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Expression regulation of genes is linked to their CpG
density distributions around transcription start sites
Hao Tian1,* , Yueying He1,*, Yue Xue1,*, Yi Qin Gao1,2,3

The CpG dinucleotide and its methylation behaviors play vital
roles in gene regulation. Previous studies have divided genes into
several categories based on the CpG intensity around tran-
scription starting sites and found that housekeeping genes tend
to possess high CpG density, whereas tissue-specific genes are
generally characterized by low CpG density. In this study, we
investigated how the CpG density distribution of a gene affects its
transcription and regulation pattern. Based on the CpG density
distribution around transcription starting site, by means of a
semi-supervised neural network we designed, which took data
augmentation into account, we divided the human genes into
three categories, and genes within each cluster shared similar
CpG density distribution. Not only sequence properties, these
different clusters exhibited distinctly different structural fea-
tures, regulatory mechanisms, correlation patterns between the
expression level and CpG/TpG density, and expression and epi-
genetic mark variations during tumorigenesis. For instance, the
activation of cluster 3 genes relies more on 3D genome reorga-
nization, compared with cluster 1 and 2 genes, whereas cluster 2
genes showed the strongest correlation between gene expression
and H3K27me3. Genes exhibiting uncoupled correlation between
gene regulation and histone modifications are mainly in cluster 3.
These results emphasized that the usage of epigenetic marks in
gene regulation is partially rooted in the sequence property of
genes such as their CpG density distribution and explained to
some extent why the relation between epigenetic marks and gene
expression is controversial.
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Introduction

It is well known that the distribution of CpG dinucleotide is uneven
along the genome sequence (Antequera, 2003). For instance, CpGs
could accumulate to form the CpG island (CGI) (Antequera, 2003;
Deaton & Bird, 2011). The CpG density around the transcription start
site (TSS) is generally higher than its surrounding sequence given

that most of the gene promoters are associated with CGI (Deaton &
Bird, 2011; Vavouri & Lehner, 2012). Based on the normalized CpG
density/GC content of promoter regions, genes have been divided
into two or three categories, including HCP (high-CpG promoter),
LCP (low-CpG promoter), and ICP (promoters with intermediate CpG
contents) (Saxonov et al, 2006; Weber et al, 2007; Hartung et al, 2012;
Couldrey et al, 2014; Yang et al, 2014). HCP genes tend to be
housekeeping genes, whereas LCP genes are more likely to be
tissue specific (Saxonov et al, 2006; Yang et al, 2014). These clas-
sifications were normally performed based on the average CpG
intensity. As the distributions of CpG can also vary greatly within
genes, it is interesting to explore whether the distribution in and
around a gene affects its regulatory mechanisms (such as the
deposition of epigenetic marks) and function.

The methylation of the cytosine of CpG represents a very im-
portant epigenetic mark which appears to be also dependent on
the density distribution of CpG along the genome. Themethylation
level of CGI is usually low, especially in the promoter regions of
highly expressed genes (Deaton & Bird, 2011; Vavouri & Lehner,
2012; Aoto et al, 2020). Besides, polycomb repressive complex 2
(PRC2), which is thought to participate in the methylation of lysine
on H3, tends to bind to CpG-dense regions under the help of
polycomb-like proteins (van Kruijsbergen et al, 2015; Li et al, 2017).
The mutual exclusion between CGI methylation and trimethyla-
tion of H3K27 was observed in both human and mice cells
(Bogdanovic et al, 2011; Lynch et al, 2012). H3K27me3-marked DNA
methylation canyons can form long-range chromatin interactions,
which was associated to specific gene repression (Zhang et al,
2020). In general, epigenetic marks, including DNA methylation;
active histone marks H3K4me3, H3K36me3, and H3K27ac; and
repressive histone marks H3K27me3 and H3K9me3, are related to
gene activation or repression (Santos-Rosa et al, 2002; Heintzman
et al, 2007; Benayoun et al, 2014; Jang et al, 2017; Ninova et al, 2019).
Notably, at the same time, many studies also showed the decoupling
of epigenetic marks from gene regulation (Murray et al, 2019 Preprint;
Borsari et al, 2020 Preprint). It is thus intriguing to investigate the
possible reasons behind such inconsistency, in particular, whether
the DNA sequence plays a role in the usage of different epigenetic
regulation.
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To address the questions described above, we performed in this
paper gene classification based on the CpG density distribution
around TSS using a semi-supervised neural network. The analyses
revealed that, in general, human genes can be divided into three
categories. Cluster 1 genes possess a high and sharp CpG density
peak around TSS. Cluster 2 genes harbor a lower but broader CpG
density peak, compared with cluster 1 genes. In contrast, cluster 3
genes are characterized by low CpG densities around TSS. Not only
the sequence property, the patterns of nucleosome occupancy, and
transcription factor (TF) binding, the correlation between the gene
expression level and CpG/TpG density, the regulatory mechanisms,
and the epigenetic mark and expression variations during tu-
morigenesis are also distinctly different among the three gene
clusters. Together, our results emphasized the importance of taking
the genetic sequence properties into account for understanding
the gene regulatory mechanisms.

Results

Gene classification based on CpG distribution

Many studies have revealed the distinctly different CpG distribu-
tions around TSS between housekeeping genes and tissue-specific
genes (Saxonov et al, 2006; Roider et al, 2009; Yang et al, 2014). Here,
we first used the Recurrent Neural Network (see the Materials and
Methods section) to distinguish most of the housekeeping genes
from tissue-specific genes (Fig 1A). Briefly, we downloaded the
human promoter CAGE data from the FANTOM5 project (https://
fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/) and
regarded the midpoint of CAGE peaks labeled with “p1@” as gene
TSS. For each gene, the corresponding CpG density distribution was
calculated based on the DNA sequences of 16 kb (8 kb upstream to
8 kb downstream of TSS) using the 40-bp nonoverlapping window,
thus generating a 1 × 400 vector. The network was first trained (see
the Materials and Methods section) using the CpG density distri-
butions of a proportion of housekeeping genes (downloaded from
UCSC database) and tissue-specific genes (supervised loss) (Tian
et al, 2020) and the unlabeled genes (unsupervised loss, Fig 1A). The
AUC value of the testing set is 0.947.

Next, we applied this well-trained model to the entire gene set,
each gene was therefore conferred by a “CG likelihood,” the value of
which indicates the confidence that one gene could be regarded as
a tissue-specific gene. Similar to previous studies (Weber et al,
2007), the distribution of CG likelihood roughly consisted of three
parts (Fig 1B), indicating that the human genes could be divided into
three clusters, and we performed such a classification by means of
a Gaussian mixture model. Genes in clusters 1 (gene number is
12361) and 3 (gene number is 8396) possess the lowest and highest
CG likelihood and are characterized by highest (and sharp) and
lowest CpG density distribution around TSS, respectively, whereas
cluster 2 genes (gene number is 3752) have broad CpG peaks around
TSS featured by moderate intensity (Fig 1C). Accordingly, almost all
(3,123 of 3,447) housekeeping genes are in cluster 1, and in contrast,
the most of (1,292 of 1,821) tissue-specific genes belong to cluster 3.
Genes in clusters 1 and 3 harbor the lowest and highest tissue
specificities (higher value of this parameter indicates the

corresponding genes are specifically and highly expressed in fewer
tissues [Tian et al, 2020], see the Materials and Methods section),
respectively (Fig 1D), accordant with previous studies revealing the
negative correlation between TSS CpG density and the tissue
specificity score (Yang et al, 2014). Notably, although tissue-specific
genes tend to possess low CpG densities around TSS, most tissue-
specific (ts)-TFs are relatively CpG-rich, given that 108 of 171 ts-TFs
are in cluster 2. We also analyzed the distribution of tissue-specific
genes pertinent to certain tissues (e.g., liver-specific genes) among
three clusters. Interestingly, brain-specific genes tend to reside in
clusters 1 and 2, whereas liver-, spleen-, and whole blood-specific
genes are more likely to belong to cluster 3 (Fig S1A).

Akin to CpG density distribution, the nucleosome occupancy
patterns are also found to be significantly different among the
three clusters. In general, as for cluster 1 genes, the promoter
regions of which reside in an open environment, and the ar-
rangement of nucleosome downstream of TSS is regular (Fig 1E).
Such a feature can also be observed for cluster 2 genes but to a
much lesser extent (Fig 1E). By contrast, cluster 3 genes are gen-
erally located in a compact and nucleosome-occupied environ-
ment, especially for promoter regions (Fig 1E). A recent study has
uncovered the binding sites (ChIP-seq peaks) of 208 chromatin-
associated proteins (CAPs), including 171 TFs and 37 transcriptional
cofactors and chromatin regulator proteins in HepG2 cells
(Partridge et al, 2020). We found that the binding sites of most of the
CAPs, for example, ERF, ELF3, CHD2, and MAZ, tend to reside in a
specific region for cluster 1 genes, whereas the binding patterns
become more “dispersed” for clusters 2 and 3 genes (Figs 1F and
S1B).

The housekeeping genes and tissue-specific genes in cluster 1
(named c1-HKGs and c1-TSGs, respectively, although the number of
the latter is relatively low: 3,123 versus 221) possess very similar CpG
distribution patterns (Fig 1G), and they both locate in an open
environment (Fig 1E). To understand the factors contributing to
their different transcriptional activities, we examined their CAP
binding patterns. Because in contrast to c1-HKGs, many c1-TSGs are
not expressed in HepG2, we chose as examples the highly
expressed c1-TSGs (named h-c1-TSGs), the expression level of
which exceeds the 75th percentile of all genes’ expression level and
is comparable to c1-HKGs (P-value > 0.05). One can see from Fig 1H
that CAPs are inclined to bind to the promoter regions of c1-HKGs,
hinting that the sequence motif of c1-HKGs promoter regions is
more likely to recruit TFs. We also compared the CAP binding for
highly expressed c1-TSGs and c3-TSGs and found that CAPs with
higher tissue specificities have a higher tendency to bind to c3-TSGs
(Fig S1C), which means that these CAPs are prone to regulate tissue-
specific genes with low but not high promoter CpG densities. Aside
from sequence features, we also examined the 3D chromatin
structure properties and found that the insulation score (one
parameter used to assess the possibility that the locus locates in
TAD boundary, see the Materials and Methods section) of c1-HKGs is
significantly higher than c1-TSGs (Fig S1D). This result shows that
compared with c1-TSGs, c1-HKGs are more likely to reside at TAD
boundaries, accordant with previous findings that HKGs are
enriched near TAD boundaries (Dixon et al, 2012). Together, these
results revealed that although the CpG distributions around the
TSS are similar, c1-HKGs and c1-TSGs display distinctly different
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Figure 1. Gene classification based on CpG distribution.
(A) Overview of the network-training process. (B) The distribution of CG likelihood of human genes. (C) The CpG density distribution of genes belonging to different
clusters (left, heatmap; right, average behaviors). (D) The tissue specificity of genes of three clusters. Based on the definition of tissue specificity (see the Materials and
Methods section), for each gene, its maximum tissue specificity among 37 tissues (testis was not considered because it contains too many tissue-specific genes) was
extracted and drawn here. P-values = 3.12 × 10−69 (cluster 1 versus cluster 2), 6.37 × 10−276 (cluster 1 versus cluster 3), and 4.28 × 10−106 (cluster 2 versus cluster 3) by Welch’s
unequal variance t test. (E) The nucleosome occupancy patterns (measured by MNase-seq) of genes of three clusters in GM12878. (F) The distribution of genomic distance
between transcription factor (TF)–binding sites and gene transcription starting site. Positive and negative values indicate that TFs bind to the regions downstream and

Gene classification based on semi-supervised neural network Tian et al. https://doi.org/10.26508/lsa.202101302 vol 5 | no 9 | e202101302 3 of 12

https://doi.org/10.26508/lsa.202101302


sequence and structure traits. The sequence properties for one
gene to be a HKG include not only the high CpG density within the
promoter region, which not only permits the open chromatin
structure (Fig 1E) but also the specific sequence motif which can
effectively recruit different kinds of TFs for transcription.

We note here that there exist many studies (Saxonov et al, 2006;
Weber et al, 2007; Hartung et al, 2012; Couldrey et al, 2014; Yang et al,
2014) dividing the gene promoters into two or three categories, for
example, HCPs (high-CpG promoters), LCP (low-CpG promoters),
and ICP (promoters with intermediate CpG content). However, the
criterion behind these classifications was based on the (normal-
ized) promoter CpG/G+C content and did not consider explicitly the
CpG density distribution upstream and downstream of TSS. Here, as
an example, we first calculated the overlap between gene clusters
identified here and by Weber et al (2007) and found that most HCP
and LCP genes belong to cluster 1 and 3, respectively, and ICP is
distributed among all three clusters (Fig S1E). As expected, almost
all cluster 1 genes are associated with CGI, whereas only a minority
of cluster 3 genes is associated with CGI (Fig S1F). Such an asso-
ciation was also observed when we compared the genes of three
clusters with nonmethylated islands identified by Bio-CAP (Long
et al, 2013) (Fig S1G). Furthermore, we compared the CpG density
distribution around TSS and tissue specificity between clusters
identified by RNN and Weber et al (2007). Minor difference existed
within clusters identified by RNN (Fig S1H and I), indicating that our
classification does provide opportunities to investigate how se-
quence property variation affects gene regulatory mechanisms. In
fact, genes within each cluster (identified in this work) exhibit
particular regulatory mechanisms that are significantly different
from each other, which will be discussed below.

The relation between sequence property and gene expression

Earlier studies revealed a positive correlation between CpG density
around TSS and gene expression in vertebrates (Cheng et al, 2012;
Yang et al, 2014). This result is not surprising because housekeeping
genes are characterized by high CpG density in promoter regions
and are normally highly expressed. Here, we asked whether such a
positive correlation between expression and CpG density still holds
in each individual cluster. We calculated the Spearman correlation
coefficient between the gene expression level and CpG density of
each nonoverlapping 40-bp window among genes belonging to the
same cluster (see the Materials and Methods section) and found
that CpG densities around TSS are in general positively correlated
with gene expression, regardless of the cluster under study (Figs 2A,
S2, and S3). Furthermore, we noticed that this correlation is higher
for clusters 2 and 3 genes than for cluster 1 genes in most samples
we examined (including early embryonic cells, somatic cells, tumor
cells and its corresponding paracancerous cells, Figs 2A, S2, and S3).
In a few samples (e.g., early embryonic cells, hES, LIHC, and BLCA),
we did not observe the prominent correlation peak near the
TSS (Figs 2A and S3) for cluster 1 genes. The correlation level

downstream of TSS (TSS—approximately +4 kb) decays much slower
for cluster 3 and is thus more positive than clusters 1 and 2 genes
(Figs 2A and S2). These results thus show that aside from sequence
properties, the correlation patterns derived from different gene
clusters are also significantly different (therefore, the correlation
pattern may be influenced intrinsically by sequence properties).

An earlier study revealed that the expression level was nega-
tively correlated with TpG density near TSS of pig genes
(Schachtschneider et al, 2015). We found here that in different
human cells, these three clusters exhibit an overall negative cor-
relation between expression and the TpG density near TSS, but this
correlation level for clusters 2 and 3 genes is generally more
negative than cluster 1 genes (Figs 2B and S4–S6). Intriguingly, as for
clusters 1 and 2, the correlation between expression and TpG
density 0 ~ 40 bp downstream of TSS is positive and thus noticeably
different from its surrounding sequences (Figs 2B, S4, and S5). In the
following, we show that this region also distinguishes itself by
unique histone modification marks.

Distinct regulatory mechanisms among three gene clusters

Because the three gene clusters have distinct sequence features
and epigenetic mark usage is expected to be affected by DNA
sequence, we next investigated whether the corresponding epi-
genetic mechanisms also differ for the three classes of genes. We
analyzed the RNA-seq, histone modification, and DNA methylation
data of the liver, lung, ovary and sigmoid colon. Similar results were
obtained for each set of data. Taking the liver as an example, only a
small proportion of cluster 1 genes are marked with repressive
histone modifications (H3K27me3 and H3K9me3, Figs 3A and S7A),
and as expected, these genes possess relatively low expression
levels within cluster 1 (Figs 3A and S7A). Most cluster 1 genes are
decorated with active histone marks (H3K4me3, H3K27ac, and
H3K36me3) and possess low DNA methylation levels around TSS,
consistent with their higher expression levels (Figs 3B and S7B–D).
Intriguingly, one feature for repressed genes of cluster 2 is that their
high H3K27me3 signals tend to be dispersed along the genome
sequence upstream and downstream of TSS (Fig 3A). In contrast, the
H3K27me3 distributions of cluster 1 repressed genes are limited
close the TSS (Fig 3A). For cluster 3 genes, although a higher
proportion of genes are repressed, compared with clusters 1 and 2,
a dispersed and much weaker pattern of H3K27me3 is observed for
repressed genes (Fig 3A), indicating that the repression of cluster 3
genes may be largely independent of the deposition of H3K27me3.
Such results are accordant with previous studies, revealing that
PRC2, playing a vital role in trimethylation of H3 on lysine K27, tends
to bind to CG-rich regions (Mendenhall et al, 2010; van Kruijsbergen
et al, 2015; Li et al, 2017).

To quantify the expression dependences on epigenetic modi-
fications among genes with different DNA sequences, akin to the
correlation between CpG density and gene expression level in-
troduced above, for each cluster, we calculated the spearman

upstream of transcription starting site, respectively. P-value = 2.18 × 10−9 for cluster 1 and 2, P-value = 0.04 for cluster 1 and 3. Welch’s unequal variance t test. (G) The CpG
density distribution of c1-HKG and c1-TSG (left, heatmap; right, average behaviors). (H) The proportion of c1-HKGs/h-c1-TSGs that bind to one certain TF. Each data point
represents one certain TF, and the corresponding color represents its tissue specificity. P-value = 4.12 × 10−11 by t test.
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correlation between expression levels and epigenetic marks
around the TSS for different genes (Figs 3C and S8). The correlation
between the expression level and DNAmethylation is negative near
TSS and is positive both up- and downstream of TSS for all three
types of genes (Fig 3C). Notably, among all three gene clusters, the
expression level of cluster 2 genes is most strongly correlated
to DNA methylation. As for repressive histone modifications
(H3K27me3 and H3K9me3), the gene expression is negatively cor-
related with the modification level, especially for cluster 2 genes
(Fig 3C). Interestingly, we found that the TF EZH2 (Partridge et al,
2020), which is thought to be involved in the methylation of H3K27,
tends to bind to the promoter regions of cluster 2 genes (P-value =
6.67 × 10−20 for cluster 1 and 2, P-value = 3.42 × 10−76 for cluster 2 and
3, Fisher’s exact test), indicating that the wide usage of repressive
histone mark for the down-regulation of cluster 2 genes. For active
histone modifications, as expected, the expression is positively
correlated with H3K4me3 and H3K27ac signals around TSS and with
H3K36me3 signal in gene body (Fig 3C). These correlation levels are
generally lower for cluster 1 genes than for genes of the other two
clusters (Fig 3C).

The above results revealed that different gene clusters exhibit
distinct correlation patterns between the expression level and
epigenetic marks, hinting the important role of DNA sequence
feature in the aspect of epigenetics. In fact, as we introduced above,
the H3K27me3 distribution of repressed genes belonging to dif-
ferent clusters does correlate with the corresponding CpG density
distribution. In fact, cluster 3 genes tend not to be occupied by
H3K27me3 for repression, resulting in the low correlation between

H3K27me3 and the expression level. In contrast, cluster 2 genes
tend to recruit proteins responsible for trimethylation of H3K27
(such as polycomb group proteins) for repression because of their
sequence characteristics (likely, the high and broad CpG density
peak), leading to the higher correlation between expression and
H3K27me3 signal. A recent study (Borsari et al, 2020 Preprint) in-
vestigated the variation of expression and nine histone modification
signals of human coding genes along the transdifferentiation
process, from pre-B cell to macrophage, and identified a gene
cluster: genes within which are not marked by most kinds of
histone modifications throughout the differentiation process but
exhibit expression variation. Intriguingly, the majority (70%) of
these genes are found here to belong to cluster 3, indicating that
the expression level of genes characterized by low CpG density are
more likely uncoupled from histone marks. To gain information on
the regulatory mechanism of cluster 3 genes, we calculated the
correlation between the compartment index (gene with higher
value indicates it locates in a more compartment A environment,
and compartments A and B are mainly corresponding to eu-
chromatin and heterochromatin, respectively, see the Materials
and Methods section) and gene expression level among different
tissues and found that this correlation for cluster 3 genes appears
to be higher than other two types of genes (Fig S7E). Such a result
indicates that chromatin structure organization plays a more
important role in cluster 3 gene regulation: these genes are
intrinsically prone to silencing, and their activation are likely
facilitated by a movement to a more compartment A–like envi-
ronment, possibly under the help of specific TFs (Hnisz et al, 2017;

Figure 2. The relation between sequence property and gene expression.
(A) The Spearman correlation between gene expression and CpG density of each nonoverlapping 40-bp window (see theMaterials andMethods section); the expression
level of three gene clusters in these four cells could be seen in Fig S6. For each cell, P-value < 0.001 when two correlation curves were compared (t test). (B) The Spearman
correlation between gene expression and TpG density of each nonoverlapping 40-bp window. For each cell, P-value < 0.001 when two correlation curves were compared
(t test).

Gene classification based on semi-supervised neural network Tian et al. https://doi.org/10.26508/lsa.202101302 vol 5 | no 9 | e202101302 5 of 12

https://doi.org/10.26508/lsa.202101302


Figure 3. Distinct regulatory mechanisms among three gene clusters.
(A, B) The distribution of H3K27me3 (A) and H3K4me3 (B) among three gene clusters in the liver. Each heatmap was ranked based on the gene expression level. ChIP-seq
signal represents the fold change (ChIP-seq counts relative to control). (C, D) The Spearman correlation between the gene expression level and epigenetic marks (C) and
between TpG density and H3K27me3 (D) (see the Materials and Methods section). For Fig 3C, all P-values < 10−7 and for Fig 3D, all P-values < 10−4 (t test).
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Hnisz & Young, 2017; Boija et al, 2018; Kim & Shendure, 2019;
Stadhouders et al, 2019; Tian et al, 2020).

As mentioned above, cluster 1 and 2 genes show a sharp positive
peak in the correlation between the expression level and TpG density
0 ~ 40 bp downstream of TSS (Fig 2B). Consistently, we found a salient
negative correlation between TpG density 0 ~ 40 bp downstream of
TSS and repressive histone modifications (H3K27me3, Fig 3D).

Expression and epigenetic changes in carcinogenesis

Given that gene dysregulation is a hallmark of cancer (Hanahan &
Weinberg, 2011), we next investigated whether genes belonging to
different clusters show different expression variations in carci-
nogenesis. In general, during tumorigenesis, housekeeping-like

cluster 1 genes tend to be up-regulated, whereas cluster 3 genes
show an opposite tendency (Fig 4A, P-values [for cluster 1 and 3]
and were less than 0.001 by Welch’s unequal variance t test in all six
cancer types; the volcano plots of each cluster could be found in Fig
S9A). For instance, SLC16A1 and BSG, belonging to cluster 1 and
playing vital roles in energy metabolism (Halestrap & Price, 1999;
Felmlee et al, 2020), are up-regulated in a variety of cancer types
(Fig S9B) and could promote tumor growth and aggressiveness
through the Warburg effect (Vaupel & Multhoff, 2021). This result is
consistent with our previous finding that genes with high CpG
densities tend to be up-regulated in cancer cells (Xue et al, 2022),
indicating that the expression change in carcinogenesis is partially
coupled with the CpG density. Nevertheless, Fig 4A shows that
although cluster 1 genes are more likely to be up-regulated, the

Figure 4. Expression and epigenetic changes in carcinogenesis.
(A) The expression level (TPM) of genes of different clusters in cancer and normal samples (upper) and the log2 (expression fold change) in carcinogenesis calculated by
DESeq2 (down). (B) The proportion of DE genes (in carcinogenesis) in three clusters. Upper: the proportion of up-expressed genes, down: the proportion of down-
expressed genes. (C) The CpG density distribution of up-expressed, down-expressed, and other genes. COAD (colon cancer) was used here for illustration. See Fig S12 for
more instances. (D) The DNA methylation level of genes of different clusters in normal (left) and tumor (middle) cells and the methylation changes during
carcinogenesis for three gene clusters (right). COAD was used for illustration. See Figs S14 and S15 for more instances.
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changes tend to be small. By comparison, cluster 3 genes display a
broad distribution of expression fold change (Fig 4A), suggesting
that some genes are dramatically activated/repressed in tumori-
genesis (besides, we also performed the shrinkage of logFC and the
results remain the same [Fig S9C]). In addition, consistent with our
previous findings (Xue et al, 2022), genes specifically and highly
expressed in paracancerous tissue (mainly in cluster 3) are mostly
down-regulated in cancer cells (Fig S10A), whereas complementary
genes (i.e., genes specifically expressed in other tissues other than
paracancerous) are mostly up-regulated (Fig S10B).

Next, we investigated the DNA sequence characteristics, func-
tions, and epigenetic modifications of genes, the expression vari-
ations of which are large in carcinogenesis (hereafter referred to as
DE genes, which are identified by DESeq2 [Love et al, 2014], see the
Materials and Methods section). The proportions of DE genes in
clusters 1 and 3 are lowest and highest, respectively, in all cancer
types (Figs 4B and S11), consistent with the above results that
expressions of cluster 1 genes change the least and those of class
3 genes the most in carcinogenesis. The CpG density up- and
downstream of TSS for up-regulated genes are slightly higher than
other genes almost for all types of cancers, especially for cluster
2 genes (Figs 4C and S12). GO function analyses show that
up-regulated genes in cluster 1 are closely related to cell cycle,
including nuclear division, DNA replication, and chromosome
segregation, contributing to the uncontrolled growth of tumor (Fig
S13). Down-expressed genes in clusters 1 and 3 are often related to
the muscle system process (Fig S13). The DE genes in cluster 2 are
found to be associated with development, including embryonic
organ morphogenesis, cell fate commitment (Fig S13), which were
suggested to relate to the dedifferentiation and invasion of cancer
cells (Ma et al, 2010).

On the other hand, we found that genes enriched in H3K27me3 in
paracancerous (normal) tissue, which is a standing-out property for
developmental genes (Schuettengruber et al, 2017), tend to become
dysregulated in cancer cells, especially for cluster 2 genes. To be
specific, for colon cancer, compared with stably expressed genes (in
carcinogenesis), up- and down-expressed genes have significantly
higher H3K27me3 levels in their corresponding normal tissues (Fig
S14A). At the same time, the TSS of these genes is also likely to be
hypermethylated in carcinogenesis (Fig S14A). Traditionally, DNA
hypermethylation around TSS is associated with the gene re-
pression, and this hypermethylation-associated gene activation in
cancer is possibly a result of their repression by a broad H3K27me3
signal around TSS in normal cells (Fig S14A). Not only the TSS but
also the upstream and downstream of TSS of these up-expressed
genes are hypermethylated in cancer cells (Fig S14A), with the latter
being favorable for gene expression (Schachtschneider et al, 2015;
Luo et al, 2018). In addition, the TSS of cluster 2 genes undergo the
most significant hypermethylation (Figs 4D, S14B, and S15A–C)
among the three types of genes, consistent with them being the
most enriched in H3K27me3 in normal cells because many studies
have revealed that most promoters that exhibit cancer-associated
hypermethylation are linked to genes silenced by polycomb and
H3K27me3 in corresponding normal tissues (Schlesinger et al, 2007;
Ehrlich, 2019). For instance, the TSS of several developmental-
related and cluster 2 genes, such as GATA4, HOXD11, and HOXD12,
was hypermethylated in a variety of cancer types (Fig S15D). Finally,

the up- and downstream of TSS of cluster 3 genes tend to be more
hypomethylated than other genes (Figs 4D, S14B, and S15). In fact,
our previous work (Xue et al, 2022) found that loci with low CpG
density are located in repressive and inaccessible environment
(compartment B) and are more likely to be hypomethylated in
cancer cells. Accordingly, cluster 3 genes are CpG-poor and mainly
located in the repressive compartment B, in which hypomethylation
is more likely to be found.

Discussion

To investigate how much CpG density distribution of a gene affects
its expression and regulation pattern, we performed in this study
the gene classification using recurrent neural network. We then
analyzed the biological functions and the regulatory mechanisms
of genes with different sequence properties. Compared with pre-
vious methods, which classified genes based on CpG/C+G intensity
of promoter regions (Saxonov et al, 2006; Weber et al, 2007), our
classification considered the CpG distribution in a large region
around the TSS and thereby included more comprehensive se-
quence features. The model yielded three gene clusters, each with
considerably different sequence features. We found that three gene
clusters are distinctly different in terms of expression, regulatory
mechanisms, chromatin structural features, and TF-binding pat-
terns. For instance, cluster 1 genes tend to reside intrinsically in an
open chromatin environment and possess the highest expression
level, and their activation relies weakly on specific genome reor-
ganization. Benefiting from the unique chromatin environment
(possible because of the unique sequence property), cluster 1
genes are more likely to stably express (almost all housekeeping
genes are in cluster 1), thus contributing to the low correlation
between expression level and CpG density. In contrast, the pro-
moter regions of cluster 3 genes have low CpG densities and
accessibility. Tissue-specific TFs (such as pioneer factors [Iwafuchi-
Doi & Zaret, 2014], as discussed below) may play a vital role in the
regulation of cluster 3 genes given that these factors could over-
come the nucleosome barriers and tether the cluster 3 genes to a
more active environment (e.g., through a phase separation
mechanism) (Hnisz et al, 2017). Notably, our gene classification
clearly identified a gene cluster, the promoter regions of genes
within which are characterized by a high and broad CpG peak
(cluster 2). The regulation of cluster 2 genes was found to be most
strongly correlated with epigenetic modifications, especially for
H3K27me3, among all three types of genes. Again, we compared
the correlation patterns (between expression level and epigenetic
marks) between clusters identified here and by Weber et al (2007)
and found that cluster 2 exhibited a stronger correlation level
between the expression level and H3K27me3 compared with ICP
(Fig S16). Given that the association between epigenetic mark and
gene expression is still controversial and different gene clusters
exhibit different degrees of dependence on epigenetic marks, we
speculate that the confusion may, at least in part, result from the
diversity of CpG distribution around promoter regions of different
genes.

Enhancers have been suggested to play vital roles in gene
regulation, given that they provide accommodations for TFs and
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could form spatial contact with promoters to activate specific genes
(Panigrahi & O’Malley, 2021). In general, H3K27ac/H3K4me1/ATAC/
DNase peaks were often regarded as candidate enhancers (Oka et
al, 2017; Crispatzu et al, 2021; Ing-Simmons et al, 2021). Then the
candidate enhancer nearest to genes was thought to regulate
that gene. However, with the development of chromosome
conformation capture technology, many studies have revealed
that enhancer could skip its nearest gene and regulate genes far
away from that enhancer (Krivega & Dean, 2012; Wang et al, 2021).
Akin to this, our work revealed that the activation of cluster 3
genes (mainly residing in heterochromatin) relied more on
movement toward compartment A, indicating that the enhancers
regulating cluster 3 genes may bemainly in compartment A (akin to
the phase separation mechanisms [Hnisz et al, 2017]), suggesting
the longer genome distance between cluster 3 genes and its
corresponding enhancer, compared with cluster 1 and 2 genes.
As mentioned earlier, because the main purpose of this study was
to investigate whether relatively simple sequential features of a
gene are associated with their expression patterns in different
cells and whether these sequence features are correlated to the
epigenetic mark usage and the usage of enhancers of individual
genes can have great variation, in this study, we focused on the
genes and their promoter regions. With a more complete dataset
on enhancers and their associated genes, we would expect a
similar analysis will help understand the usage of enhancers of
individual genes under different conditions. In fact, during T-cell
differentiation, genes harboring multiple promoters possess
more enhancers and enhancer diversity may contribute to the
selective expression of isoforms (Maqbool et al, 2020). Aside from
enhancers, other factors affecting the enhancer activity and
enhancer–promoter interactions also influence the final gene
expression pattern. For instance, in normal T cell, MYC and the
corresponding super-enhancer resided in two TADs, respectively,
insulated by CTCF. However, the loss of CTCF and consequently
TAD fusion occurred in T-ALL (acute lymphoblastic leukemia),
resulting in the establishment of spatial interactions between
MYC and super-enhancer and the up-regulation of MYC (Kloetgen
et al, 2020). In such a process, both CTCF and super-enhancer play
vital roles in MYC expression.

Intriguingly, we found that for a small number of tissue-specific
genes (c1-TSGs), the CpG density distribution around TSS is almost
the same as that for housekeeping genes. Their difference appears
to exist in TF binding: c1-TSGs are significantly depleted of TF-
binding sites compared with c1-HKGs, which may prevent the
former from being broadly expressed. We also noticed that unlike
(general) tissue-specific genes, which are typically characterized by
extremely low CpG density around TSS, genes encoding tissue-
specific TFs generally possess high CpG densities (e.g., FOXA1). Such
a sequence property may render a relative open environment for
them to be easily accessed, as can be seen fromMNase data, and to
be expressed upstream of their target tissue-specific genes. A
possible regulatory cascade therefore appears in which following
the establishment of cell identity, housekeeping genes and genes
encoding housekeeping TFs are activated early, after which genes
encoding tissue-specific TFs become activated, and finally, the
tissue-specific TFs access the promoter regions of tissue-specific
genes to activate them (Fig S1C). Interestingly, the CpG density of

regions recruiting tissue-specific TFs is indeed significantly lower
than that of the housekeeping TFs (Fig S17).

The tendency of gene expression changes during carcinogenesis
also shows sequence biases as various types of cancers exhibit
similar changes, including the preferred expression for high-CpG
genes. Besides, the functions of dysregulated genes within one
specific gene cluster are also similar for different types of cancers.
Together with different modes of DNA methylation change for the
three cluster genes, the similar epigenetic and expression
changes among different types of cancer indicate that the
mechanisms of cancer development are at least partially dictated
by the sequence properties of genes, therefore pointing to the
importance of including sequence properties in deciphering the
cancer epigenomes.

Materials and Methods

RNN for gene classification

At first, all housekeeping genes (gene number is 1679) and tissue-
specific genes (gene number is 1321) are labeled with 0 and 1,
respectively, and then 800 housekeeping genes and 800 tissue-
specific genes were chosen as the training set, and the remaining
are regarded as the testing set. The RNN used in this study is
based on bidirectional gate recurrent unit, with 1 layer and 16
hidden states, followed by a fully connected network with two
hidden layers (the number of nodes is 16 and 2, respectively). Of
note, in contrast with unlabeled genes (over 20,000 genes), the
quantity of labeled genes is insufficient. Therefore, we used a data
augmentation method called Unsupervised Data Augmentation
(UDA) (Xie et al, 2019 Preprint) to make full use of the unlabeled
genes. UDA encourages the model predictions to be consistent
between an unlabeled example and an augmented unlabeled
example. Thus, the loss function contained two parts: supervised
and unsupervised term. The supervised term measured the binary
cross entropy between the target y and output ŷ, whereas the
unsupervised term measured the clustering consistency between
unlabeled original data and augmented data. The optimizer we
used was Adam.

We then applied the well-trained network (which could distin-
guish the housekeeping gene from tissue-specific genes based on
CpG density distribution) to the entire human gene set, and “CG
likelihood” for each gene was obtained.

The definition of tissue specificity

We downloaded the normalized gene expression data of 38
human tissues from https://zenodo.org/record/838734, and the
tissue specificity of gene i in tissue t, sti , is calculated as (Tian et
al, 2020)

sti =
εti −μall

i
μall
i

where εti and μall
i are the mean expression levels of gene i in tissue t

and all tissues, respectively.
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The calculation of the insulation score

For each 40-kb bin (the resolution corresponds to the resolution of
Hi-C matrices in this study), its insulation score (Bintu et al, 2018) IS
is calculated as

IS = ln
�
1 + a1

b
+ a2
b

�

where a1 and a2 are the average contact probabilities of its two
flanking regions A1 and A2, respectively, and b is the average contact
probability of the cross region B (the element of B represents the
spatial interaction between A1 and A2). The window size we used
here is 480 kb.

The calculation of the Spearman correlation coefficient between
the expression level and CpG/TpG density

For each gene cluster, the size of the corresponding CpG density
matrix is n × 400, where n represents the gene number in this
cluster, and 400 is the window number. Accordingly, the size of
expression vector in one specific cell is n × 1. The Spearman cor-
relation coefficient is then calculated between the expression
vector and each column of CpG density matrix, yielding a 1 × 400
correlation coefficient vector. The correlations between TpG density
and histone modifications, as well as between the expression level
and histone modifications are calculated in the same way. For
instance, as for Fig 3C, the ChIP-seq signal and DNA methylation
level of each 40-bp window were calculated for each gene, resulting
in a n × 400 matrix for one epigenetic mark where n and 400
represent the gene number of one cluster and window numbers,
respectively. The expression level matrix is n × 1, and the correlation
level between expression level matrix and each column of epi-
genetic mark matrix is finally calculated, yielding a 1 × 400 corre-
lation vector for one cluster.

The calculation of the compartment index

Based on the Hi-C contact matrix, the whole genome could be
divided into two compartments, A and B (Lieberman-Aiden et al,
2009), with the former being more open and active, whereas the
latter mainly corresponding to heterochromatin. The compartment
index (CI) of bin is then calculated as

CIi = ln
�
Ci−A
Ci−B

�

where Ci−A and Ci−B are the average normalized contact probabilities
between bin i and compartment A bins and between bin i and
compartment B bins, respectively. A higher value of CI thus indi-
cates a more open environment.

The identification of DE genes

During carcinogenesis, genes with log2 (expression fold change) > 1
and P-value < 0.05 are defined as up-expressed genes, and genes
with log2(expression fold change) < −1 and P-value < 0.05 are

regarded as down-expressed genes. Such results are obtained
using DESeq2 (Love et al, 2014).

Gene function analysis

The clusterProfiler package (Yu et al, 2012) was used in this study for
gene function analysis. The background for GO analysis is all genes
in orgDB by default.

Data Availability

The data we analyzed in this work are publicly available and
summarized in Table S1 (data sources).
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Supplementary information is available at https://doi.org/10.26508/lsa.
202101302.
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