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Abstract: M13 bacteriophage (phage) has emerged as an attractive bionanomaterial owing 

to its genetically tunable surface chemistry and its potential to self-assemble into hierarchical 

structures. Furthermore, because of its unique nanoscopic structure, phage has been proposed 

as a model system in soft condensed physics and as a biomimetic building block for structured 

functional materials. Genetic engineering of phage provides great opportunities to develop 

novel nanomaterials with functional surface peptide motifs; however, this biological approach 

is generally limited to peptides containing the 20 natural amino acids. To extend the scope of 

phage applications, strategies involving chemical modification have been employed to incor-

porate a wider range of functional groups, including synthetic chemical compounds. In this 

review, we introduce the design of chemoselective phage functionalization and discuss how 

such a strategy is combined with genetic engineering for a variety of medical applications, as 

reported in recent literature.

Keywords: M13 bacteriophage, chemoselective modification, functionalization, biomimetic 

structure, bionanomaterial

Introduction
Phage display technology has opened up new avenues for utilizing biological materials 

as a useful sensor system to study biological interactions such as protein–protein, 

protein–peptide, and protein–DNA interactions, and even chemical reactions.1 Bac-

teriophages, viruses that infect bacteria, have been used to develop technology that 

links proteins with the genes that encode them, allowing for selection of antibodies 

and functional peptides against target antigens. Owing to their unique nanoscopic 

structures capable of displaying genetically programmable surface peptides, M13 

bacteriophage (phage) has drawn attention as a powerful bionanomaterial with the 

advent of bionanotechnology.2 The unique advantages of phages over conventional 

bionanomaterials can be easily exploited for genetic information and biomimetic 

structure, which led to the development of various electronic and medical materials 

with precise molecular-level control. The biological advantages of phages such as 

evolution, specific recognition, and self-replication can be enhanced through genetic 

and chemical engineering.

By mimicking the natural evolutionary process, phage can be used as an 

information-mining tool to identify protein (or peptide) sequences that specifically 

recognize target materials at a molecular level.3 These recognition elements have been 

used to design unprecedented materials such as template-synthesized organic–inorganic 

composite materials4,5 and sensory materials.6,7 The viral particles can self-assemble 

into various ordered structures with well-defined filamentous shapes, which can lead 

to novel materials for various functional applications, including energy generation,8–10 
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biosensors,11–14 semiconductors,4,5 and tissue-regenerating 

materials.13,15–18 In addition, there is growing interest in M13 

phage as a model system for soft condensed physics19 and 

as a biomimetic building block for structured functional 

materials.16,20

Although genetic engineering approaches have been 

widely used to design novel bionanomaterials, there are two 

main motives for development of methods for chemical func-

tionalization of phage. 1) The functional groups expressed by 

this genetically programmable bionanomaterial are limited 

to peptides composed of natural amino acids, which cannot 

incorporate the vast (bio)chemical diversity of natural or 

synthetic compounds. While genetic engineering is powerful 

in tuning every coat protein copy, excessive mutations dimin-

ish the packaging, replication, and assembly efficiency of the 

phage. 2) To expand the use of phage in novel functional 

applications such as (bio)chemical sensing, bioimaging, 

and tissue engineering, the chemical functionalization of 

M13 phage is essential. Incorporation of synthetic func-

tional groups in a site-specific and quantitative manner is a 

challenging issue in chemical functionalization with further 

application in biomedical areas.

With the growing expectations for phage as a potential 

bionanomaterial in the development of next-generation 

functional materials, the functionalization of phage by com-

bined biological and chemical methods is gaining enormous 

interest. The M13 phage is the most extensively developed 

system for peptide display and can be used in a wide range 

of applications in various fields by site-specific chemical 

modifications. In this study, we discuss recent study trends 

in chemical derivatization of M13 phage bionanomaterials 

and their potential applications in biomedical areas.

M13 phage
The M13 phage is a bacterial-virus composed of a single-

stranded DNA encapsulated with major (pVIII) and minor 

(pIII, pVI, pVII, and pIX) coat proteins. Its long, rodlike  

shape is ~880 nm in length and 6.6 nm in width (Figure 1A).21,22 

The M13 phage infects and grows only in the male strains 

(displaying F-pili) of Escherichia coli (E. coli). As with 

other lysogenic phages, M13 infects host cells by injecting 

its genetic material. The genetic material of the phage usurps 

the cellular host metabolism in order to replicate itself and its 

associated proteins. These protein products are transported 

to the host cell membranes, where new phages are packaged 

and released through a protein pore channel in the bacterial 

membrane,21,23,24 without disrupting the cell wall. Bacterial 

growth continues even after phage infection, providing an 

advantage for mass amplification of phages.25 The viral 

capsid is aligned along the shaft and is composed of 2,700 

copies of pVIII and ~5 copies of minor coat proteins pIII, 

pVI, pIX, and pVII located at either end.21,22 The 50-residue 

pVIII (98% by mass) is composed of three distinct domains, 

namely, a negatively charged hydrophilic N-terminal domain 

(1–20), an intermediate hydrophobic domain (21–39), and 

a positively charged domain (40–50) that interacts electro-

statically with phage genomic DNA (Figure 1B). Only the 

N-terminal domain is exposed to the media, allowing it to 

be targeted for genetic or chemical functionalization. The 

final five residues of pVIII are structurally unconstrained, 

thus providing an optimal target for genetic engineering. 

Additionally, the minor coat protein pIII, which resides on 

one tip of the phage, has been extensively exploited in phage 

display owing to its flexibility and the accessibility of its 

N-terminus,26 which allows for insertion of various peptide 

lengths, including larger proteins (.100 amino acids).27 This 

review will focus on the chemical functionalization of pVIII 

and pIII, which have more tolerance to genetic mutation 

for inserting specific amino acids, thereby leading to facile 

chemoselective modification.

Chemical functionalization of 
M13 phage
The two most important challenges during functionaliza-

tion of M13 phage with synthetic functional groups are 1) 

incorporation of functional groups in the desired active sites 

under mild reaction conditions where the phage structure is 

retained and 2) coupling synthetic functional groups with 

multiple copies of proteins that have abundant potential reac-

tive groups. Therefore, the chemical conjugation strategy in 

phage modification requires mild and facile chemoselective 

reactions. Researchers have recently begun to understand the 

site-specific chemical accessibility of amino acids within the 

coat proteins. To achieve a controlled and orthogonal chem-

istry on the phage, several amino acids (cysteine, N-terminal 

alanine, lysine, N-terminal serine/threonine, aspartic acid/

glutamic acid, and tyrosine) are often exploited as target 

residues (Table 1). Either wild-type or genetically engineered 

phages displaying specific amino acid(s) on the exposed coat 

protein domain were used for chemical functionalization. In 

the wild-type phage, amino groups in N-terminal alanine and 

in lysine (Lys8) and carboxylic acid groups in glutamic acid 

(Glu2) and aspartic acid (Asp4 and Asp5) on pVIII are viable 

targets for selective chemical functionalization such as amide 

bond formation (Figure 1B). In order to utilize a wide range 

of chemoselective modifications in phage, cysteine and other 
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Figure 1 Schematic structure of an M13 bacteriophage (A) and its major coat proteins (B).
Notes: Several representative target amino acid residues of pVIII protein subunits are indicated in the figure to the right. The figure was adapted and modified from Lee et al.10

amino acids such as N-terminal serine/threonine or tyrosine, 

which do not appear in the solvent-exposed domain of the wild-

type coat proteins, are used in genetic engineering. Several 

chemoselective modification methods have been employed for 

each amino acid residue incorporated (Table 1). This develop-

ment of site-specific organic synthesis approaches28–31 enables 

phage surfaces to be modified with various chemicals such 

as fluorescent dyes, chromophores, enzymes, and synthetic 

oligomers (eg, poly(ethylene glycol) [PEG]) and allows them 

to be used in various applications, including bioimaging, bio-

sensing, tissue engineering, and energy harvesting.29–31

Cysteine
Cysteine is one of the least abundant amino acids in phage 

coat proteins. The wild-type sequences of M13 major coat 

proteins do not contain cysteines, whereas pIII, pVII, and pIX 

have internal cysteines that play important roles in structure 

formation via disulfide bonds. Generally, cysteines are incor-

porated in the viral capsid by genetic engineering to create 

reactive handles. Cysteines on M13 phage have been used 

as alkylation sites for electrophilic halides or maleimides. 

Adjacent cysteine residues with the potential to form disul-

fide bridges must be reduced to create native thiol groups for 

cysteine-specific reactions. For the selective functionalization 

of incorporated cysteines, intrinsic cysteine residues in minor 

coat proteins are often removed by mutagenesis. However, 

if the application of the phage requires phage infectivity 

(ie, in phage display screening), reduction or removal of the 

intrinsic disulfide bonds might be problematic because it is 

reported to decrease phage infectivity.

To explore the accessibility and environment of cysteines, 

Khan et al32 genetically incorporated cysteines within the 

hydrophobic transmembrane domain of the M13 major coat 

protein (Figure 2A). The accessibility of Cys-sulfhydryl in 

the M13 phage was examined by its reaction with maleimido 

and iodoacetamido groups and 5,5′-dithiobis(2-nitrobenzoic 

acid). Briefly, genetically engineered phage (1 mg/mL) in 

Tris buffer (10 mM, pH 8.5) was mixed with the same volume 

of sulfhydryl-reactive reagents (1 mg/mL) at room tempera-

ture in the dark for 2 hours. After alkylation or disulfide bond 

formation, the accessibility of each reagent was deduced by 

labeling the unmodified sulfhydryl groups with [14C]iodo-

acetamide (14C-IAM). Excess 14C-IAM was incubated with 

phage solution (1 mg/mL in Tris buffer) at 37°C for 90 min. 

Labeled phage was isolated by PEG precipitation.33 The 

extent of sulfhydryl modification was measured by electron 

paramagnetic resonance spectroscopy. The reactivity of the 

Cys mutant phage showed potential for use as a versatile 

tool in probing virus structure and tracking conformational 

changes during the phage life cycle.

Heinis et al34 fused a library of peptides containing three 

cysteine residues, each separated by six random amino 

acids, to the minor coat protein pIII (Figure 2B), which 

was genetically engineered to remove intrinsic disulfide 

bonds for the selective functionalization of the three newly 

introduced cysteine residues. The reactive cysteines were 

conjugated with Tris(bromomethyl)benzene (TBMB) to gen-

erate a library of bicyclic peptides at the N-terminus of pIII. 

Briefly, the phage (1011–1012 transducing units) in 20 mL of 

ammonium carbonate buffer (20 mM, pH 8) was pretreated 

with Tris(2-carboxyethyl)phosphine (TCEP) (1 mM, 1 h). 

After concentrating and washing the phage, it was resus-

pended in the reaction buffer (32 mL), and TBMB solution 

in acetonitrile (8 mL, 50 µM) was added to the mixture. 
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Figure 2 Chemical scheme for the alkylation of genetically incorporated Cys on M13 bacteriophage.
Notes: (A) Modification of sulfhydryl groups of mutant phage by sulfhydryl-specific reagents such as iodoacetamido and maleimido compounds. (B) Generation of phage-
encoded peptides with three cysteines tethered to the TBMB-forming bicyclic peptide library. Data from.32,34

Abbreviation: TBMB, Tris(bromomethyl)benzene.

The mixture was incubated at 30°C for 1 hour, and the 

phage containing the peptide loops was isolated using PEG 

precipitation. These phage-encoded combinatorial chemical 

libraries showed the potential to identify novel bicyclic pep-

tide drugs (eg, enzyme inhibitors). However, the improved 

systemic approach should be addressed since disulfide-free 

pIII caused phage instability, leading to reduced infectivity. 

The chemical conjugation reaction often led to loss of phage 

infectivity (5-fold or greater).

Spruijt et al35 employed site-directed labeling in the phage 

system by incorporating single cysteines in M13 pVIII.36 

The several mutants were subsequently spin-labeled for elec-

tron spin resonance spectroscopy or fluorescently labeled. This 

study provided insight into the location and incorporation of the 

hydrophobic domain of pVIII in the phospholipid bilayer.

N-terminal alanine
Amide bond formation between amino groups on coat 

proteins and acylating reagents is the most widely used 

bioconjugation strategy. N-terminal amines and lysine 

residues (Lys8 in wild-type pVIII) have been used for acy-

lation sites to incorporate either a final functional group or 

a chemical linker (eg, alkynyl group) for further chemical 

modification (eg, azido-alkyne cycloaddition). N-terminal 

groups in the minor coat proteins can also participate in the 

acylation reaction, although they are far less abundant than 

the accessible amines on major coat proteins.

Rong et al37 (Figure 3A) used M13 phages as building 

blocks to generate thin films with aligned topography for 

directing oriented cell growth. In order to incorporate cell-

binding motifs to the phage coat protein, two-step chemical 

modification was carried out on the N-terminal amines. 

M13 phage dispersion (10.2 mg/mL, 4 mL) in phosphate-

buffered saline (PBS; 10 mM, pH 7) was mixed with alkyne-

derivatized N-hydroxysuccinimide ester (0.21 M, 320 µL) 

and incubated overnight at 4°C. The phage mixture was 

purified by dialysis against PBS buffer (MWCO; 100 kDa). 

Thereafter, azido-RGDS (arginyl-glycyl-aspartyl-serine)-

peptide was coupled to the phage via the copper(I)-catalyzed 

azido-alkyne cycloaddition reaction (click chemistry). 
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The alkyne-modified phage (4.3 mg/mL, 925 µL) in PBS was 

mixed with azido-RGDS-peptide (100 mM, 55 µL), copper 

sulfate (100 mM, 10 µL), and sodium ascorbate (200 mM, 

10 µL) and incubated overnight at room temperature. The 

phage was purified as described previously.

Chung et al15 biotinylated the amino groups (N-terminal 

or lysine residue) of M13 phage major coat proteins geneti-

cally engineered to display RGD peptides on every copy of 

pVIII. Briefly, RGD-phage dispersion (1 mg/mL, 1 mL) in 

PBS (10 mM, pH 7) was mixed with 6-((biotinoyl)amino)

hexanoic acid, succinimidyl ester in dimethyl sulfoxide 

(DMSO) (0.2 M, 200 µL), and incubated overnight at room 

temperature. The phage mixture was purified by dialysis 

against PBS buffer (MWCO 10 kDa). Biotinylated RGD-

phages (b-RGD-phage) were used for observing and quan-

tifying the diffusion of fluorescent dye-labeled streptavidin 

into the fibers made of b-RGD-phage and polylysine.

Li et al38 examined the chemical reactivity of phage 

N-terminal and lysine amino groups by conjugating them to 

fluorescent dye molecules. The authors used an N-hydroxy-

succinimidyl (NHS) ester derivative of tetramethylrhodamine 

(TMR-NHS), which reacts with amines via amide bond for-

mation. M13 phage (1.0 mg/mL) was incubated in TMR-NHS 

(40 µM to 8 mM) in a mixed solution containing phosphate 

buffer (pH 7.8, 10 mM) and DMSO (v/v 80:20) at 4°C for 

24 hours. The modified phage was purified by dialysis with 

the phosphate buffer (pH 7.8, 10 mM). The degree of coupling 

was assessed by measuring the visible light absorbance of 

the fluorescent dye attached to the phage (up to ~1,600 dyes/

phage). MALDI-TOF MS and HPLC-MS/MS were used to 

identify the modified pVIII proteins and their regioselectivi-

ties. Only the N-terminus and Lys8 were reactive toward the 

TMR-NHS, whereas Lys40, 43, 44, and 48 (associated with 

the phage DNA) were not reactive. The fluorescence intensity 
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Figure 3 Chemical scheme for the derivatization of N-terminal alanine groups on pvIII.
Notes: (A) Immobilization of alkyne groups to the pvIII proteins of M13 phage through acylation and derivatization with synthetic azido-RGD peptides via alkyne-azide 
cycloaddition click chemistry. (B) Transamination of N-terminal groups to ketones using pyridoxal 5′-phosphate. This reaction is highly selective for N-terminal groups over 
the lysine ε-amino groups. The ketone-terminated phage was reacted with aminooxy compounds in the presence of an aniline catalyst to yield fluorophore- or PEG-modified 
phages with oxime linkages. Data from.37,40

Abbreviations: PeG, poly(ethylene glycol); RGDS, arginyl-glycyl-aspartyl-serine; rt, room temperature. 
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of the dye-modified phage was the highest without significant 

self-quenching for about 400 coupled dye molecules per 

M13 phage. The fluorescent M13 phages were conjugated 

with cancer-targeting motifs (folic acid) using an orthogonal 

reaction, which will be described in detail later in this review. 

Such dual-modified phages showed the potential of M13 

phage in drug delivery and bioimaging applications.

Zhang et al39 grafted PEG to the amino groups of pVIII 

to tune fd phage surface properties. The overall structures 

of fd and M13 phages are identical, and the fd phage differs 

from M13 by a single amino acid residue: an asparagine at 

position 12 in M13 is replaced by an aspartic acid in fd. 

The reaction between the NHS ester derivative of PEG 

(MW =5 kDa) (3.2 mM) and fd phage (5 mL, 2 mg/mL) 

was conducted in phosphate buffer (100 mM, pH 8.2) in a 

shaker for 12 hours at room temperature. The PEG-grafted 

phage was purified by ultracentrifugation (100,000× g, 

6 hours) and resuspended in Tris buffer (pH 8.2, 20 mM). 

This modified phage can be used as a model system in soft 

condensed matter physics.

Carrico et al40 employed a transamination/oxime for-

mation strategy for selective labeling of fd phage pVIII 

N-terminal groups. This strategy led to the transamination 

of only the N-terminal amino groups, leaving the ε-amino 

group of Lys8 intact (Figure 3B).40 The phage (75–128 nM) 

was transaminated with pyridoxal 5′-phosphate (100 mM) 

in phosphate buffer (25 mM, pH 6.5) for 13 hours at room 

temperature. Excess reagent was removed using the stan-

dard PEG precipitation method. The resulting N-terminal 

ketones were subject to reaction with various alkoxyamine 

compounds such as aminooxy biotin, aminooxy PEG2000, 

and aminooxy fluorophore (10–20 mM) in the phosphate 

buffer (10–20 mM, pH 6.2) for 15–21 hours at room tem-

perature. Aniline was used as a catalyst to accelerate the 

rate of reaction. The excess reagent was removed by either 

PEG precipitation or gel filtration. The authors adopted this 

chemoselective modification to the fd phage displaying 

antibody fragments targeting EGFR and HER2 (epidermal 

growth factor receptors) on pIII minor coat proteins. Such 

modified phages can be used for bioimaging modality with 

active targeting capability.

Adhikari et al41 introduced sulfhydryl groups as reactive 

handles in the viral capsid of M13 phage for chemoselective 

protein immobilization. M13 phage (1010 plaque forming 

units [pfu]) in PBS buffer (800 µL, including 3 mM ethyl-

enediaminetetraacetic acid) was added to Traut’s reagent 

(2-iminothiolane-HCl, 7 µM) and incubated for 90 minutes at 

25°C. After purifying the resultant thiolated phage from excess 

reagents using a spin filter, the phage suspension was mixed 

with maleimide-functionalized horseradish peroxidase solu-

tion in PBS (22 µM to 1.14 mM) for 90 minutes at 25°C. The 

enzyme-immobilized phage was purified similarly and it can be 

used for immunochromatographic assays to detect viral patho-

gens after incorporating specific antibodies on the phage.

Phages have been labeled with a number of different 

fluorescent dyes for in vivo bioimaging by Kelly et al.42 The 

phages were first genetically engineered to display SPARC 

(secreted protein, acidic and rich in cysteine) or vascular 

cell adhesion molecule-1-binding ligands, which were then 

labeled with fluorescent dyes using standard NHS or iso-

thiocyanate chemistry.

The pVIII N-terminal amino groups and lysine residues 

are often used for incorporating fluorescent dyes into the 

phage body because the amino group functionalization is 

straightforward and efficient. Using the same chemical con-

jugation method, imaging agents such as gadolinium (Gd) 

complexes and quantum dots or metallic nanoparticles can 

be incorporated to the phage particle for magnetic resonance 

imaging (MRI) and fluorescence imaging or plasmonic 

detection, respectively. By incorporating targeting ligands 

such as folates and RGD motifs with the imaging agents 

on phage particles through orthogonal chemical conjuga-

tion or genetic engineering, the modified phages have been 

demonstrated as a useful tool for disease-specific imaging 

or therapeutics.37,41,43 In addition, application of phage as 

targeted drug carriers for the treatment of pathogenic bacteria 

has been reported. In this study, the bactericidal drug was 

linked to the phage surface using an acylation method similar 

to that described earlier in which drugs were designed to be 

released by enzymatic cleavage.44

Aspartic acid and glutamic acid
Carboxylic acid groups are often exploited in protein deriva-

tization using a mild carboxylic acid activation method. 

Wild-type M13 phage pVIII contains surface carboxylic 

acid-containing amino acids (Glu2, Glu20, Asp4, and Asp5). 

Generally, the acylating reagent O-acylurea is generated in 

situ in the presence of the amino-containing chemical groups 

by adding water-soluble carbodiimide to phage carboxyl 

groups. However, the intermediate O-acylurea is vulnerable 

to hydrolysis and may undergo side reactions involving 

the rearrangement of the O-acylisourea to the unreactive 

N-acylurea, which may lower the reaction yield. Converting 

the O-acylurea to an active ester by adding NHS or sulfo-

NHS to carbodiimide reactions often increases efficiency and 

enables the carboxyl groups to be activated for storage and 
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later use. Aspartic acids and glutamic acids in major coat 

proteins also provide negatively charged surface regions 

that can be coated with positively charged oligomers such 

as oligolysines.

Zhang et al39 utilized carbodiimide chemistry in fd phage 

to modify abundant carboxyl groups (Glu and Asp) with 

organic amine compounds such as ethylenediamine, N,N-

dimethylethylenediamine, and 1-(2-aminoethyl)piperazine 

(Figure 4). Water-soluble carbodiimide, 1-ethyl-3-(3-dim-

ethylaminopropyl)carbodiimide hydrochloride (EDAC), 

was used to activate the carboxyl groups of Glu2, Glu20, 

Asp4, Asp5, and Asp12 into O-acylurea, which reacts with 

amino groups to form amide bonds. Diamine solution (pH 5, 

200 mM, 4.5 mL) was mixed with an fd phage dispersion 

(20 mg/mL, 0.5 mL). While the pH of the mixture was 

adjusted to 5.0–5.5, EDAC (0.4 mmol) was added to the 

mixture and incubated at room temperature for 5 hours. 

The modified phage was purified by dialysis in deionized 

water. The charge-reversed phages have been demonstrated 

to interact with negatively charged phages, which can be 

useful for studying colloidal soft matter physics.

Li et al38 identified the chemical reactivity of Glu2, 

Glu20, Asp4, and Asp5 carboxylic acid groups on pVIII 

by conjugating them with several concentrations of 

amino-functionalized fluorescent dye (Rhodamine B 

amine). M13 phage was incubated with Rhodamine B amine, 

EDAC (10 mM), and N-hydroxysulfosuccinimide (30 mM) 

in phosphate buffer (10 mM, pH 7.8) at room temperature for 

12 hours. After the modified phage was purified by dialysis, 

the degree of coupling was assessed by measuring the visible 

light absorbance of fluorescent dyes attached to the phage 

(up to ~150 dyes/phage). HPLC-MS/MS was used to iden-

tify reactive residues. Glu2, Asp4, and Asp5 were found to 

react with carbodiimide activation-based amidation, whereas 

Glu20 was not reactive, possibly due to its poor accessibility. 

This is not surprising because Glu20 is buried compared to 

Glu2, Asp4, and Asp5.

Lamboy et al45 attempted to reduce nonspecific bind-

ing of positively charged proteins to the native negatively 

charged surface of phage for improved phage display sys-

tem development. In order to neutralize the phage surface, 

the authors had either genetically engineered the phage to 

display charge-neutralizing peptides on the solvent-exposed 

surface or blocked the surface with oligolysine (eg, Lys8) 

against highly basic proteins in the proteome. In both cases, 

the infectivity of phage diminished because the neutralized 

phage interacts less with F-pili, which are composed of the 

highly positively charged F-pilin, on E. coli.
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N-terminal serine and threonine
N-terminal serine and threonine yield aldehyde functional 

groups upon oxidative cleavage by NaIO
4
.46 These N-terminal 

amino acids are not found in native M13 phage and there-

fore can act as chemoselective modification sites. The pIII 

minor coat proteins are common targets for incorporating 

N-terminal serine/threonine.

Ng et al47 synthesized genetically encoded glycosylated 

peptide libraries displayed on M13 phage using N-terminal 

serines/threonines (Figure 5A). Among the peptide libraries, 

the phages carrying N-terminal serine and threonine on pIII 

were oxidized to form N-terminal glyoxals, which can act as 

reactive handles for subsequent immobilization of glycans. 

The phage (1011 pfu/mL) in PBS (pH 7.4) was oxidized 

with NaIO
4
 (6 mM) for 5 minutes on ice and quenched 

with glutathione for 10 minutes at room temperature. An 

equal volume of aminooxy compounds (aminooxy-biotin or 

aminooxy-mannose, 2 mM) in anilinium acetate buffer (pH 4.7)  

was added to the phage mixture and incubated for 1 hour at 

room temperature. Such oxime ligation on phage-displayed 

peptides can have broad applications in the synthesis of 

custom-designed chemically modified phage libraries.47,48 

Although no detailed results of phage stability were reported, 

the authors claimed that this chemical modification had 

minimal interference on phage infectivity.

Tyrosine
Among the aromatic groups in proteins, the phenol 

groups of tyrosine residues are the most susceptible to 

diazotization reactions. Tryptophan and phenylalanine 

in pVIII are within the hydrophobic domain and there-

fore not exposed to solvents. The use of chemoselective 

modification of tyrosine residues requires incorporation 

within the N-terminal hydrophilic domain for chemical 

access. The chemoselective modification of tyrosine resi-

dues on coat proteins is orthogonal to the other chemical 
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Abbreviation: Uv/vis, ultraviolet–visible spectroscopy.
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modification methods for preparing dual or multimodified 

phage particles.

Murugesan et al49 devised photoresponsive nanowires 

out of genetically engineered M13 phage through diazoti-

zation of tyrosine residues displayed on pVIII major coat 

proteins (Figure 5B). Tyrosine-rich decapeptides (amino 

acid sequence: Y-Y-G-Y-Y-G-Y-Y-G-Y) were fused with 

the N-terminus of major coat protein by the phage display 

technique. Coupling phenolic tyrosine residues to the 

side wall of M13 phage with different aniline derivatives 

(4-methoxyaniline, 4-nitroaniline) was completed as follows. 

An excess of diazonium salts was prepared by mixing aniline 

derivatives with sodium nitrite and aqueous HCl solution at 

0°C for 1 hour. Tyrosine peptide-fused M13 phage solution 

in phosphate buffer (500 µL, 10 mM) with borate buffer/NaCl 

aqueous solution (500 µL, 0.1 M NaCl) was added to suffi-

ciently cooled mixtures of diazonium reaction. Color change 

(colorless to yellow) indicated the conjugation of diazonium 

salts with genetically engineered M13 phages. The mixture 

was incubated with occasional shaking at 5°C for 3 hours, and 

the modified phage was purified by dialysis against the phos-

phate buffer. The resulting azo-phage exhibited reversible 

photoresponsive properties through cis–trans isomerization 

of the azo moieties. This property of modified phage can be 

potentially used in light-controllable smart devices.

One of the weak points of this chemical modification 

strategy is that it is not applicable to phages carrying aro-

matic amino acid residues as part of the additional active 

sites other than the photoreaction sites. The accessibil-

ity of the amino acid residues in the buried hydrophobic 

domain toward the diazotization reaction has not been fully 

studied.

Challenges and next-generation 
functional phage
The various chemical conjugation strategies have shown a 

great potential for use in the development of novel nanomedi-

cines for tissue engineering, bioimaging, drug discovery, and 

targeted drug delivery even though the chemical modifica-

tion strategies must be carefully devised to ensure chemical/

physical integrity and phage infectivity. This review focused 

on the chemical modification of pIII and pVIII and their 

further functional opportunities; however, we also note that 

pVII and pIX are currently studied as new targets for genetic 

engineering and chemoselective modification, and an enzy-

matic conjugation strategy was recently reported. The minor 

coat protein pIII is the critical component for E. coli infec-

tion through interaction with F-pili. Consequently, genetic 

engineering and chemical modification of pIII always bear 

the possible effect of reducing phage infectivity and leading 

to a low production yield and inefficient combinatorial phage 

display screening. Recently, interest in two alternative coat 

proteins, pVII and pIX, which are located at the opposite end, 

has increased both for genetic engineering and for subse-

quent chemical modification because they are relatively less 

involved in phage stability and infectivity.50 An enzymatic 

approach for conjugating synthetic molecules to the phage 

particle in a highly efficient, site-specific manner has also 

been reported.51 The authors showed that pIII, pVIII, and pIX 

can be functionalized with a broad range of molecules from 

small molecules to folded proteins in a site-specific manner 

with higher yields than conventional genetic engineering 

approaches. This novel enzyme-mediated functionalization 

can be done under very mild biocompatible conditions, which 

may expand the use of M13 phage in nanomedicine.

Conclusion
The M13 phage is one of the most extensively developed 

systems for site-specific peptide display, which endows it 

with great potential for development of novel multifunc-

tional bionanomaterials. This nanomaterial with genetically 

programmable peptide functionalities can be further modified 

with synthetic compounds using well-established chemose-

lective chemical modifications. The N-terminal domains of 

pIII and pVIII, which are exposed to the media, are targets 

for chemical functionalization. The target reaction sites span 

N-terminal amino groups for acylation and transamination or 

thiourea formation, N-terminal serine/threonine for oxidation 

to aldehyde groups, cysteines for alkylation, tyrosines for 

diazotization, and carboxylic acid groups (from Asp and Glu) 

for amidation via carbodiimide activation. Synthetic com-

pounds that have been chemically attached to the filamentous 

phage encompass a wide range of possible compounds, 

including fluorophores, PEG, synthetic peptides, enzymes, 

sugars, biotin, photoresponsive chemicals, positively charged 

compounds, and isotope-labeled compounds.

The combined strategy using genetic engineering and 

chemoselective modification is expanding the scope of 

potential applications of M13 phage in bioimaging, biosens-

ing, and tissue engineering. Recently, phages have shown 

a new possibility of use as building blocks for hierarchi-

cally assembled biomimetic structures in addition to their 

usefulness as a filamentous nanomaterial.16 The biomimetic 

structures based on hierarchical phage assembly have dem-

onstrated usefulness in tissue engineering materials,13,17,18 

therapeutic delivery systems,43,52 colorimetric sensors,6 
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and piezoelectric energy-generating biomaterials.8–10 The 

aforementioned functionalization strategy is expected to 

extend its utility in the hierarchically assembled structures, 

which will lead to future advanced material design for a 

wide range of applications, including biomedical, energy, 

and sensing devices. Recently, many research groups have 

begun to use pVII and pIX minor coat proteins as alternative 

targets for phage display and subsequent chemoselective 

modification, which will be advantageous for the develop-

ment of combinatorial library systems, including peptides 

conjugated with synthetic materials. Although this review 

focused on the chemical functionalization of M13 phage, 

the chemoenzymatic strategy can be an alternative or more 

efficient method for modifying phages if there are stability 

or infectivity issues in chemical modification.
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