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3-D Modelling and Experimental 
Comparison of Reactive Flow in 
Carbonates under Radial Flow 
Conditions
Piyang Liu   1, Jun Yao1, Gary Douglas Couples   2, Jingsheng Ma2 & Oleg Iliev3

We use a two-scale continuum model to simulate reactive flow and wormhole formation in carbonate 
rocks under 3-D radial flow conditions. More specifically, we present a new structure-property 
relationship based on the fractal geometry theory, to describe the evolution of local permeability, 
pore radius, and specific area with porosity variation. In the numerical calculation, to improve the 
convergence rate, the heterogeneous medium in question is extended by adding a thin layer of 
homogeneous porous medium to its inlet. We compare the simulation results with the available 
experimental observations and find that they are qualitatively consistent with each other. Additionally, 
sensitivity analysis of the dissolution process with respect to acid injection rate and rock heterogeneity, 
including heterogeneity magnitude and correlation length, is presented.

Reactive flow plays an important role in a variety of geological, scientific, and engineering processes. These 
include spontaneous processes such as karstification1,2, melt migration3,4, diagenesis5, sinkhole formation6,7, envi-
ronmental contaminant transport8–10, as well as anthropogenic processes such as geologic sequestration of carbon 
dioxide11–17, disposal of nuclear wastes18, and injection of acid in petroleum reservoirs19,20.

In order to understand the dissolution process, numerous core experiments have been carried out using a vari-
ety of reactant-medium systems, for example, plaster dissolved by water21,22, under-saturated salt solution dissolv-
ing salt packs23,24, and carbonate rock treated with acid25–27. Moreover, the effects of various physical and chemical 
characteristics such as core geometry28, core dimension29, temperature30, reaction products31, and chemical kinet-
ics25, on dissolution dynamics have also been investigated through core flood experiments. These experimental 
studies indicate that one of a characteristic set of dissolution patterns will form, depending on different injection 
rates of the reactant. For example, at very low injection rates, the reactant can be completely consumed before it 
penetrates deeply into the core. As a result, the dissolution is restricted in the region near the fluid entrance, and 
the face dissolution pattern is formed. At the other extreme, when the reactant is injected at very high rates, it 
invades nearly all parts of the pores of the rock, increasing the porosity uniformly, leading to the uniform dissolu-
tion pattern. Between these two extremes, as the injection rate increases, conical, wormhole and ramified disso-
lution patterns are formed. By measuring the volume of acid required to increase the core effective permeability 
by a certain factor, i.e. the breakthrough volume PVBT, these studies also observed that the least amount of acid 
is required when the wormhole dissolution pattern is formed. For carbonate reservoir stimulation, on which the 
goal is to increase the effective connectivity between the wellbore and the distant rock matrix, the creation of deep 
and thin wormholes, which needs a minimal volume of injected acid, is economically favorable20,32. Therefore, 
there is a practical motivation for understanding the sets of characteristics and conditions which lead to the 
development of wormholes.

Several models have been proposed over the last few decades to investigate the acidization process and 
wormhole formation. Maheshwari, et al.33 provide a good summary and classify the present models into four 
types: (1) dimensionless model22,34,35; (2) capillary tube model36–38; (3) network model15,39–42 and (4) continuum 
model20,24,33,43–56. Because the continuum model is advantageous at forecasting the dissolution patterns observed 
in experiments, it has been widely used and continuously extended over the last few years, to replicate the actual 
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acidizing operation. These extensions include simulating the wormhole formation under the radial flow condi-
tion44,57, using various types of injected acids50,51,53,58,59, for various reservoir characteristics such as the presence 
of fractures20,55 and vugs46, different completion methods47, and various reservoir temperatures45,48.

Although all these studies bring important insights about the dissolution process, there are some issues that 
still remain to be further investigated. Firstly, the actual acidizing treatments are conducted by injecting acid into 
the formation through a wellbore. In this case, the flow is radial and the nominal velocity decreases rapidly as acid 
flows away from the wellbore. Therefore, 3-D radial models are needed to simulate the wormhole formation at 
exact downhole environments. However, in the literature, very few studies57,60 have been performed under a 3-D 
radial flow condition to understand the dissolution process.

Secondly, as dissolution progresses, some minerals are dissolved by the acid, which results in a local porosity 
increase. It is difficult to correlate the changes in local permeability, pore radius, and specific surface area to poros-
ity changes. One possible way is using the pore-scale model based on detailed textural analysis of the real rock 
material. However, it is computationally unfavourable to use this approach as the scale of a wormhole is much 
larger than the scale of pores. Alternatively, some empirical equations, for example the Carman-Kozeny equation, 
can be used to relate the rock properties with structure. As mentioned by Maheshwari and Balakotaiah49, the 
choice of the structure-property relations affects the simulation of the dissolution process significantly. In most of 
the published studies43,44,54,57,61, a modified Carman-Kozeny equation was used, in which the exponential param-
eter in the Carman-Kozeny equation is modified from a constant value of 2 to a variable β. However, param-
eter values involved in these relations are specific to a rock-acid system and should be determined previously 
through core acidizing experiment49. To improve the accuracy of the single parameter correlation, Maheshwari 
and Balakotaiah49 proposed a two-parameter structure-property relation by adding an exponential variable to 
the ratio of changed porosity to initial porosity φ/φ0. But, this extension has no physical meaning and it is diffi-
cult to measure the coefficients in the laboratory62. In addition, numerous theoretical models and experimental 
observations indicate that the coefficients involved in these structure-property relations are not a constant value, 
but related to the porosity, microstructures of pores, and capillaries63–65. Therefore, a more reliable correlation is 
required to describe the dissolution process accurately.

To address the above mentioned issues, this work adopts the two-scale continuum model developed by Panga, 
et al.43 which is extended to the 3-D radial flow condition by using a new analytic structure-property relation. 
The simulation results are compared with the available experimental observations as a validation. Additionally, a 
sensitivity analysis of the dissolution process with respect to acid injection rate and rock heterogeneity, including 
heterogeneity magnitude and correlation length, is presented.

Results and Discussions
We first present the simulation result of the dissolution structure and compare it with the available experimental 
results obtained by Walle and Papamichos66. For this purpose, a cylindrical 3-D domain with a circular hole in the 
centre is considered. In Walle and Papamichos’ experiment, 15% HCl was injected radially into the Mons chalk 
core through the central borehole at a constant injection rate of 25 mL/min, which is the optimum injection rate 
leading to wormhole formation. The core is 20 cm in height, 20 cm in outer diameter, with a 2 cm inner hole diam-
eter. The upper and lower surfaces of the core are sealed, and the injected acid is allowed to flow out through the 
circumferential boundary, where the backpressure is fixed. The flooding continues until acid breaks through the 
core, which is identified when the borehole pressure drops rapidly to the value of the backpressure. The parameter 
values used in the simulation shown here are the same as those in the experimental study. Since not all parameters 
used in the calculation are available in the experimental data, the values of unspecified or unknown variables, 
such as the average pore radius, and the specific surface area et.al., are taken as reported in a previous similar 
acidizing numerical simulation study67, and all of these numerical values can be found in Supplementary Table S1.

The comparison between the dissolution patterns obtained from the acid flooding experiment, and our simulation, 
is depicted in Fig. 1. It can be clearly seen that the simulation result is in good agreement with the experimental result 
in terms of the spatial characteristics. The slight deviation could be because of the differences in heterogeneity of the 
porosity between the rock used for experiments and the porous medium created for the numerical simulations.

Following validation of the model, we present a sensitivity analysis with respect to the injection rate, the hetero-
geneity magnitude of the rock, and the correlation length of the initial porosity field. In actual reservoirs, the thick-
ness of the formation is usually less than the radius of the domain considered. Therefore, in the following analysis, 
a cylindrical core with external diameter of 5 cm, internal diameter of 0.5 cm, and height of 2 cm, which has similar 
aspect ratios as the actual reservoir, is used to perform the simulations. Other parameter values used in these simu-
lations are the same as listed in Supplementary Table S1. All these values are fixed unless otherwise stated.

Effect of acid injection rate.  In the past few decades, various experimental and numerical studies have 
been performed to analyze the effect of injection rate on the dissolution process. For example, Fredd and Fogler68 
investigated the effect of injection rate on the dissolution structure by conducting acidizing experiments on car-
bonate cores with HCl, and five types of typical dissolution patterns, named face dissolution, conical worm-
hole, dominate wormhole, ramified dissolution and uniform dissolution, are observed. Panga, et al.43, Kalia and 
Balakotaiah44, and Maheshwari, et al.33 obtained the same observations by numerical simulation under 2-D lin-
ear, 2-D radial, and 3-D linear flow conditions, respectively. As depicted in Fig. 2, these five types of dissolution 
patterns are also observed in our simulations by injecting the acid into 3-D cylindrical cores radially at different 
injection rates. In order to visualize the dissolution structure in the 3-D domain, the final porosity fields with 
porosity greater than 0.35 are shown in Fig. 2, as the maximum value of the initial porosity used in this simulation 
is 0.35. It should be noted that these pictures only show the approximate dissolution structure, because the areas 
where the initial porosity is low and has been dissolved, but does not have an altered porosity greater than 0.35, 
have not been displayed. (Note: the color in all dissolution patterns is only used to show the elevation).
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When the acid injection rate is very low, the mass transfer rate is much smaller than the reaction rate. As a result, 
acid is consumed instantaneously at the fluid-solid interface and this leads to the face dissolution (Fig. 2(a)). With an 
increase of the injection rate, acid transport begins to be governed by both the advection and dispersion mechanisms. 
If dispersion still plays an important part in acid transport, the dissolution front will propagate in both radial and trans-
verse directions leading to the formation of conical wormholes (Fig. 2(b)). When the magnitude of radial advection, 
transverse dispersion and reaction rate reaches such a status that the velocity of solute transporting to the dissolution 
front by advection and dispersion is exactly equal to the rate of acid consumption, acid preferentially flows into bigger 
pores and hence only these bigger pores keep growing with time, which results in some conducting narrow channels 
named dominate wormholes (Fig. 2(c)). As the acid injection rate further increases, the concomitant increase in advec-
tion velocity causes the total acid transport rate to be larger than the reaction rate, and hence the injected acid cannot 
be completely consumed at the dissolution front. In this case, the residual acid will be transported in all directions by 
the dispersion mechanism, which results in highly branched channels known as ramified wormholes (Fig. 2(d)). In the 
final extreme case of very high acid injection rate, the acid transports so fast that it has insufficient time to significantly 
react with the rock. As a result, acid reaches nearly all parts of the rock and increases the porosity throughout the rock 
approximately uniformly, leading to a uniform dissolution (Fig. 2(e)).

Figure 1.  Comparison of wormhole structure obtained from (a) experiment by Walle and Papamichos66 and 
(b) simulation using the present method.

Figure 2.  Effect of injection rate on dissolution patterns. (a) face dissolution at v = 0.0001 cm/s; (b) conical 
wormhole at v = 0.003 cm/s; (c) wormhole at v = 0.06 cm/s; (d) ramified wormhole at v = 3 cm/s; (e) uniform 
dissolution at v = 60 cm/s.
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Effect of heterogeneity magnitude.  It is difficult to study the effect of rock heterogeneity on the dissolu-
tion process through experimentation. This is because the rock properties depend on the historical evolution of 
the specific rock sample over a period of time, and it is not possible to control natural rock samples to the degree 
of similarity required to address the underlying question. Conversely, through numerical simulation, we can 
easily keep other variables fixed and vary the heterogeneity magnitude to investigate its effect on the dissolution 
process. Several investigators have attempted to do this. For example, Kalia and Balakotaiah67 performed some 
2-D simulations on porous media with different heterogeneities and observed that a medium degree of heteroge-
neity influences both the breakthrough volume and dissolution structure. Maheshwari, et al.33 studied the effect 
of heterogeneity magnitude on 3-D linear dissolution and found that a wormhole becomes highly branched and 
fractal in nature with heterogeneity magnitude increase. However, the effect of heterogeneity magnitude on 3-D 
radial dissolution, which is closer to an actual acidizing treatment in a reservoir, still remained to be investigated.

The dissolution structures obtained from numerical simulation on 3-D cylindrical rocks with various het-
erogeneity magnitudes, at the optimum acid injection rate, are shown in Fig. 3. It can be seen that when the 
heterogeneity magnitude is low, more than one straight and smooth wormhole is formed by the time that acid 
breakthrough occurs (Fig. 3(a)). This is because in this case the permeability throughout the core is almost uni-
form. Therefore, the injected acid does not change its flow direction, and wormholes propagate at the same rate. 
It is easy to imagine that when no heterogeneity is present in the rock, the dissolution front will propagate stably 
and face dissolution will be observed. With an increase of the heterogeneity magnitude, wormholes become 
highly branched and the number of dominate wormholes decreases. At appropriate heterogeneity magnitude 
(Δφ = 0.15 in this case, as shown in Fig. 3(c)), only one dominate wormhole forms and the growth of others is 
stopped because the one providing the least resistance to flow captures most of the acid.

Effect of correlation length.  Correlation length describes the spatial correlations between the pore spaces 
in porous media, which is defined here as the average distance between any two sites belonging to the same clus-
ter of the pore space69. The importance of correlation length in petrophysical properties and fluid flow has been 
illustrated in many studies. Kalia and Balakotaiah67 defined an analogous parameter, named length scale, in inves-
tigating the effect of rock heterogeneity on the dissolution process. In their work, one porosity value is assigned to 
several interconnected grid cells, and the number of interconnected grids with the same porosity values is called 
the length scale. After introducing the length scale, the porosity field is divided into some uniform clusters, how-
ever, it is significantly different from the actual porosity distribution of the rock. Here, we investigate the effect of 
correlation length on dissolution process based on our new porosity generation method.

Figure 3.  Effect of heterogeneity magnitude on wormhole structures. The correlation length l = 0.2 cm, and the 
heterogeneity magnitude are (a) 0 02φΔ = . , (b) 0 05φΔ = . , (c) 0 1φΔ = . , (d) φΔ = .0 15.
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Four porosity fields with different correlation length values of l = 0.45 cm, l = 0.2 cm, l = 0.15 cm, and 
l = 0.1 cm, are generated, respectively. The acid is injected into the core at the optimum injection rate. Figure 4 
shows the dissolution structures from numerical simulations using these porosity fields. It can be seen that worm-
holes become highly branched with the decrease of correlation length, similar with the effect of heterogeneity 
magnitude. Another observation is that the wormhole tip diameter decreases with the decrease of correlation 
length. A similar effect, relative to wormhole diameter, resulting from varying the length scale, has been found 
by Maheshwari, et al.33. Additionally, the correlation length has almost no effect on the number of dominate 
wormholes. For all four cases in our study, only one dominate wormhole is formed. However, this conclusion 
may be broken if the correlation length is too high such that the rock is effectively homogeneous; in that case, face 
dissolution occurs.

Methods
The two-scale continuum model presented by Panga, et al.43 is extended to simulate the reactive dissolution under 
a 3-D radial flow condition. It consists of a Darcy-scale model and a pore-scale model. The Darcy-scale model 
that describes the reactive transport of acid and the evolution of the rock can be expressed in the cylindrical 
coordinate system as follows:

μ θ
= −




∂
∂

∂
∂

∂
∂



u v w K P

r r
P P

z
( , , ) , 1 ,

(1)

φ
θ

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
t r r

ru
r

v w
z

1 ( ) 1 0
(2)

( ) ( ) ( ) ( )t
C

r r
ruC

r
vC

z
wC

r r
r D

C
r r

D
r

C
z

D
C
z

R R a
R R

C

1 1

1 1

(3)

f f f f

r
f f

z
f s c v

s c
f

φ
θ

φ
θ

φ
θ

φ

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂






∂

∂






+
∂
∂






∂

∂






+
∂
∂






∂

∂






−
+

θ

Figure 4.  Effect of correlation length on wormhole structures. The heterogeneity magnitude φΔ = .0 15, and 
the correlation length are (a) l = 0.45 cm, (b) l = 0.2 cm, (c) l = 0.15 cm, (d) l = 0.1 cm.
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In order to be consistent with the experimental conditions, the initial and boundary conditions used to solve 
the above system of PDEs are considered as follows:
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In equations (1–10), r, θ and z are coordinate parameters; u, v, w are the components of Darcy velocity in r, θ, 
and z directions, respectively; t is the time; K is the permeability, which is calculated from a pore-scale model or 
determined by lab measurement; μ is the viscosity of the fluid phase; P is the pressure of the pore-fluid; φ is the 
porosity of the rock; Cf is the cup-mixing concentration of the solute in the fluid phase; Dr, Dθ and Dz are the com-
ponents of the effective diffusion vector in r θ, and z directions, respectively; av is the interfacial area available for 
reaction per unit volume of the medium; Rc is the mass transfer coefficient; Rs is the dissolution rate constant, with 
units of velocity; α is the dissolving power of the acid, defined as grams of dissolved solid per mole of acid reacted; 
and ρs is the density of the solid; u0 is the constant injection velocity; C0 is the acid concentration; rw and re are the 
radius of the inlet and outlet boundaries, respectively. It should be noted that the model described above is for a 
first order irreversible reaction (valid for the case of HCl-CaCO3 reaction), but the model proposed is completely 
general and can be extended to other kinetics.

For a homogeneous system, the dissolution front propagates stably, leading to the face dissolution. In order to 
simulate the different dissolution patterns, the heterogeneity needs to be introduced into at least one of the poros-
ity field, permeability field and injection scheme. Since real carbonate rocks are spatially heterogeneous, the most 
commonly used method in numerical simulation is to adopt a heterogeneous porosity field, which is usually 
generated by perturbing the initial mean porosity with a random perturbation, which can be either uniformly43 
or normally61 distributed. As a result, the porosity field generated by this method is mesh dependent and conse-
quently inconsistent with a real rock porosity distribution, especially for a 3-D radial mesh because its size typi-
cally increases with increasing radius. Ratnakar et al.50 proposed a method to generate same porosity field for 
different cases when they performed simulation on 3-D linear cores. Here, similar technique is used to generate 
the initial porosity field in radial domain. Specifically, some discrete points, which are distributed uniformly in 
the physical domain, are generated first, and the porosity values is assigned to these points by adding a random 
perturbation to the average value of porosity φ0. Similar to previous works, the random perturbation is assumed 
to be uniformly distributed in the interval φ φ−Δ Δ[ , ]0 0 . Then, the whole porosity field related to the computa-
tional grids is obtained by interpolation based on these discrete points and their values. Obviously, the density of 
the initial discrete points determines the correlation length, and the heterogeneity magnitude is the same as the 
magnitude of the perturbation. Moreover, because the distance between the initial discrete points characterizes 
the correlation length of the porosity field, an anisotropic porosity field can be generated by varying the density of 
the basal points in x, y and z directions. Compared with previous works, the method described above makes the 
generated porosity field more realistic in space and independent of the grid size.

The correlations used to calculate the mass transfer coefficient and the effective dispersion coefficients are 
adopted here as follows44:
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where Sh is the Sherwood number and represents dimensionless mass transfer coefficient; sh∞ is the asymptotic 
Sherwood number; Dm is the effective molecular diffusivity of acid; Rep is the pore Reynolds number defined as 

ν= urRe 2 /p p , v is the kinematic viscosity; Sc is the Schmidt number defined as Sc D/ mν= ; and DeR is the longi-
tudinal dispersion coefficient in r direction; DeT is the transverse dispersion coefficient in θ and z direction; |u| is 
the magnitude of fluid velocity; αos, λR and λT are constants that depend upon the pore structure, and have typical 
values of 0.5, 0.5, 0.1 for a packed-bed of spheres, respectively43,67.

To complete the Darcy scale model, some appropriate structure-property relations, named the core scale 
model, are required to capture the evolution in permeability, pore radius, and specific area with changing poros-
ity. As mentioned in the preceding section, the relations used in previous studies are not general. Here, the perme-
ability of the medium is related to its local porosity using the analytical expression obtained by Xu and Yu63 based 
on the fractal geometry theory. It is given by

π φ
φ

=
−

+ −




 −






− + +

( ) ( )
( )

K
D D d

D D

8 4

128 3 1 (14)

f

DT

f

DT

T f

D(1 )
2

(1 )
2 2

3
2

T

where Df and DT are fractal dimension for pore spaces and tortuosity, respectively. According to Xu and Yu63, they 
can be determined by

D d ln
ln (15)

f E min

max

φ
= − λ

λ

D 1
ln 1

ln
(16)

T D

D D

2
1

4

( 1 1 ) 9 5 8 1

8

1 1
8 4

f

f f

max

min

= +




 − + +
















φ φ φ φ φ φ

φ

λ
λ

φ
φ

π

− + + − ⋅ − − −

− −
−

where dE is the Euclidean dimension, and they have values of 2 in the two-dimensional space and 3 in the 
three-dimensional space; λmin and λmax are the smallest pore diameter and the largest diameter, respectively. The 
value of λmin/λmax can be calculated by an analytic expression with porosity as the variable70. Xu and Yu63 pre-
sented a sensitivity analysis with respect to the λmin/λmax, and the results show that the value of λmin/λmax has little 
influence on the fractal dimension (see Supplementary Fig. S2). Therefore, for simplicity, the value of λmin/λmax is 
taken as 0.01 in this paper, which is selected from Xu and Yu’s work63.

Equation (14) presents a relation between the porosity and permeability, and no empirical constant is involved. 
In addition, Xu and Yu63 have verified that the results calculated from Equation (14) are consistent with those by 
Happel and Brenner64, Eidsath, et al.71, Rahli, et al.72, Davies and Dollimore73, Kyan, et al.74. The permeability, 
average pore radius, and specific surface area are related to their initial values K0, r0, and a0, respectively by
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Because the rock is heterogeneous and the constant-injection rate condition is used at the inlet boundary, 
the flux should be assigned according to the permeability of the grid at the inlet boundary when numerical 
simulation is performed. However, in previous studies, a constant injection velocity condition is imposed at the 
inlet boundary, which means that all boundary grids have the same injection velocity, although the permeabil-
ity of each grid cell is different. As a result, the convergence rate at the early stage of the simulation is poor. To 
improve the efficiency, the medium in question is extended by adding a homogeneous porous medium, which 
has a thickness of Δr and porosity of 0.99, to its injection end (see Supplementary Fig. S1). After this extension, 
the injected acid flows into the extended medium at constant velocity and then diverts into the primary model 
domain according to its local permeability.

We discretize the governing equations using the finite volume method in a 3D radial grid system. The dif-
fusion term is discretized using the central difference scheme and the convection term is discretized using the 
upwind scheme, which guarantees the stability of the numerical formulation. The grid size is determined on the 
basis of PVBT. The grid size is refined until the PVBT becomes insensitive to any grid changes. The pressure and 
velocity field are obtained first by solving the continuity equation. And then, the concentration and porosity field 
are updated by solving the mass balance equation and the reaction equation, using the operator splitting method 
combined with an extrapolation technique, as discussed in Maheshwari, et al.33.
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Data availability.  The datasets generated during the current study are available from the corresponding 
author on reasonable request.

Conclusions
The main contribution of this work is the modelling and simulation of reactive dissolution patterns in the 3D 
radial flow condition. Specifically, a new structure-property relationship is developed to complete the Darcy scale 
model. The simulation result from the present model is in good agreement with the available experimental results. 
By analysing the effect of injection rate, heterogeneity magnitude, and correlation length, on the dissolution pro-
cess, the following conclusions are made:

	(1)	 The dissolution patterns (face dissolution, conical wormhole, wormhole, ramified wormhole, and uniform 
dissolution) observed in experiments are obtained from simulation under the 3-D radial flow condition.

	(2)	 With the increase of heterogeneity magnitude, wormholes become highly branched and the number of 
dominate wormholes decreases. At appropriate heterogeneity magnitude, only one dominate wormhole 
forms.

	(3)	 The correlation length has no effect on the number of dominate wormholes, but influences the wormhole 
diameter and its branchi-ness.

It should be noted that the model presented in this work is completely general, although we only focus 
on the dissolution of carbonate rock treated with HCl. Therefore, the model can be extended to study other 
solvent-mineral systems by changing the reaction kinetics. One potential application is to investigate the CO2 
induced dissolution in CO2 sequestration, in which the Darcy’s flow should be extended to describe the mul-
tiphase flow, and another concertation mode may be needed to describe the nonlinear kinetics. The model can 
also be extended to study the precipitation problem by changing the source term. Some of these extensions will 
be pursued in future work.
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