
1Scientific Reports |         (2020) 10:1113  | https://doi.org/10.1038/s41598-020-58018-2

www.nature.com/scientificreports

Controllable unidirectional 
transport and light trapping using a 
one-dimensional lattice with non-
Hermitian coupling
Lei Du1,2,3, Yan Zhang1* & Jin-Hui Wu1*

We propose a one-dimensional tight-binding lattice with special non-Hermitian coupling, the imaginary 
part of which is modulated by an effective Peierls phase arising from the synthetic magnetic field. Such 
a non-Hermitian lattice supports robust unidirectional transport that is reflectionless and immune to 
defects; it thus can serve as a frequency-selectable light filter. To achieve more applications, we further 
construct two well-designed structures involving this lattice, namely a heterostructure and a sandwich 
structure. An optical diode can be realized using the heterostructure, while tunable light trapping and 
reversal can be realized through phase modulations on the sandwich structure. The results in this paper 
may not only open up a new path for unconventional light transport but also have potential applications 
for optical communication.

Controllable light transport has long been an important research objective due to its significant potential in prac-
tical applications1. In particular, unidirectional transport, which can be used to realize optical isolators and circu-
lators, plays a key role in modern optics2–13. Generally speaking, unidirectional light transport can be observed in 
an asymmetric hybrid system2, especially via introducing the nonlinearity3–7, where the unidirectionality arises 
from the synergy between the asymmetry and the nonlinearity. Alternatively, unidirectional light transport can 
be realized in a two- or three-dimensional photonic system with topological protection8–12. As is well known, 
topologically protected edge (surface) states, which are guided by synthetic gauge fields and propagate along the 
boundaries of systems, exhibit prominent advantages owing to their robustness, i.e., their immunity to disorders 
and defects. Such schemes, however, can be implemented only in two- or higher-dimensional photonic systems.

On the other hand, non-Hermitian lattices have attracted considerable research attention in recent years 
because they facilitate the observation of many novel phenomena that are absent in Hermitian cases, such as 
non-Hermitian induced delocalization in disorder lattices14–21, invisible defects and potentials22–24, topological 
phase transitions25–28, anomalous edge states29,30, and non-Hermitian induced flat bands31–34. More importantly, 
well-designed non-Hermitian lattices can serve as a powerful platform for realizing unidirectional light trans-
port35–40, while common Hermitian ones require various special effects3,4,7– 11,41,42. For instance, unidirectional 
non-Hermitian induced transparency has been realized in a one-dimensional non-Hermitian lattice35,36. In that 
work, imaginary gauge fields, which are achieved by exploiting auxiliary ring resonators with gain and loss media 
in different half perimeters, are introduced to obtain non-reciprocal hopping rates. Thus, waves are amplified 
along a propagating direction and undergo attenuation in the opposite direction. Such schemes make robust 
unidirectional light transport possible and may have applications in directional amplification. However, they 
suffer from poor tunability. Subsequently, a seminal work43 demonstrated that a zigzag lattice with imaginary 
(non-Hermitian) next-nearest-neighbor coupling supports tunable light transport because the coupling is modu-
lated by the effective Peierls phase; however, the transport is bidirectional so that the model lacks non-reciprocity. 
In this context, combining non-Hermitian induced unidirectionality with tunability may be useful for exploring 
more novel transport phenomena.

In this paper, we reveal that a class of non-Hermitian one-dimensional lattices can support tunable robust 
unidirectional transport that is reflectionless and immune to defects. Specifically, the coupling is non-Hermitian 
with the imaginary part being modulated by a synthetic magnetic field. We consider a well-designed dimerized 
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sawtooth lattice as a potential implementation of the non-Hermitian lattices and show that it is possible to realize 
by adjusting the synthetic magnetic field a frequency-selectable filter, i.e., one can select the wave number of the 
outgoing wave. Furthermore, we construct two structures involving the non-Hermitian lattice: a heterostructure 
and a sandwich structure. The former supports unidirectional transmissionless transport and thereby can be used 
as an optical diode. The latter can be used to realize controllable light trapping and reversal, where the trapping 
duration and region can be controlled readily with high efficiency.

Model and Methods
To implement the special non-Hermitian lattice, we consider a dimerized sawtooth lattice as shown in Fig. 1(a). 
Each unit cell comprises a main site A with on-site potential Ua,n and an auxiliary site B with on-site potential 
Ub,n, where n denotes the index of the unit cells. The coupling between adjacent A and B sites (adjacent A sites) is 
denoted by J (κ). Practical implementations of such a binary lattice have been demonstrated in coupled-resonator 
optical waveguides44,45. In this paper, we consider an array of microring resonators for concreteness. Then, the real 
part of the potential Va (b),n = Re[Ua (b),n] denotes the resonance frequency of the nth main (auxiliary) resonator, 
while the imaginary part γa (b),n = Im[Ua (b),n] denotes the loss or gain rate. For simplicity, we assume in the follow-
ing Ua,n = Ua = Va + iγa and Ub,n = Ub = Vb + iγb. Let an and bn denote the field amplitudes of sites A and B in 
the nth unit cell, respectively. Then, the evolution equations of the system under the tight-binding approximation 
are given by 
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 where θ is the effective Peierls phase arising from the synthetic magnetic field. In a system of charged parti-
cles, the Peierls phase is introduced by exposing the system to an actual magnetic field. However, in the case of 
uncharged particles such as cold atoms and photons, the Peierls phase can be obtained by artificially engineer-
ing the synthetic magnetic field. To date, synthetic magnetic fields have been successfully created for photons 
with various technologies39,46–49. In particular, the introduced Peierls phase can be dynamically controlled via 
electro-optical modulations47 and optomechanical interactions49.

According to the energy band theory50,51, if ∣Ub − Ua ± 2κ∣ ≫ J, we approximately have 
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 which implies that the auxiliary sites B can be eliminated adiabatically when we assume that the structure is 
excited in sublattice A43,52. In fact, similar elimination methods have been widely used in other systems such as 
atomic ones53,54. By substituting Eq. 3 back to Eq. 1 according to the adiabatic elimination, we attain the effective 
evolution equation for the sublattice A with an
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 where Ueff = Ua − 2J2/Ub is the effective on-site potential of A, J1 = κ − J2e2iθ/Ub and J2 = κ − J2e−2iθ/Ub are the 
effective couplings in two opposite directions which clearly break the time-reversal symmetry. For convenience, 

Figure 1.  (a) Schematic illustration of dimerized sawtooth lattice. (b) Effective one-dimensional non-
Hermitian lattice.
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we removed the real part of Ueff by setting Va = 0 because a nonvanishing real part does not deform the energy 
band. Note that if Vb = 0, the non-Hermitian couplings κ − iβe±2iθ with β ≡ − J2/γb can be obtained, the imagi-
nary parts of which depend on the phase θ. Then, as shown in Fig. 1(b), the sawtooth lattice is equivalent to a 
non-Hermitian one C of amplitude cn ( ≡c an n

eff ). This case is considerably different from common Hermitian 
lattices with κ κ= *nm mn, which will be discussed in the next section. The evolution equation of the non-Hermitian 
lattice is given by 

γ κ β κ β= − + − + −φ φ
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 with φ = 2θ and γ = 2β − γa. Note that the Peierls phase φ in Eq. 5 cannot be eliminated by any gauge transfor-
mation; hence, the light transport may depend on the phase.

By assuming the solutions to Eq. 5 in the form of cn = Cexp(iqn − iEt), the energy band of the lattice can be 
given by 

E q q i q i( ) 2 cos( ) 2 cos( ) , (6)κ β φ γ= − + −

 where  − π ≤ q ≤ π is the Bloch wave number (quasi-momentum) in the first Brillouin zone, with  − π < q < 0 
(0 < q < π) corresponding to a right-(left-)going wave. Clearly, the imaginary part of the energy describing the 
absorption or amplification can be modified by the phase φ, while the real part describing the dispersion relation 
is independent of φ. According to Eq. 6, the condition for lossless transport is given by the phase matching rela-
tion q + φ = ± π.

Using Eq. 6, one can obtain the group velocity 
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 of a wave in the non-Hermitian lattice. Note that γ = β = 0 corresponds to a Hermitian lattice, while a purely 
dissipative optical system requires γ ≥ 2β (γa ≤ 0)43.

 Figures 2(a–c) plot the q-space energy bands of the non-Hermitian lattice C with different values of phi, while 
Fig. 2(d–f) show the upper q-space energy bands focused on of the sawtooth lattice A + B for comparison. The 
high coincidence of band structures of the two cases proves that the adiabatic elimination used is quite reasonable 
when the elimination condition is met involving enough large ∣Ua-Ub∣. As predicted in Eq. 6 and shown in Fig. 2, 
the imaginary part (especially the position of the maximum Im(E)max = 0) may change with the phase φ, but the 
real part remains invariable. In ref. 43, the imaginary part of the energy band was fixed and had two symmetric 
local maximums, leading to phenomena that were obviously different from ours discussed in the next section, 
although the relative position between the real and imaginary parts could also be controlled.

Results and Discussion
Robust unidirectional light transport.  The spreading dynamics of excitations in the Hermitian and 
non-Hermitian lattices can be studied by examining the spatial-time evolution of the normalized field amplitude 
∣ρn(t)∣35,36,43, i.e., 
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∝




−

−
+





c n n

w
iq n(0) exp ( ) ,

(10)
n

0
2

0
2 0

 where n0, q0, and w0 denote, respectively, the incident site, initial wave number and width of the Gaussian wave 
packet.

We consider first an uniform lattice. For single-site excitation, the incident wave include all Bloch wave num-
bers in the first Brillouin zone, exhibiting a ballistic propagation55 in a common Hermitian lattice, as shown in 
Fig. 3(a). In Fig. 3(b), however, the incident wave exhibits unidirectional propagation with the velocity mainly 
corresponding to Im(E) = 0 through the non-Hermitian lattice C. The propagation direction, group velocity, 
and diffusion of waves vary periodically with φ according to Eqs. 7 and 8. The physical reason is that, only the 
wave component with q = ± π − φ can propagate without loss as mentioned above, the other components decay 
rapidly during propagation, corresponding to evanescent waves. In particular, the group velocity reaches the max-
imum vg = 2κ and the diffusion becomes weakest if φ = ± π/2, with the sign of φ determining the propagation 
direction. However, one can select the lossless wave component by adjusting the phase φ according to the phase 
matching relation. Based on this, the non-Hermitian lattice can serve as a frequency-selectable filter, with which 
outgoing waves of desired wave numbers can be obtained.
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It is worth mentioning that the unidirectional light transport is robust against lattice defects. To prove this, 
in Fig. 3(c–f), we introduce defects Vdef = Vc(δn,10 + δn,20) [Vdef = Vc(δn,−5 + δn,5)] with the purely real amplitude 
Vc and replace  − iγcn by (Vdef − iγ)cn in Eq. 5. Then dynamic evolution can be observed in the non-Hermitian 
(Hermitian) lattice with defects by setting γ = 2β = 0.8κ (γ = β = 0). It can be found that the wave is immune to 
defects in the non-Hermitian lattice, i.e., the transport is highly robust, while the wave undergoes multiple scat-
terings between the defects in the Hermitian one, as in a Fabry-Perót cavity. Moreover, the robust unidirectional 
transport can also be observed for the Gaussian excitation essentially including only a narrow range of Bloch 
wave numbers. Compared with the Hermitian case shown in Fig. 3(e,f) shows that the Gaussian wave with initial 
wave number q0 is immune to defects in the non-Hermitian lattice with the robustness becoming strongest when 
φ = − (q0 ± π).

The underlying physics is as follows. For the common Hermitian lattice, the purely real energy band is sym-
metric with respect to q = 0, i.e., the energy band is degenerate. In this case, the reflected wave with wave number 

= −′q q0 and energy =′E q E q( ) ( )0  is allowed to propagate due to the elastic scattering, with q0 and E(q0) being 
the wave number and energy of the incident wave, respectively. In the non-Hermitian lattice with φ = ±π [see 
Fig. 2(a)], the energy band remains degenerate so that the reflected wave can still be observed. When φ ≠ ± π, 
however, the degeneracy of the complex energy band may be broken by the motion of the imaginary part [see 
Fig. 2(b,c)], and thus =′E q E q( ) ( )0  has no real solution except for =′q q0, implying that the reflected wave 
becomes evanescent36,43. Therefore, the non-Hermitian lattice can support unidirectional light transport without 
reflection and immune to defects.

On the basis of the non-Hermitian lattice, we construct a heterostructure that is formed by connecting a 
non-Hermitian lattice C at the left with a Hermitian lattice at the right. As shown in Fig. 4(a), the left-incident wave 
with initial wave number q0 shows strong transmission from left to right and no reflection when φ = − (q0 ± π). 
However, it is found in Fig. 4(b) that, any right-incident wave cannot penetrate the left non-Hermitian part and 
is almost totally reflected back with the same phase. This tunable unidirectional transmissionless phenomenon is 
the key to realizing optical diodes.

Light trapping and reversal.  In this section, we consider a one-dimensional sandwich structure, where 
the two side parts are non-Hermitian lattices and the middle part can be switched between Hermitian and 
non-Hermitian ones by adjusting the phases. Specifically, in the middle part as shown in Fig. 5(a), we introduce 
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Figure 2.  Real (blue solid line) and imaginary (red dot-dashed line) parts of q-space energy bands of the non-
Hermitian lattice C with (a) φ = −π; (b) φ = −3π/4; and (c) φ = −π/2 for γ = 2β = 0.8κ. Real (blue circle) and 
imaginary (red cross) parts of the upper q-space energy bands of the sawtooth lattice A + B with (d) 2θ = −π; 
(e) 2θ = −3π/4; and (f) 2θ = −π/2 for Ua = 0, Ub = −40iκ and J = 4κ. The energy scale is in arbitrary units.
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two identical auxiliary sites (an upper one and a lower one) between every two adjacent main sites. The coupling 
rates between each main site and its adjacent auxiliary sites are the same, while the effective Peierls phases arising 
from the upper and lower auxiliary sites are ϕ1 and ϕ2, respectively. When ϕ1 = −ϕ2 = ±π/2, the middle part is 
Hermitian, i.e., the effective coupling between adjacent main sites is real due to the offset between the upper and 
lower auxiliary sites; when ϕ1 = ϕ2 = φ, however, the middle part becomes non-Hermitian as shown in Fig. 1(b).

Firstly, the sandwich structure is prepared as shown in Fig. 5(b), i.e., the tunable middle part is Hermitian and 
the effective Peierls phases of the two side parts are opposite. The sandwich structure is excited by a right-going 
Gaussian wave with initial wave number q0 < 0, which is input upon the left non-Hermitian part with matching 
phase φ0 = − (q0 + π). Taking all above conditions into account, the evolution equations of the sandwich struc-
ture can be written as 

Figure 3.  Dynamical evolutions of ∣ρn(t)∣ for single-site (Gaussian) excitation in the Hermitian lattice 
(γ = β = 0) in (a,c,e) and the non-Hermitian lattice (γ = 2β = 0.8κ) with φ = −π/2 in (b) and (d,f). The 
dynamics in the Hermitian lattice do not depend on φ. The white dashed lines denote the defects Vc = 2κ at the 
sites n = 10, 20 (n = ±5) in (c,d) [in (e,f)]. The initial conditions are cn(0) = δn,0 for the single-site excitation and 
n0 = −30, w0 = 5, q0 = −π/2 for the Gaussian excitation.

Figure 4.  Dynamical evolutions of ∣ρn(t)∣ for Gaussian excitation in the heterostructure with (a) 
n0 = −30, q0 = −π/2 (left-incident wave) and (b) n0 = 30, q0 = π/2 (right-incident wave). The white dashed 
lines denote the interface site n = 0. The other parameters are the same as those in Fig. 3.
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 with ν κ β= − ϕ±i e i
1,2 0. Sites n = ± N are the two interfaces between the middle and side parts. According to 

Eq. 11, Im[EN(q0)] = Im[E−N(− q0)] = Im[iβ exp(2iq0)]. This implies that within the middle part, whenever the 
wave is scattered at the interface sites n = ± N owing to the abrupt changes in the energy band, it may suffer 
attenuation or amplification which is determined by q0. The cumulative effect of the attenuation or amplification 
is considerable because the wave may be scattered a few times before complete decay. To offset this effect, we 
introduce additional imaginary potentials iξ at the interface sites. Here, we consider that the wave of q0 = − π/2 
is input from the left side. Thus, owing to the attenuation effect Im[iβ exp(2iq0)] = −β, we assume ξ = β which is 
equivalent to a finite gain compensation.

As shown in Fig. 6(a), the left-incident wave propagates unidirectionally through the left non-Hermitian part. 
Once entering the middle Hermitian part, the wave is scattered back and forth between the two interface sites so 
that the light is captured. Then, by adjusting all Peierls phases to φr = φ0 at t = tr (trκ = 30, the sandwich structure 
is switched to a uniform non-Hermitian lattice being identical with the initial left part, as shown in Fig. 5(c). The 
evolution equation thus becomes 

idc
dt

i e c i e c i c( ) ( ) [ ( ) ] (12)
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n n N n N n1 1 , ,r rκ β κ β ξ δ δ γ= + + + + + −φ φ
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 with ξ = β. In this way, the light can be retrieved at the right side. Moreover, as shown in Fig. 6(b), by chang-
ing all phases to φr = −φ0 in the retrieving step, it shows light reversal at the left (incident) side owing to phase 
matching56. Fig. 6(c,d) depict the normalized amplitude profiles of the incident and retrieval waves in Fig. 6(a,b), 
respectively. We can find that the retrieval waves maintain the Gaussian shape in both cases, i.e., the trapping 
scheme is nearly shape-preserving.

Physically, the wave oscillation in the middle part occurs because reflected waves are allowed to propagate in 
the Hermitian lattice. However, by setting opposite Peierls phases for the two side parts, =′ ′E q E q( ) ( ) has no real 
solution except for =′q q, where ′E E( ) and ′q q( ) are the energy and Bloch wave number of the Hermitian 
(non-Hermitian) part, respectively, so that wave transmission from the Hermitian part to the non-Hermitian part 
is prevented due to the evanescent transmitted waves. Once the sandwich structure is switched to a uniform 
non-Hermitian lattice, the retrieval light can propagate robustly and unidirectionally with the direction deter-
mined by the retrieving phase φr = ±π −q0. Moreover, the tunable light trapping scheme allows the flexible 
control of the trapping duration and region (the length of the middle part). This scheme obviously increases the 
interaction time between light and matter with low loss and thus can provide a excellent platform for the photonic 
quantum modulation57.

Finally, to examine the effect of the additional imaginary potentials iξ on the retrieval efficiency, we plot in 
Fig. 7 the actual amplitude profiles of the incident and retrieval waves of the light trapping process in Fig. 6(a) 
with different offset coefficients ξ. Clearly, although we have introduced the gain compensation with ξ = β = 0.4κ 
at the interface sites as discussed above, the actual amplitude of the retrieval wave is still much smaller than 

Figure 5.  Schematic illustration of (a) the implementation scheme of the switchable middle part, (b) the 
sandwich structure used for light trapping, and (c) the uniform non-Hermitian lattice used for light retrieving. 
The green circles denote the auxiliary sites, while the blue (yellow) circles denote the main sites of the non-
Hermitian (Hermitian) part. Sites n = ± N are the interfaces of this sandwich structure.
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that of the incident one. This is because, for a Gaussian wave packet, some components with the wave num-
ber not satisfying φ + q0 = ±π may undergo different levels of loss in the non-Hermitian parts. However, by 
increasing ξ properly, the actual amplitude of the retrieval wave can be significantly enhanced with a satisfactory 
shape-preserving effect. Moreover, the efficiency can also be increased by introducing proper gain throughout the 
entire sample. Thus, the light trapping scheme can be optimized by means of finite gain compensations.

Figure 6.  Dynamical evolutions of ∣ρn(t)∣ for Gaussian excitation in the sandwich structure with (a) φr = − π/2 
and (b) φr = π/2. The normalized amplitude profiles ∣ρn∣ of the incident (blue circles) and retrieval (red dots) 
waves in (a,c) and in (b,d). The white dashed lines in (a,b) denote the interface sites with N = 3. Here, we 
assume tr = 30/κ and ξ = β. The other parameters are the same as those in Fig. 3.
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Figure 7.  Actual amplitude profiles ∣cn∣ of the incident and retrieval waves with different offset coefficients ξ. All 
parameters except for ξ are the same as those in Fig. 3.
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Conclusions
In summary, we proposed a one-dimensional lattice with special non-Hermitian coupling, the imaginary 
part of which can be modulated by the effective Peierls phase arising from a synthetic magnetic field. Such a 
non-Hermitian lattice can be achieved by reducing a dimerized sawtooth lattice containing an array of auxiliary 
sites via proper adiabatic elimination. We found that this non-Hermitian lattice can support robust unidirectional 
light transport that is reflectionless and immune to defects. Moreover, this lattice can serve as a tunable filter for 
selecting waves with desired wave numbers. To explore more novel applications, we further built two structures 
involving the non-Hermitian lattice, namely a heterostructure and a sandwich structure. The heterostructure 
could be used to realize unidirectional transmissionless transport, i.e., an optical diode scheme, while light trap-
ping and reversal could be realized and controlled through phase modulations of the sandwich structure. This 
scheme can obviously increase the interaction time between light and matter. By introducing finite gain, the 
efficiencies of the trapping and reversal processes could be increased significantly. We hope that the results can 
not only open a new path for unconventional wave transport but also provide a promising platform for photon 
quantum modulation.
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