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Abstract

Background: Low back pain (LBP) is a heterogeneous disease with biological, physical,

and psychosocial etiologies. Models for predicting LBP severity and chronicity have

not made a clinical impact, perhaps due to difficulty deciphering multidimensional phe-

notypes. In this study, our objective was to develop a computational framework to

comprehensively screen metrics related to LBP severity and chronicity and identify the

most influential.

Methods: We identified individuals from the observational, longitudinal Osteoarthri-

tis Initiative cohort (N = 4796) who reported LBP at enrollment (N = 215). OAI

descriptor variables (N = 1190) were used to cluster individuals via unsupervised

learning and uncover latent LBP phenotypes. We also developed a dimensionality

reduction algorithm to visualize clusters/phenotypes using Uniform Manifold

Approximation and Projection (UMAP). Next, to predict chronicity, we identified

those with acute LBP (N = 40) and persistent LBP over 8 years of follow-up (N = 66)

and built logistic regression and supervised machine learning models.

Results: We identified three LBP phenotypes: a “high socioeconomic status, low pain

severity group”, a “low socioeconomic status, high pain severity group”, and an inter-

mediate group. Mental health and nutrition were also key clustering variables, while

traditional biomedical factors (e.g., age, sex, BMI) were not. Those who developed

chronic LBP were differentiated by higher pain interference and lower alcohol con-

sumption (a correlate to poor physical fitness and lower soceioeconomic status). All

models for predicting chronicity had satisfactory performance (accuracy 76%–78%).

Conclusions: We developed a computational pipeline capable of screening hundreds

of variables and visualizing LBP cohorts. We found that socioeconomic status, mental

health, nutrition, and pain interference were more influential in LBP than traditional

biomedical descriptors like age, sex, and BMI.
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1 | INTRODUCTION

Low back pain (LBP) is one of the most common complaints from peo-

ple of all ages,1,2 affecting approximately 540 million annually (7.3%

prevalence).3 LBP is a heterogeneous disease with biological, physical,

and psychosocial etiologies4 and the underlying combination of factors

that drive pain (i.e., the pain phenotype) cannot be identified in 90% of

those who seek care.5 Furthermore, while most LBP will resolve

acutely, 30% of LBP patients have symptoms that become chronic.6

Models to predict which patients transition from acute to chronic LBP

have not been adopted into daily clinical practice, perhaps due to diffi-

culty in deciphering multidimensional pain phenotypes.

Individual risk factors for LBP include physical7 and mental health

history,7 lifestyle factors like diet and exercise,8 genetics, socioeco-

nomic factors, comorbidities9 and others. Traditionally, risk factors are

assessed in cohort studies where regression is used to determine how

specific factors affect LBP prevalence and progression.9 Cohort sizes

necessarily scale with the number of risk factors to achieve the appro-

priate statistical power, limiting the extent of a potential study. To

evaluate a larger variable set in a well-controlled prospective study,

researchers have organized cohorts into specific sub-groups based on

symptom temporality and severity using clustering,10 principal

components,11 or latent class analyses.7 These efforts have identified

predictors for severe disease such as poor physical function, depres-

sion, and older age.12 However, for a heterogeneous, multidimen-

sional disease like LBP, a comprehensive screen of personal attributes

(mental and physical health history, lifestyle factors, demographics

and socioeconomics, anthropometry, comorbidities, genetics, spine

health, etc.) is necessary to develop a predictive model. Thus, a clinical

tool that simplifies pain phenotypes by identifying the most dominant

factors in pain progression remains elusive.

Machine learning is a powerful analytic tool that recognizes pat-

terns in data without explicit programming.13 Unlike traditional

regression, machine learning can identify complex and nonlinear rela-

tionships between factors to identify phenotypes in an unbiased man-

ner and generate sophisticated predictions.14,15 Predictive machine

learning models can help providers identify risk in patients whose con-

stellation of factors may have otherwise been unidentified or identify

novel and unexpected predictors of disease.16,17 Machine learning has

been applied in many clinical scenarios to determine disease risk, com-

plications, and survival outcomes.18,19 A computational tool that

leverages the benefits of machine learning could be integrated into an

electronic health record to make point-of-care predictions of LBP risk.

In this study, our objective was to use machine learning to iden-

tify multidimensional LBP phenotypes and predict pain chronicity in

the Osteoarthritis Initiative (OAI) dataset. The OAI is a longitudinal,

observational cohort study of musculoskeletal health with 4796 enrol-

lees. We chose the OAI for this analysis because it has a comprehen-

sive set of descriptor variables relevant to musculoskeletal health

(1000+ metrics, including demographics, anthropometry, diet, physi-

cal activity, mental and physical health, medical history, socioeco-

nomics, and medication use) and 8 years of longitudinal LBP data. We

identified participants that reported LBP at enrollment and used

unsupervised learning (clustering) to establish pain phenotypes with

no a priori hypothesis as to which variables were most influential. In

doing so, we developed a computational pipeline using a dimensionality

reduction method typical in biomedical sciences (Uniform Manifold

Approximation and Projection, UMAP)20 to visualize clinical datasets.

we established a technique for visualizing clinical datasets. We next

identified participants with acute or chronic pain and performed

supervised learning to develop a model to predict pan chronicity. We

compared three common supervised learning models [random forest

(RF), support vector machine (SVM), artificial neural network (ANN)]

to traditional logistic regression (LR) to determine the most effective

algorithm.

2 | METHODS

2.1 | Unsupervised learning and dimensionality
reduction for identifying back pain phenotypes

2.1.1 | Cohort identification

The OAI is a longitudinal cohort study initiated in 2004 that recruited

men and women aged 45–79 years from four clinical sites in the

United States. The OAI dataset includes 4796 subjects and 1190 vari-

ables at enrollment with 8 years follow-up (Figure 1A,B). Subjects

who responded to “How many days were you limited by back pain in

the last 30 days?” with ≥14 days and indicated that pain was located

in their low back were included for evaluation (n = 223). To reduce

noise in the clinical data, an initial data cleaning process was per-

formed to remove: (1) participants with <80% of variables completed

(n = 8); (2) variables focused on knee health with no analogue in

another joint (n = 455); (3) variables completed by <80% of partici-

pants (n = 232); (4) variables with zero variance (n = 6). A total of

215 participants and 485 relevant variables were left for further eval-

uation (Table 1; and Tables S1–S3).

2.1.2 | Clustering and dimensionality reduction

Data were then processed by unsupervised clustering to identify LBP

phenotypes. First, we generated a correlation matrix and identified

highly correlated variables in R v4.0.2 (mixedCor, psych package

[v2.1.6]; findCorrelation, caret package [v6.0-88]). After excluding cor-

related variables with r > 0.7, 297 were left for analysis. Next, a dis-

similarity matrix was calculated using the Gower distance (daisy,

cluster package [v2.1.2]) and k-medoids clustering was performed

(pam, cluster package; distance metric = Euclidean) using the silhou-

ette width to optimize cluster number. To visualize clusters and their

phenotypes, UMAP (umap, umap package [v0.2.7.0]; nearest neigh-

bors = 5, minimum distance = 0.7) was used to reduce the dimen-

sions of the dataset from 215 subjects and 297 variables to

215 subjects and 2 UMAP variables. UMAP-1 and UMAP-2 are a non-

linear combination of the 297 variables that preserve information
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contained in the 297 variables. UMAP plots were generated (Figure 1)

in which axes represent the UMAP-1 and UMAP-2 variables, each

data point represents one of the 215 individuals, and the relative dis-

tance between data points represents the dissimilarity between indi-

viduals. The color of the data points can be manipulated to illustrate a

characteristic of an individual (e.g., the cluster the individual belongs

to, whether the individual has acute or chronic pain, or a metric that

describes the individual like annual income, race, mental health

score, etc.).

2.1.3 | Statistical analysis

Statistical comparisons were made to identify which variables

(n = 485) differentiated the clusters. Continuous and ordinal vari-

ables were evaluated using the Kruskal–Wallis test (kruskal.test,

stats package [v4.2.0]), while categorical variables were evaluated

using Fisher's exact test (fisher.test, stats package). Because cluster-

ing by its nature maximizes differences between groups, we used a

conservative approach to determine significant variables and then

further screened variables based on their effect size. We defined sig-

nificance with a Bonferroni correction (p < 0.05/485) and set effect

size cutoffs for continuous, ordinal, and categorical variables. For

continuous and ordinal variables, the maximum fold change between

groups was calculated and a 1.5-fold increase or decrease was used

to define relevant variables. Cramer's V was calculated for categori-

cal variables and effect sizes were defined as: “small” 0.1–0.3,

“medium” 0.3–0.5, or “large” > 0.5.

Finally, to develop a clinical tool that provides LBP hazard

ratios on an individual basis, we performed a Kaplan–Meier recur-

rent event survival analysis (survfit, survival package [v3.2-11]) and

a Cox proportional hazard ratio analysis (coxph, survival package)

to calculate survival curves and hazard ratios for each cluster. We

defined an event as any visit at the 1, 2, 3, 4, 6, or 8-year follow-up

in which an individual reported ≥14 days of LBP in the past 30 days

(follow-up time mean [range]: 1.1 years [0.9, 1.6], 2.0 years [1.8,

2.4], 3.1 years [2.8, 3.4], 4.0 years [3.7, 4.4], 6.0 years [5.1, 6.7],

8.0 years [7.7, 8.7]).

F IGURE 1 Study design and data visualization. (A) Study I: Data analysis flowchart to identify LBP phenotypes in individuals from the OAI.
(1) Knee-specific (n = 455), incomplete (completed by <80% participants, n = 232), and low variance (variance = 0, n = 6) variables were
eliminated. (2) Highly correlated variables were removed (r ≥ 0.7, n = 200). (3) Individuals with ≥14 days of LBP in past month were selected
(n = 223) and filtered for completeness (>80% of variables completed, n = 215). (B) Data visualization (UMAP) with clusters overlaid. Each data
point represents an individual, axes represent the UMAP-1 and UMAP-2 variables (a nonlinear combination of hundreds of OAI metrics), and the
relative distance between data points represents the dissimilarity between individuals. The color of the data points indicates the cluster an
individual was assigned to. (C) Study II: Data analysis flowchart for acute and chronic LBP individuals. (D) Data visualization (UMAP) with LBP
chronicity overlaid. Each data point represents an individual, axes represent the UMAP-1 and UMAP-2 variables, and the relative distance
between data points represents the dissimilarity between individuals. The color of the data points indicates whether an individual had acute or
chronic back pain. ANN, artificial neural network; LBP, low back pain; LR, logistic regression; OAI, osteoarthritis initiative; RF, random forest;
SVM, support vector machines; UMAP, uniform manifold approximation and projection.

HUANG ET AL. 3 of 12



T
A
B
L
E
1

D
em

o
gr
ap

hi
cs

o
f
in
di
vi
du

al
s
w
it
h
LB

P
in

th
e
O
A
Id

at
as
et

LB
P
cl
us
te
rs

C
o
n
tr
o
l

Lo
w

b
ac
k
p
ai
n
ty
p
e

1
(N

=
9
4
)

2
(N

=
8
1
)

3
(N

=
4
0
)

A
ll
C
lu
st
er
s
(N

=
2
1
5
)

N
o
LB

P
A
cu

te
(N

=
4
0
)

C
h
ro
n
ic
(N

=
6
6
)

A
ll
(N

=
1
0
6
)

(N
=

4
5
8
1
)

A
ge

(y
ea

rs
)

6
1
.6

(9
.7
)

6
0
.3

(9
.2
)

5
6
.8

(8
.2
)

6
0
.2

(9
.3
)

6
1
.2

(1
0
.3
)

5
9
.5

(9
.4
)

5
9
.2

(8
.5
)

5
9
.3

(6
.6
)

Se
x

F
em

al
e

4
8
(5
1
.1
%
)

5
2
(6
4
.2
%
)

2
6
(6
5
%
)

1
2
6
(5
8
.6
%
)

2
6
7
8
(5
8
.5
%
)

2
1
(5
2
.5
%
)

3
7
(5
6
.1
%
)

5
8
(5
4
.7
%
)

M
al
e

4
6
(4
8
.9
%
)

2
9
(3
5
.8
%
)

1
4
(3
5
%
)

8
9
(4
1
.4
%
)

1
9
0
3
(4
1
.5
%
)

1
9
(4
7
.5
%
)

2
9
(4
3
.9
%
)

4
8
(4
5
.3
%
)

R
ac
e

O
th
er

N
o
n-
W

hi
te

1
(1
.1
%
)

1
(1
.2
%
)

1
(2
.5
%
)

3
(1
.4
%
)

7
9
(1
.7
%
)

1
(2
.5
%
)

2
(3
.0
%
)

3
(2
.8
%
)

W
hi
te

o
r
C
au

ca
si
an

8
1
(8
6
.2
%
)

4
4
(5
4
.3
%
)

1
5
(3
7
.5
%
)

1
4
0
(6
5
.1
%
)

3
6
5
0
(7
9
.7
%
)

3
0
(7
5
%
)

4
1
(6
2
.2
%
)

7
1
(6
7
.0
%
)

B
la
ck

o
r
A
fr
ic
an

A
m
er
ic
an

1
0
(1
0
.6
%
)

3
5
(4
3
.3
%
)

2
4
(6
0
%
)

6
9
(3
2
.1
%
)

8
0
5
(1
7
.6
%
)

8
(2
0
%
)

2
2
(3
3
.3
%
)

3
0
(2
8
.3
%
)

A
si
an

1
(1
.1
%
)

0
(0
%
)

0
(0
%
)

1
(0
.5
%
)

4
4
(1
.0
%
)

0
(0
%
)

0
(0
%
)

0
(0
%
)

N
o
re
sp
o
ns
e

1
(1
%
)

1
(1
.2
%
)

0
(0
%
)

2
(0
.9
%
)

3
(0
%
)

1
(2
.5
%
)

1
(1
.5
%
)

2
(1
.9
%
)

B
M
I(
kg

/m
2
)

2
9
.4

(4
.9
)

3
1
.5

(5
.1
)

3
3
.2

(4
.2
)

3
0
.8

(5
.2
)

2
8
.5

(5
.2
)

2
8
.5

(3
.6
)

3
1
.6

(5
.6
)

3
0
.4

(5
.0
)

E
du

ca
ti
o
n

Le
ss

th
an

hi
gh

sc
ho

o
lg

ra
du

at
e

0
(0
%
)

7
(8
.7
%
)

1
0
(2
5
%
)

1
7
(7
.9
%
)

1
5
1
(3
.3
%
)

1
(2
.5
%
)

4
(6
.0
%
)

5
(4
.7
%
)

H
ig
h
sc
ho

o
lg

ra
du

at
e

1
1
(1
1
.7
%
)

1
1
(1
3
.6
%
)

9
(2
2
.5
%
)

3
1
(1
4
.4
%
)

5
7
6
(1
2
.6
%
)

6
(1
5
%
)

8
(1
2
.1
%
)

1
4
(1
3
.2
%
)

So
m
e
co

lle
ge

2
3
(2
4
.5
%
)

3
5
(4
3
.2
%
)

1
5
(3
7
.5
%
)

7
3
(3
4
.0
%
)

1
0
7
3
(2
3
.4
%
)

8
(2
0
%
)

2
5
(3
7
.9
%
)

3
3
(3
1
.1
%
)

C
o
lle
ge

gr
ad

ua
te

1
9
(2
0
.2
%
)

1
2
(1
4
.8
%
)

5
(1
2
.5
%
)

3
6
(1
6
.7
%
)

9
6
5
(2
1
.1
%
)

1
1
(2
7
.5
%
)

8
(1
2
.1
%
)

1
9
(1
8
.0
%
)

So
m
e
gr
ad

ua
te

sc
ho

o
l

5
(5
.3
%
)

6
(7
.4
%
)

0
(0
%
)

1
1
(5
.1
%
)

3
8
6
(8
.4
%
)

2
(5
%
)

5
(7
.6
%
)

7
(6
.6
%
)

G
ra
du

at
e
de

gr
ee

3
6
(3
8
.3
%
)

1
0
(1
2
.3
%
)

0
(0
%
)

4
6
(2
1
.4
%
)

1
3
9
0
(3
0
.3
%
)

1
2
(3
0
%
)

1
6
(2
4
.3
%
)

2
8
(2
6
.4
%
)

N
o
re
sp
o
ns
e

0
(0
%
)

0
(0
%
)

1
(2
.5
%
)

1
(0
.5
%
)

4
0
(0
.9
%
)

0
(0
%
)

0
(0
%
)

0
(0
%
)

In
co

m
e

<
$
1
0
K

4
(4
.3
%
)

4
(4
.9
%
)

1
4
(3
5
%
)

2
2
(1
0
.2
%
)

1
3
8
(3
.0
%
)

1
(2
.5
%
)

9
(1
3
.6
%
)

1
0
(9
.4
%
)

$
1
0
K
to

<
$
2
5
K

4
(4
.3
%
)

1
6
(1
9
.8
%
)

1
1
(2
7
.5
%
)

3
1
(1
4
.4
%
)

4
2
3
(9
.2
%
)

2
(5
%
)

1
3
(1
9
.7
%
)

1
5
(1
4
.2
%
)

$
2
5
K
to

$
5
0
K

2
9
(3
0
.9
%
)

3
6
(4
4
.4
%
)

7
(1
7
.5
%
)

7
2
(3
3
.5
%
)

1
0
6
3
(2
3
.2
%
)

1
5
(3
7
.5
%
)

1
6
(2
4
.2
%
)

3
1
(2
9
.2
%
)

$
5
0
K
to

<
$
1
0
0
K

3
2
(3
4
.0
%
)

1
2
(1
4
.8
%
)

1
(2
.5
%
)

4
5
(2
0
.9
%
)

1
5
6
5
(3
4
.2
%
)

1
3
(3
2
.5
%
)

1
4
(2
1
.2
%
)

2
7
(2
5
.5
%
)

>
$
1
0
0
K

1
3
(1
3
.8
%
)

7
(8
.7
%
)

1
(2
.5
%
)

2
1
(9
.8
%
)

1
0
5
4
(2
3
.0
%
)

5
(1
2
.5
%
)

9
(1
3
.6
%
)

1
4
(1
3
.2
%
)

N
o
re
sp
o
ns
e

1
2
(1
2
.7
%
)

6
(7
.4
%
)

6
(1
5
%
)

2
4
(1
1
.2
%
)

3
3
8
(7
.4
%
)

4
(1
0
%
)

5
(7
.7
%
)

9
(8
.5
%
)

E
m
pl
o
ym

en
t

N
o
t
w
o
rk
in
g
o
th
er

re
as
o
ns

2
6
(2
7
.7
%
)

1
8
(2
2
.2
%
)

5
(1
2
.5
%
)

4
9
(2
2
.8
%
)

1
4
8
1
(3
2
.3
%
)

8
(2
0
%
)

1
0
(1
5
.2
%
)

1
8
(1
7
.0
%
)

N
o
t
w
o
rk
in
g
in

pa
rt
du

e
to

he
al
th

1
2
(1
2
.8
%
)

2
2
(2
7
.2
%
)

2
4
(6
0
%
)

5
8
(2
7
.0
%
)

1
8
7
(4
.1
%
)

3
(7
.5
%
)

2
6
(3
9
.4
%
)

2
9
(2
7
.4
%
)

U
np

ai
d
w
o
rk

fo
r
fa
m
ily

bu
si
ne

ss
2
(2
.0
%
)

0
(0
%
)

0
(0
%
)

2
(0
.9
%
)

5
2
(1
.1
%
)

0
(0
%
)

0
(0
%
)

0
(0
%
)

W
o
rk
s
fo
r
pa

y
5
3
(5
6
.4
%
)

4
1
(5
0
.6
%
)

1
1
(2
7
.5
%
)

1
0
5
(4
8
.8
%
)

2
8
3
8
(6
2
.0
%
)

2
9
(7
2
.5
%
)

3
0
(4
5
.4
%
)

5
9
(5
5
.6
%
)

N
o
re
sp
o
ns
e

1
(1
.1
%
)

0
(0
%
)

0
(0
%
)

1
(0
.5
%
)

2
3
(0
.5
%
)

0
(0
%
)

0
(0
%
)

0
(0
%
)

Sy
m
pt
o
m
at
ic
kn

ee
O
A

N
o

5
2
(5
5
.3
%
)

4
8
(5
9
.3
%
)

1
5
(3
7
.5
%
)

1
1
5
(5
3
.5
%
)

3
2
8
9
(7
1
.8
%
)

2
7
(6
7
.5
%
)

3
4
(5
1
.5
%
)

6
1
(5
7
.5
%
)

Y
es

4
2
(4
4
.7
%
)

3
3
(4
0
.7
%
)

2
5
(6
2
.5
%
)

1
0
0
(4
6
.5
%
)

1
2
9
1
(2
8
.2
%
)

1
3
(3
2
.5
%
)

3
2
(4
8
.5
%
)

4
5
(4
2
.5
%
)

R
ad

io
gr
ap

hi
c
kn

ee
O
A

N
o

3
8
(4
0
.4
%
)

4
2
(5
1
.9
%
)

1
5
(3
7
.5
%
)

9
5
(4
4
.2
%
)

2
0
2
1
(4
4
.1
%
)

2
1
(5
2
.5
%
)

2
8
(4
2
.4
%
)

4
9
(4
6
.2
%
)

Y
es

5
6
(5
9
.6
%
)

3
9
(4
8
.2
%
)

2
5
(6
2
.5
%
)

1
2
0
(5
5
.8
%
)

2
5
5
9
(5
5
.9
%
)

1
9
(4
7
.5
%
)

3
8
(5
7
.5
%
)

5
7
(5
3
.8
%
)

A
bb

re
vi
at
io
ns
:B

M
I,
bo

dy
m
as
s
in
de

x;
LB

P
,l
o
w

ba
ck

pa
in
;O

A
I,
o
st
eo

ar
th
ri
ti
s
in
it
ia
ti
ve

.

4 of 12 HUANG ET AL.



2.2 | Supervised learning for predicting back pain
chronicity

2.2.1 | Cohort identification

Of the 215 individuals with LBP, we identified 40 with acute pain

(≥14 days in the past month with activity-limiting LBP at enrollment

and <14 days at six subsequent visits) and 66 with chronic pain

(≥14 days with activity-limiting LBP at enrollment and in at least three

of six visits between enrollment and the 8-year follow-up)

(Figure 1C,D, Table 1). The remaining individuals were excluded;

37 could not be classified as either acute or chronic and 72 who were

lost to follow-up.

2.2.2 | Predictive modeling

To develop a model that predicts pain chronicity, traditional LR was

compared to three common supervised learning models: RF, SVM,

ANN. In each case, the model output was a classification of whether

an individual's pain would be acute or chronic. The model input con-

sisted of an optimal subset of predictor variables identified through a

feature elimination approach. Optimized models incorporated three to

seven predictor variables (the best predictors of 485 total variables)

and one output variable (acute vs. chronic classification).

To construct the LR model, the acute/chronic pain condition served

as the output variable and an optimal set of predictor variables was cho-

sen by minimizing the Akaike information criterion (AIC) (stepAIC, MASS

package [v7.3-54]). Then, 100-fold cross validation with iterated shuffling

(75/25 training/testing split) was used to calculate model performance

metrics: prediction accuracy, area under the receiver operating character-

istic curve (AUC), sensitivity, and specificity.

Supervised learning models were constructed via RF (randomForest,

randomForest package [v 4.6–14]) and SVM (svm, e1071 package

[v 1.7-7]). In both cases, the top 10 variables based on the LR AIC analysis

were chosen as candidates for predictive modeling and a grid search was

performed to simultaneously optimize the variable set and model hyper-

parameters (optimal sets: RF, numberof trees=500, variablesper node=1;

SVM, kernel = radial, cost = 1.8, gamma = 0.3). The output variable was

the acute/chronic pain condition. Model performance metrics were then

calculated using the cross-validation procedure as described above.

Next, we constructed an ANN composed of one input layer, two

hidden layers, and one output layer with dropout and weight regulariza-

tion (keras package [v2.4.0]). The model output was the acute/chronic

pain condition, and a random search was used to simultaneously opti-

mize the variable set (<10, a subset from the top 10 variables identified

in LR AIC analysis) and model hyperparameters (optimal set: nodes/drop-

out/activation function at layer 1, 40/30%/relu; layer 2, 25/50%/relu;

learning rate = 0.003). Model performance metrics were calculated as

described above. In all predictive models, missing data was imputed using

a RF approach (rfImpute, randomForest package).

3 | RESULTS

3.1 | Unsupervised learning identifies three LBP
phenotypes with varying pain severity and chronicity

We identified 3 clusters (3 LBP phenotypes) through unsupervised

learning (Figure 1B, Table 1), where an individual's cluster assignment

F IGURE 2 Unsupervised
learning identifies three LBP
phenotypes with varying pain
severity. (A) Days with activity-
limiting LBP at enrollment
(screening variable). There were
no significant differences
between clusters. (B) LBP
severity at enrollment. Cluster

3 has the highest proportion with
severe LBP, followed by Cluster
2 and then Cluster 1. (C) Survival
analysis over the 8-year follow-
up period with an episode of LBP
as the survival event. There were
no differences between clusters.
(D) Survival analysis over the
8-year follow-up period with an
episode of severe LBP as the
survival event. Cluster 3 had the
worst survival outcomes. LBP,
low back pain.
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was consistent in 89% ± 12% of validation runs (Figure S1). UMAP

visualization revealed the greatest differences between Clusters 1 and

3, while Cluster 2 was an intermediate/transition phenotype

(Figure 1B). Clusters were differentiated in terms of LBP severity and

chronicity. Cluster 3 had the highest proportion reporting severe LBP

at enrollment. Based on survival and hazard analyses, Cluster 3 was at

the greatest risk for episodes of severe LBP over 8 years of follow-up.

(Hazard Ratio [95% CI]: C1, 10.7 [7.4, 15.5]; C2, 18.0 [13.2, 24.5]; C3,

30.9 [22.6, 42.2]) (Figure 2, Table S4).

3.2 | Socioeconomic status, mental health,
nutrition, and analgesic use are signature cluster
markers

There were 58 variables that differentiated the LBP clusters by meeting

both p-threshold and effect size criteria (Figure S2, Tables S1–S3). These

variables reflected differences in socioeconomic status (SES), mental and

physical health, nutrition, and analgesic use.We defined clusters as: Clus-

ter 1, “high SES, low severity”; Cluster 2, “intermediate SES, intermediate

severity;” Cluster 3, “low SES, high severity”. Cluster 1 (“high SES, low

severity” group) had the least severe LBP phenotype and had higher

income, higher education level, were more likely to access to private

health care, were proportionally more white/Caucasian (Figure 3), and

had better mental and physical health than the other clusters (Figure 4).

Subjects from Cluster 2 (“intermediate SES, intermediate severity”
group) had an intermediate LBP phenotype and had intermediate

income, education level, healthcare access, and were racially mixed

(Figure 3), with intermediate mental and physical health (Figure 4). They

also consumed more healthy foods like fruits and vegetables and more

vitamin supplements than the other clusters (Figure 5). Subjects from

Cluster 3 (“low SES, high severity” group) had the most severe LBP phe-

notype and had low income, worse employment status, lower education

level, were primarily Black/African American, and had worse mental and

physical health. Additionally, Cluster 3 individuals had a diet with com-

paratively low nutritional value, with less vitamin supplements

(Figure 5A–C), and along with those in Cluster 2, were more likely to use

prescription analgesics (Figure 4B) and less likely to drink alcoholic bever-

ages, includingwine/wine coolers (Figure 5D). There were no differences

in clusters by sex, height, weight, BMI, age, diagnoses of spine arthritis,

family history of musculoskeletal health (knee/hip replacement), cardio-

vascular health, and comorbidities (Figure S3) among other metrics.

F IGURE 3 Socioeconomic status and race distinguish clusters. Cluster 3 had the lowest socioeconomic status and were majority Black or
African American, while Cluster 1 had the highest socioeconomic status and were majority white or Caucasian. Cluster 2 was an intermediate.
(A) Annual income (V00INCOME). (B) Education (V00EDCV). (C) Type of healthcare (V00HLTHCAR). (D) Race (P02RACE). Grad., graduate; HMO,
health maintenance organization; LBP, low back pain; UMAP, Uniform manifold approximation and projection.
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Of note, individuals in these clusters had a higher rate of

symptomatic knee OA (46.5%) compared to individuals who did

not meet the criteria for LBP (28.2%) (Table 1), while the

prevalence of radiographic knee OA was comparable between

clusters (55.8%) and those who did not meet the criteria for LBP

(55.9%) (Table 1). Further, we found that subjects from Cluster

F IGURE 4 Physical and mental health variables distinguish clusters. Cluster 3 had the worst physical and mental health, with Cluster 1 as the
best and Cluster 2 as an intermediate. (A) Left knee pain, aching, or stiffness (P01KPL12CV). (B) NSAID use (V00NSAIDRX). (C) Completion of
400-meter walk (V00400MCMP). (D) Depression scale (Center for Epidemiology Studies) (V00CESD). LBP, low back pain; NSAID, nonsteroidal
anti-inflammatory drug; UMAP, uniform manifold approximation and projection.

F IGURE 5 Diet and nutrition variables distinguish clusters. Cluster 3 had the worst diet and nutrition compared to the other clusters but
consumed the least alcohol (e.g., wine/wine coolers). (A) Daily servings of fruit (V00SRVFRT); (B) Daily servings of vegetables (V00SRVVEG);
(C) Multivitamin use (V00MVIT1CV); (D) Wine/wine cooler consumption (V00FFQ71). LBP, low back pain; UMAP, Uniform manifold
approximation and projection.
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3 had the highest percentage lost to follow-up (C1: 30%, C2:

32%, C3: 45%).

3.3 | Supervised learning predicts LBP chronicity

We identified three variables that distinguished the acute and chronic

LBP groups (Figure 6, Tables S5–S7). One variable (daily calories from

alcoholic beverages) met both significance and effect size criteria,

while two additional variables (Physical Summary Scale from the

SF-12 questionnaire; Item 8 from SF-12 questionnaire “How much did

pain interfere with your normal work [including work outside home and

housework]”) met significance criteria but not effect size criteria.

After optimizing each model's hyperparameters and input

variables, prediction accuracy was relatively similar across models

(76%–78%) (Table 2, Figure 6D). For each model, the optimized vari-

able set contained Item 8 from the SF-12 questionnaire. In addition,

3 out of 4 models contained daily alcohol consumption, Item 3 from

the SF-12 questionnaire (“How much did health limit climbing several

flights of stairs?”), and whether the individual used prescription

medication (e.g., narcotics) for pain in half of the days in the past

month. Training and testing accuracies were calculated to diagnose

overfitting, where LR and RF had the smallest differential, followed by

ANN and SVM (Table 2).

4 | DISCUSSION

Current methods for evaluating LBP patients cannot consistently

identify the underlying drivers of pain or predict whether acute pain

will become chronic. In this study, we probed the OAI database to

determine latent pain phenotypes and develop models to determine

chronicity. Our analysis incorporated elements of traditional statistics

and machine learning to screen hundreds of variables and identify the

most impactful in LBP, despite a limited LBP cohort size. We identi-

fied three phenotypes in which SES, mental health, nutrition, and anal-

gesic use had strong associations with LBP. Specifically, individuals

with lower or intermediate SES were more likely to have severe pain

at enrollment and develop long-term severe pain. Toward clinical

implementation, long-term LBP symptoms were predicted by pain

interference and alcohol consumption using three machine learning

models and traditional regression.

Social determinants of health influence the occurrence or pro-

gression of many diseases, such as hypertension,21 joint

degeneration,22 breast cancer,23 and kidney disease.24 In this study,

those with lower income and education level were more likely to have

severe back pain at enrollment and over 8 year. In agreement, Chen

et al.7 reported that lower social class and unemployment were the

strongest predictors for fluctuating and persistent severe LBP in

5 years. In addition, a large network analysis showed that individuals

living in rural areas with worse health insurance were more likely to

develop LBP.8 Furthermore, we identified race as an indicator for LBP

phenotyping, where Cluster 3 (“low SES, high severity” cluster) had a

higher proportion of Black or African American individuals and was

more likely to have severe chronic LBP. Disparities are apparent in

other health conditions as well,25–27 including stark disparities in

COVID-19 outcomes.28 Thus, the social, cultural, and biological conse-

quences of racial discrimination, as in other chronic diseases, likely

drive LBP. Interestingly, the diet of individuals in Cluster 3 (“low SES,

high severity” cluster) was lower in nutritional content than the other

clusters, consistent with previous reports of geographic disparities like

food deserts.21,29 Patients with lower SES are also prescribed differ-

ent pain management strategies. Data from the National Ambulatory

Medical Care Survey (NAMCS) suggests thatpatients that are non-

white, are from rural areas, or have public health insurance are more

likely to be prescribed opioids compared to white patients.30,31 In this

study, prescription analgesic use was increased in the low SES/high

pain severity cluster and prescription narcotic use was a predictor of

chronic LBP. It may be that those with severe pain and low SES are

more likely to use prescription analgeiscs, however this did not pre-

vent chronic LBP in this population. Taken together, these data sug-

gest that US healthcare disparities are impacting LBP, warranting

urgent attention from healthcare policy makers.

The associations between mental health, especially depression,

and LBP has long been established.32–34 A synchrony of depression

and pain (i.e., when pain severity changes, levels of depression symp-

toms change in the same direction) has been observed in both short-

term35,36 and long-term follow-up studies.37 For example, Stevans

et al.6 reported that patients with depression/anxiety were more likely

F IGURE 6 Key variables that distinguished acute and chronic LBP
groups. Three variables significantly different the groups (A) SF-12
total score (V00HSPSS). (B) Item 8 of SF-12: “During the past
4 weeks, how much did pain interfere with your normal work?”
(V00SF8) (C) Daily calories from alcohol (% total daily calories)
(V00PCTALCH). (D) ROC curve comparisons of ANN, RF, SVM and LR
models for predicting pain chronicity. There was a mild improvement
in performance with machine learning. ANN, artificial neural network;
AUC, area under curve; LBP, low back pain; LR, logistic regression; RF,
random forest; ROC, receiver operating characteristic curve; SF-12,
short form-12 questionnaire; SVM, support vector machine.
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to transition from acute to chronic LBP. Similarly, in our study, individ-

uals from Cluster 3 (“low SES, high severity” cluster) had more severe

depression, as assessed by the CES-D scale, and were more likely to

develop severe chronic LBP. In a meta-analysis including 37 studies,

Caruso et al.38 found that antidepressants could improve both quality

of life and pain symptoms, suggesting that targeting mental health

could have synergistic treatment effects on pain. Interestingly, Quiton

et al.39 found that lower SES was also associated with depression,

suggesting sociodemographic factors create unique social identities

that impact pain. Our clustering analysis identified unique social iden-

tities in each cluster and could be useful in a primary care setting to

direct multimodal physical and mental health treatment plans. Fur-

thermore, we observed the highest attrition rate in Cluster 3. Previ-

ously, a meta-analysis of 54 studies (5852 subjects) showed that

individuals with higher levels of depression were more likely to drop-

out of RCTs.40 These results should be taken into consideration when

designing longitudinal studies that target depression and LBP.

Predicting and preventing long-term LBP remains an active area

of research. Several studies have utilized trajectory analysis and other

conventional techniques to identify risk factors associated with the

transition to chronic LBP.6,7 However, the number of identified risk

factors is prohibitive for adoption into daily clinical practice. Here, we

optimized predictive models with critical predictors, decreasing model

complexity while still achieving satisfactory accuracy, sensitivity, and

specificity. Of note, we identified that an individual's perception of

how pain interferes with their daily work (SF-12, Item 8) was among

the strongest predictors of long-term pain, perhaps, because this item

incorporates elements of mental, physical, and socioeconomic health.

Furthermore, there is a complicated relationship between LBP and

alcohol consumption. In our study, daily alcohol consumption was one

of the strongest predictors of long-term LBP, where increased alcohol

intake was protective from LBP. In contrast, previous work associates

increased alcohol consumption with psychosocial risk factors in LBP

patients.41,42 Here, we attribute the positive impact of alcohol to its

positive correlation to physical fitness,43,44 as, in our study, the stron-

gest correlates to alcohol intake were dominated by variables related

to physical health (20 meter walk time, pace, and step count;

400 meter walk completion status; SF12-Physical Summary Scale, SF-

12 items 3 and 8 related to pain interference during activity; ability to

perform household activities; BMI). Furthermore, moderate alcohol

consumption (wine in particular) is an indicator of higher SES,45–48

and we detected a positive association between alcohol intake and

income. Thus, in our study, chronic pain was avoided by those whose

pain did not interfere with their daily activities and, perhaps, were

socioeconomically advantaged at study enrollment.

The strength of the OAI dataset is that it provides hundreds of

metrics relevant to MSK disease and 8 years of follow-up data, how-

ever caution should be used before extrapolating these results to

other populations. First, only a small subset of the OAI enrollment

cohort reported LBP, limiting broader generalizations. In addition,

findings related to race are likely due to the specific racial demo-

graphics and social implications of race in the United States, as nearly

all individuals in this study identified as Black/African American and

White/Caucasian. Similarly, alcohol consumption has different cultural

implications outside the United States as well. Next, individuals

enrolled in the OAI study are predisposed to musculoskeletal disease

by design; individuals included in the current study had a higher rate

of symptomatic and radiographic knee OA than those in the global

population (LBP clusters vs. global population: radiographic OA:

55.8% vs. 28.7%, symptomatic OA: 46.5% vs. 12.4%),49 though the

prevalence of knee OA is typically higher in a population with LBP

(50%–70%).50,51 A future prospective LBP-specific cohort studies is

warranted to compare social and biological drivers of LBP in a cohort

representative of the LBP population. Such a study should consider

other factors like genetics and spine pathologies (e.g., disc degenera-

tion) as well, as these are linked to back pain52,53 but not covered by

the OAI.

SUMMARY

Clinical strategies to diagnose and treat LBP have failed and research

efforts to improve outcomes have been incremental. It may be that

reasonable preconceptions for what drives LBP have biased the

approach to diagnosing and treating back pain and the research strat-

egies for uncovering the underlying causes. In this work, we drop

these preconceptions and explore a musculoskeletal database with no

a priori hypothesis, determining that SES, mental health, nutrition, and

analgesic use are the strongest correlates to LBP severity and pain

interference was predictive of chronic pain. Our analysis framework

was able to screen hundreds of variables to identify the most impact-

ful in LBP, despite a relatively small cohort, and is applicable to any

disease type. We opine that focusing on the traditional biomedical

descriptors of LBP obscures the need for social programs, exercise

programs, access to healthy foods, and education that are necessary

to treat LBP.
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