the initial amount m0 of mRNA
molecules, and the factor scale. For the ODE, at most the product θ2m0scale is iden-
tifiable. This is also apparent from the results presented in Table 1 and Fig. 7. For the
individual parameters and also for all products of two out of the three parameters, the
95% CIs are extremely broad and the mean and median as point estimates are not at
all close to the true values. The reason why there are nevertheless quite high ESSs and
R̂ values equal to 1 achieved is that the variation within each of the HMC chains is
very high and thus does not differ substantially from the variation between the chains
for these parameters as can be seen in the traceplots of the chains in Sect. A.4.1 of
the supplementary material. For the product θ2m0scale of all three parameters, the
95% CI is very narrow for the posterior sample of the ODE model and also the ESS is
high and R̂ equal to 1. Without knowing the true parameter values, one would assume
that this product is well estimated. However, the 95% CI and even the whole range of
the sample do not cover the true value. For the SDE model, the 95% CI for the prod-
uct θ2m0scale is broader, but it covers the true parameter value and also the mean and
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Fig. 7 Density estimates of the posterior samples for parameters θ2, m0, scale, and their products for the
SDE (blue, lower triangle) and ODE (green, upper triangle) model given simulated data without measure-
ment error. For a detailed description of the figure’s elements, see Fig. 6

the median as point estimates are closer to the true value than the mean and the median
for the ODE model. Moreover, the ESS is quite high and R̂ is equal to 1 for the SDE
model.We therefore conclude that the product θ2m0scale is identifiable. The generally
lower ESSs are due to the fact that for the SDE model, we sample from a distribution
of much larger dimension as explained in Sect. 6.1. Additionally, for the SDE model,
the parameters scale and θ2m0 have narrow 95% CIs (especially compared to those
for the ODE model) that include the true parameter values, high ESSs, and R̂ values
of 1 and can therefore be considered identifiable. The remaining parameters θ2, m0,
θ2scale, and m0scale have rather broad 95% CIs and only achieve low ESSs and R̂
values higher than 1.02. Hence, they seem to be non-identifiable. Notice, however, that
at least for the parameters θ2 and θ2scale, the 95% CIs are substantially more narrow
for the SDE model compared to the ODE model.

We have simulated another 99 trajectories with the same parameters and performed
Stan sampling in the same way as described in the beginning of this subsection. For
each model type and each posterior sample of the different simulated trajectories, we
calculate the length of the 95% CI and determine the median and the coefficient of
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variation (c.v.) over these lengths for each model type. Also, we rescale the lengths of
the 95% CI by dividing by the true parameter value and again determine the median of
the normalized quantities. The rescaling is done to transfer the values to a more similar
scale. Note, however, that the values are nevertheless not directly comparable between
different parameters. Moreover, we check whether the true parameter value that was
used to simulate the data is included in the 95% CI. Table 3 shows the aggregated
results for the posterior samples of all 100 trajectories and also includes the length
of the interval between the 2.5%- and the 97.5%-quantile of the prior distributions.
Except for the parameters m0 and θ2m0scale, the median length of the 95% CIs for
the SDE model is always smaller than for the ODE model. For parameter θ2m0scale,
the CI lengths are a lot smaller for the ODE model; however, the CIs cover the true
parameter value only 13 out of 100 times while for the SDE model, the true value is
covered 93 times. For the other parameters that we classified as identifiable for the
SDE model in the analysis of the individual trajectory (i. e. θ1, θ3, scale, and θ2m0),
the median length of the 95% CIs is clearly smaller for the SDE model than for the
ODEmodel and the true parameter value is covered at least 91 out of 100 times for the
SDE model. For parameter m0, the CI lengths are high for both model types because
the parameter is not identifiable for either model type. For the other parameters that
we classified as not identifiable for both model types in the analysis of the individual
trajectory (i. e. θ2, θ2scale, and m0scale), the median length of 95% CIs is clearly
smaller for the SDE model than for the ODE model, at least by a factor of 4.

The last two columns of Table 3 are visualized in Fig. 8 where we plot the median
of the rescaled CI lengths against the number of CIs that cover the true parameter
value. The desirable region of value combinations is in the bottom right corner of
the graph where the number of CIs covering the true value is high and the median
rescaled CI length is small. Note that, clearly, more importance should be given to
high numbers of CIs covering the true value as it is useless to be very certain about a
parameter estimate (indicated by a short CI) while the correct value is not included in
the CI. However, even for parameters that are identifiable, we do not expect to obtain
a coverage of the true value of 100% since we are considering 95% CIs. Therefore,
values of 100 rather tend to hint at non-identifiability. In Fig. 8, we can see that for
the majority of the parameters, the triangles representing the value combinations for
the SDE model are closer to the desirable region. Only for parameter m0 (which is
not identifiable for either model type), the value combinations are almost the same
for both model types. And as we already pointed out for the product θ2m0scale, the
median length of the 95% CIs is smaller for the ODE model; however, a lot fewer CIs
cover the true parameter value for the ODE model than for the SDE model. Thus, the
result obtained for the SDE model is to be preferred.

We provide further Stan-specific diagnostics in Appendix A.5. Those mostly show
poorer values for the sampling output for the SDE model than for the ODE model.
This is not surprising as we sample from a much higher-dimensional distribution for
the SDE model. We do not consider the poor diagnostics as a disadvantage of the
procedure as they provide information that we do not even have for other MCMC
algorithms and thus cannot compare to them.
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Fig. 8 Statistics of posterior samples for the two model types aggregated over 100 simulated trajectories
without measurement error. The desirable region of value combinations is in the bottom right corner of the
graph

6.2.2 Sampling results for simulated data with measurement error

In this section, we use the same simulated data as in the previous section, but for
each of the 100 trajectories, we add multiplicative measurement error with parameter
σ = 0.02. Again, we use Stan to sample from the posterior distributions of the ODE
model (6) and the SDEmodel (7) for each of the simulated trajectories and use the same
priors as stated in the previous section. We generate 8 HMC chains of 5000 iterations,
discard the first half of the iterations as warm-up, and thus use a posterior samples of
size 20,000 in the subsequent analysis.

At first,we again focus on the results for one of the trajectories, namely the trajectory
represented by the green dotted line in Fig. 5. Tables 4 and 5 summarize the Stan output
of the posterior samples for the ODE and the SDE model, respectively. The parameter
t0 is estimated very accurately based on the posterior sample for the ODEmodel. Also,
the parameter offset is well estimated for both model types but with a more narrow
95% CI for the SDE model. The parameter σ is accurately determined for the SDE
model as well. For the ODE model, σ is again overestimated. Figure 9 visualizes the
components of the posterior samples for parameters θ1, θ3, offset, and σ . Again, the
bimodality of the posterior with respect to θ1 and θ3 is apparent for the ODE model
and neither the 95% CIs nor the ranges of the sample cover the true parameter values.
For the SDEmodel on the other hand, the distribution is unimodal and the 95% CIs do
cover the true parameter values for θ1 and θ3. However, their 2-dimensional smoothed
scatter plot in Fig. 9 does not show a simple elliptic shape (as for the simulated data
without measurement error) but almost a banana-like shape. This may also be the
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Fig. 9 Density estimates of the posterior samples for parameters θ1, θ3, offset, and σ for the SDE (blue,
lower triangle) and ODE (green, upper triangle) model given simulated data with measurement error. For
a detailed description of the figure’s elements, see Figure 6

reason for the deteriorated sampling efficiency discernible from the low ESSs and
higher R̂-values in Table 5.

Figure 10 visualizes the components of the posterior samples for parameters θ2,
m0, scale, and their products. For the ODE model, again only the product θ2m0scale
is identifiable in the sense that the corresponding 95% CI is very narrow, the ESS is
high, and the R̂-value is equal to 1. However, the 95% CI again does not cover the true
parameter value. For the SDE model, the 95% CI for θ2m0scale is broader but it does
contain the true value. Also, the ESS is high and the R̂-value is close to 1. Moreover,
the parameters scale and θ2m0 have narrow 95% CIs, high ESSs, and R̂-values close
to 1 for the SDE model, and thus, we conclude that they are identifiable. Note that
also for θ2, m0scale, and θ2scale, the 95% CIs are much narrower for the SDE model
than for the ODE model (Fig. 10).

In Sect. A.4.1 of the supplementary material, we also include trace plots and fur-
ther figures of the sampling output for the trajectory displayed in Fig. 5. There, we
present the same posterior samples as used in this and the previous subsection. But
instead of comparing the posterior samples between the two model types, the poste-
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Fig. 10 Density estimates of the posterior samples for parameters θ2, m0, scale, and their products for the
SDE (blue, lower triangle) and ODE (green, upper triangle) model given simulated data with measurement
error. For a detailed description of the figure’s elements, see Fig. 6

rior samples are compared between the simulated data without and with measurement
error for each model type separately. In summary, we find that for the SDE model, the
95%CIs increase for almost all parameters exceptm0 for data withmeasurement error.
Whereas for the ODE model, there is hardly any difference for most of the parame-
ters between the posterior samples for the data without and with measurement error
since the majority of the parameters is not identifiable anyway. The marginal poste-
rior samples for the parameters offset, t0, and θ2m0scale are only slightly affected by
the measurement error. Only the marginal posterior sample of the measurement error
parameter σ is substantially affected and, as expected, consists of higher values for
data with measurement error.

Table 6 and Fig. 11 display the statistics of the posterior samples aggregated over
the 100 simulated trajectories. Similar to the results for the simulated data without
measurement error, the median length of the 95% CIs for the SDE model is always
smaller than for the ODE model, except for the parameters m0 and θ2m0scale and
additionally σ (which was not included for the SDEmodel in the previous subsection).
Again, for the majority of the parameters, the results for the SDE model represented
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Table 6 Statistics of posterior samples for the two model types aggregated over 100 simulated trajectories
with measurement error

Prior Posterior

Length of
prior 95%
center interval

Median length
of 95% CIs

c.v. of lengths
of 95% CIs

Median of
length of CIs
rescaled by
true value

Number of CIs
covering true
value

θ1 ODE 11.05 0.20 0.008 1.01 60

SDE 11.05 0.11 0.016 0.55 90

θ2 ODE 11.05 7.55 0.002 23.59 100

SDE 11.05 3.69 0.996 11.52 99

θ3 ODE 11.05 0.20 0.008 20.35 63

SDE 11.05 0.02 0.094 1.65 89

m0 ODE 884.82 733.85 3.584 3.06 100

SDE 884.82 746.74 5.909 3.11 100

scale ODE 28.50 27.25 0.002 15.14 100

SDE 28.50 2.54 0.255 1.41 91

θ2m0 ODE 6056.48 1702.37 2.714 22.17 100

SDE 6056.48 223.22 428.350 2.91 92

θ2scale ODE 228.08 55.70 0.125 96.70 100

SDE 228.08 3.55 0.639 6.16 100

m0scale ODE 19271.13 7896.07 667.494 18.28 100

SDE 19271.13 1479.13 253.530 3.42 98

θ2m0scale ODE 113232.70 4.96 38.038 0.04 15

SDE 113232.70 45.56 1.492 0.33 92

Offset ODE 28.50 0.33 0.987 0.05 96

SDE 28.50 0.21 0.016 0.03 84

σ ODE 9.50 0.01 0.325 0.35 0

SDE 9.50 0.01 0.000 0.25 87

We also include the length of the interval between the 2.5%- and the 97.5%-quantile of the prior distribution

by triangles in Fig. 11 are closer to the desirable region of value combinations in the
bottom right corner of the graph, except for the parameters m0, θ2m0scale, and offset.
For the parameter offset, the median CI length is slightly higher for the ODE model
than for the SDE model, however, the CIs for the ODE model also contain the true
parameter value more often. So for this parameter, the ODE model, for once, shows
the preferable result.

6.3 Estimation based on experimental data

Since our results in the previous section have shown that the SDE model yields more
reliable parameter estimates (assuming an MJP is an adequate description for the
translation kinetics after mRNA transfection) than the ODE model even for those
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Fig. 11 Statistics of posterior samples for the two model types aggregated over 100 simulated trajectories
with measurement error. The desirable region of value combinations is in the bottom right corner of the
graph

parameters that are identifiable for both model types, we reanalyze the experimental
data published in Fröhlich et al. (2018) and described in Sect. 2. For each type of GFP
(eGFP and d2eGFP), we randomly select 100 observed trajectories for our analysis and
again use Stan to sample from the posterior distributions of the ODEmodel (6) and the
SDEmodel (7) for each of the trajectories using the same priors as stated in Sect. 6.2.1.
We generate 8 HMC chains of 5000 iterations, discard the first half of the iterations as
warm-up, and thus use a posterior samples of size 20,000 in the subsequent analysis.
For each type of GFP, we first analyze the sampling output for one observed trajectory
in detail and then summarize results for all 100 observed trajectories. Here in the main
part of the article, we only show the results for the eGFP data and provide the results
for the d2eGFP data in Appendix A.4.3. The comparison between the eGFP and
the d2eGFP trajectories demonstrate how practical identifiability may differ between
seemingly similar datasets. Moreover, we provide further Stan-specific diagnostics in
Appendix A.5.

Sampling results for experimental dataset 1 (for eGFP)

Tables 7 and 8 present a summary of the Stan output for the posterior sample of one
observed trajectory for the ODE and the SDEmodel, respectively, and Figs. 12 and 13
compare the density estimates of these two posterior samples. Moreover, we provide
trace plots for these two posterior samples in Section A.4.2 in the supplementary
material. The results look qualitatively very similar (almost identical) to those obtained
for the simulated data with measurement error in Sect. 6.2.2. Therefore, we do not
repeat the detailed description but only point out that the range of values sampled for
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Table 7 Summary of the Stan output for the ODE model given experimental data for eGFP and the prior
distributions used for the sampling. c.v. denotes the coefficient of variation and the columns headed by
percentages contain the quantiles of the respective percentage value

Prior distribution Mean c.v. 2.5% 50% 97.5% neff R̂

θ1 N≥0(0, 52) 0.11 0.617 0.02 0.16 0.18 4 13.60

θ2 N≥0(0, 52) 1.44 1.407 0.01 0.56 7.39 12661 1.00

θ3 N≥0(0, 52) 0.08 0.903 0.02 0.03 0.18 4 16.98

m0 N≥0(300, 3002) 198.99 1.046 1.75 127.89 731.84 12008 1.00

scale U(0, 30) 6.64 1.186 0.05 3.01 27.00 10321 1.00

offset U(0, 30) 7.18 0.017 6.94 7.18 7.42 17800 1.00

t0 U(0, 30) 1.46 0.004 1.44 1.46 1.47 15996 1.00

σ U(0.001, 10) 0.05 0.054 0.04 0.05 0.05 16833 1.00

θ2m0 – 200.04 2.654 3.17 28.49 1627.75 11121 1.00

θ2scale – 5.53 3.043 0.12 0.67 48.94 8535 1.00

m0scale – 942.49 2.307 11.63 153.30 7610.72 9270 1.00

θ2m0scale – 85.74 0.014 83.35 85.73 88.19 12577 1.00

Table 8 Summary of the Stan output for the SDE model given experimental data for eGFP and the prior
distributions used for the sampling. The initial time point t0 is not estimated here, but predetermined based
on the mean estimate of the sample for the ODE model

Prior distribution Mean c.v. 2.5% 50% 97.5% neff R̂

θ1 N≥0(0, 52) 0.20 0.152 0.14 0.20 0.26 946 1.01

θ2 N≥0(0, 52) 0.33 1.366 0.04 0.19 1.52 305 1.02

θ3 N≥0(0, 52) 0.02 0.269 0.01 0.02 0.03 894 1.01

m0 N≥0(300, 3002) 298.35 0.705 34.46 250.62 809.42 218 1.03

scale U(0, 30) 2.12 0.309 1.14 2.02 3.69 772 1.01

offset U(0, 30) 7.18 0.012 7.01 7.18 7.35 20589 1.00

σ U(0.001, 10) 0.03 0.058 0.03 0.03 0.04 17224 1.00

θ2m0 – 47.92 0.327 23.41 46.00 83.31 857 1.01

θ2scale – 0.60 1.182 0.11 0.37 2.54 256 1.02

m0scale – 650.64 0.831 57.98 498.32 2049.93 283 1.02

θ2m0scale – 92.71 0.115 73.32 92.15 115.16 2711 1.00

the parameters θ1 and θ3 for the SDE model is slightly smaller for the experimental
trajectory here. Thus, we do not see the banana-like shape in the two-dimensional
smoothed scatter plot of the two parameters for the SDE model in Fig. 12 as for the
simulated trajectory in Fig. 9 and the sampling efficiency increases as indicated by
higher ESSs and lower R̂ values for the two parameters in Table 8.

The statistics of posterior samples aggregated for 100 experimental trajectories for
eGFP in Table 9 are also qualitatively similar to those for the simulated trajectories
in Table 6. For the majority of the parameters, the median length of the 95% CI is
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Fig. 12 Density estimates of the posterior samples for parameters θ1, θ3, offset, and σ for the SDE (blue,
lower triangle) and ODE (green, upper triangle) model given experimental data for eGFP. Diagonal panels:
Marginal densities for the respective parameter and boxplots showing the 95% CI as box, the range of the
sample as whiskers, and the median as thick black line. Off-diagonal panels: Smoothed scatter plots of the
two-dimensional projections of the samples where darker hues signify higher density values

smaller for the posterior samples for the SDEmodel than for those for the ODEmodel.
Only for parameters θ1, θ2, and θ2m0scale, this is not the case. Note in particular that
for the parameters θ2m0 and scale, which are non-identifiable for the ODE model
(also apparent from the very long CIs here), the median length of the 95% CI for the
SDEmodel is again much smaller compared to that of the ODE and to that of the prior.
This indicates that these two parameters are identifiable for the SDE model also for
the experimental data. That the uncertainty of the parameter estimate for θ2m0scale
is greater for the SDE than for the ODE model is consistent with our results for the
simulated data. The parameter θ2 is considered to be non-identifiable for both model
types and the difference between the median CI lengths is relatively small. Finally,
for parameter θ1, we see that the result is more or less the same as for θ3 for the
ODE model due to the symmetry of the posterior distribution with respect to these
two parameters. Whereas for the SDE model there is no symmetry and there is more
variance in the posterior samples with respect to θ1 than to θ3 (indicated by a greater
median CI length). The smaller median CI length of θ1 for the ODE model compared
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Fig. 13 Density estimates of the posterior samples for parameters θ2, m0, scale, and their products for the
SDE (blue, lower triangle) and ODE (green, upper triangle) model given experimental data for eGFP. For
a detailed description of the figure’s elements, see Fig. 12

to the SDEmodel is due to the fact that for many of the observed trajectories the values
of θ1 and θ3 seem to be very close together. In this case, the posterior distribution of
the ODE model appears to be unimodal (as the two modes overlap) and the posterior
variance with respect to the two parameters is small (and equal due to the symmetry).
Thus, overall this variance is smaller than the posterior variance with respect to θ1 for
the SDE model.

7 Discussion and conclusion

We have modeled the translation kinetics after mRNA transfection using a two-
dimensional Itô diffusion process described by an SDE and compared this modeling
approach to one using ODEs. We have studied the parameter identifiability for both
modeling approaches for the case that we observe a fluorescence signal which we
assume to be a linear transformation of the amount of protein molecules (corrupted
by multiplicative measurement error). Our analysis using the structural identifiability
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Table 9 Statistics of posterior samples aggregated for 100 experimental trajectories for eGFP

Prior Posterior

Length of prior 95%
center interval

Median length of 95%
CIs

c.v. of length of 95%
CIs

θ1 ODE 11.05 0.11 0.058

SDE 11.05 0.14 0.012

θ2 ODE 11.05 7.91 0.016

SDE 11.05 9.91 0.998

θ3 ODE 11.05 0.11 0.057

SDE 11.05 0.06 0.039

m0 ODE 884.82 747.71 0.212

SDE 884.82 456.80 172.338

Scale ODE 28.50 27.50 0.004

SDE 28.50 4.61 5.288

θ2m0 ODE 6056.48 2032.46 23.287

SDE 6056.48 230.89 219.006

θ2scale ODE 228.08 68.38 1.879

SDE 228.08 22.01 33.157

m0scale ODE 19271.13 9093.22 69.292

SDE 19271.13 1392.46 4601.374

θ2m0scale ODE 113232.70 24.10 57.316

SDE 113232.70 138.03 78.659

Offset ODE 28.50 0.96 2.661

SDE 28.50 0.38 1.086

σ ODE 9.50 0.01 0.244

SDE 9.50 0.01 0.004

of the moment-equations-based surrogate model and a simulation-based assessment
suggest that the SDE model might lead to better parameter identifiability. The most
systematic approach is the one based on the surrogate model and DAISY as suggested
by Browning et al. (2020). However, it cannot help us confirm a difference in the
parameter identifiability between the SDE and the ODEmodel, especially because we
are interested in the parameter identifiability based on a single observed trajectory and
the moment-equations-based approach assumes that we are able to observe the first
and the second moment of the fluorescence signal. Even when we take into account
that we have several observed trajectories available from the experiment, these do not
provide information about the moments because the initial time point t0 of mRNA
release is different for every trajectory and also for the other parameters, in particular
for m0, assuming that they are equal for all observed cells does not seem reasonable.

By simulating from the SDE model, we were able to assess the differences in the
variationwithin individual trajectories for different parameter combinations.Again our
results suggest that the SDE model provides better parameter identifiability. Unlike
for the ODE model, the degradation rates θ1 and θ3 for the SDE model appear to
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be structurally globally identifiable. Also, scale and the product θ2m0 seem to be
structurally identifiable, but the individual parameters θ2 and m0 do not. Identifi-
able parameter combinations sometimes hint towards effective reparameterisations
for more efficient sampling, but this was not the case here. While the simple simula-
tion approach worked out well for the model considered here, one of its weak points
is, of course, the somewhat subjective visual assessment of the variation within tra-
jectories. A more quantitative approach to this would be to simulate a large number of
trajectories (with very small time step) for every considered parameter combination,
to approximate the quadratic variation for each trajectory, and then, to compare these
values between individual trajectories started with the same seed for different param-
eter combinations and to compare also the distributions of these values for different
parameter combinations. Another drawback of both simulation-based approaches is
the fact that the analysis is based on a finite set of parameter combinations that can be
considered; and thus, drawing general conclusions for the entire parameter space may
be problematic.

Moreover, we have assessed the practical parameter identifiability for both model
types by sampling from the parameter posterior distribution given simulated data
with and without measurement error and the experimental data published in Fröhlich
et al. (2018). Section A.4.1 provides additional sampling results for the first case.
We observe that CIs and ranges of posterior samples become visibly larger in the
presence ofmeasurement error for some but not all parameters.While our focuswas on
inference from individual fluorescence trajectories, using SDEmixed-effect modeling
as done in Wiqvist et al. (2021) would be a meaningful extension, especially e. g. to
obtain a common estimate for the parameter scale. We found that the parameters θ1
and θ3 are indeed globally identifiable for the SDEmodel given individual trajectories,
unlike for the ODEmodel. And not only the product θ2m0scale but also the parameter
scale and the product θ2m0 are globally identifiable for the SDE model. Moreover,
for the simulated data, the 95% CIs for the identifiable parameters for the SDE model
covered the true parameter value adequately many times.Whereas for the ODEmodel,
the true parameter values for the parameters θ1, θ3, and θ2m0scale were not covered
by the 95% CIs for many of the posterior samples and were sometimes not even
included in the range of values in the sample. The fact that the parameters θ1 and θ3
can be adequately determined using the SDE modeling approach given an individual
trajectory renders the multi-experiment approach with different mRNA constructs and
the computationally intense hierarchical optimization algorithm used in Fröhlich et al.
(2018) unnecessary in the case that the determination of these parameters is the main
objective. Besides, assuming that an MJP is the most appropriate description of the
underlying dynamics, we saw that the estimated parameter values for a single cell
trajectory based on the ODE model cannot be trusted even when narrow 95% CIs
suggest low uncertainty. This has implications for previous studies using this ODE
model (e.g.(Leonhardt et al. 2014)). The ODE-based nonlinear mixed-effect model
used byFröhlich et al. (2018)might have partially resolved the problemby allowing the
integration of the datasets for eGFP and d2eGFP, thereby eliminating the symmetry.
Yet, as the SDE model provides overall more appropriate results for the fitting of
individual trajectories, an SDE-based nonlinear mixed-effect model would probably
be an even better alternative.
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While the SDEmodel is clearly superior in terms of the information that we are able
to extract from a single trajectory about the parameters that determine the dynamics
of the underlying process, it has nevertheless several disadvantages. First of all, we
were not able to include the estimation of the initial time point t0 of mRNA release
into the Stan sampling procedure due to technical/methodological limitations. Other
sampling approaches such as particle MCMC (Golightly and Wilkinson 2011) might
alleviate this problem, but to our knowledge, no examples of inferring an unknown
time point for SDEmodels have been investigated so far andwould thus require further
work. Another drawback of the SDE model are the higher computational costs as we
need to sample from a higher-dimensional distribution (due to the random process
values) than for the ODE model. For the SDE model, the sampling in our study
takes on average almost 5.5 hours while for the ODE model, it averages at about
20 minutes. Note, however, that for the ODE model, the NUTS method implemented
in Stan generated only chains that sample only from one of the posterior modes.
Therefore, one might argue that sampling did not properly converge in this example.
In general, estimation procedures for SDE models are more complex and unlike for
ODE models, publicly available software tools are rare and usually not generally
applicable. There is a clear need to further develop such tools for SDEmodels in order
to harness their full potential, especially with regard to better identifiability of kinetic
parameters. On the other hand, combining both modeling approaches as we have done
here by first determining t0 based on the ODE model and then estimating the kinetic
parameters based on the SDE model is certainly also meaningful. Overall, our study
clearly demonstrates the relevance of considering different modeling approaches and
of selecting the appropriate one. We expect to see stochastic models being used more
frequently as increasing computing power becomes available and facilitates inference
for such models.
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