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Abstract: Monte Carlo (MC) simulations, built around chain-connectivity-altering moves and a
wall-displacement algorithm, allow us to simulate freely-jointed chains of tangent hard spheres
of uniform size under extreme confinement. The latter is realized through the presence of two
impenetrable, flat, and parallel plates. Extreme conditions correspond to the case where the distance
between the plates approaches the monomer size. An analysis of the local structure, based on
the characteristic crystallographic element (CCE) norm, detects crystal nucleation and growth at
packing densities well below the ones observed in bulk analogs. In a second step, we map the
confined polymer chains into self-avoiding random walks (SAWs) on restricted lattices. We study all
realizations of the cubic crystal system: simple, body centered, and face centered cubic crystals. For a
given chain size (SAW length), lattice type, origin of SAW, and level of confinement, we enumerate all
possible SAWs (equivalently all chain conformations) and calculate the size distribution. Results for
intermediate SAW lengths are used to predict the behavior of long, fully entangled chains through
growth formulas. The SAW analysis will allow us to determine the corresponding configurational
entropy, as it is the driving force for the observed phase transition and the determining factor for the
thermodynamic stability of the corresponding crystal morphologies.

Keywords: confinement; crystallization; entropy; hard sphere; polymer; random walk; Monte Carlo;
phase transition; lattice model; cubic crystal system; direct enumeration

1. Introduction

Polymer based thin films have been used extensively for several decades in a varied range
of applications from optical coatings and energy storage to smart appliances, semiconductors and
pharmaceutics [1–19]. Further inclusion of nanoparticles or adhesion to complex interfaces allows
efficient control, tuning, and magnification of the already exceptional base macromolecular properties.
To achieve superior characteristics, it is paramount to understand the complex structural and dynamic
behavior of macromolecules, ideally at the level of atoms and molecules, under confinement and to
relate them with macroscopic properties of the end material.
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Especially relevant for numerous applications is the phase behavior, as macromolecular crystals
exhibit distinctly different characteristics compared to polymer glasses. While phase transition, as
observed in complex atomic systems, is extensively studied it is still far from being fully understood.
The early work of Alder and Wainwright, based on collision-driven molecular dynamics (MD),
demonstrated that monomeric hard spheres crystallize at high concentrations [20]. It is now established
that given enough observation time, hard spheres or corresponding colloidal entities show spontaneous
crystallization under a variety of conditions (microgravity, impurities, size polydispersity etc) once a
critical range of packing densities is reached [21–42]. Given the athermal nature of such systems, entropy
is the driving force of crystal nucleation and growth and dictates the resulting, thermodynamically
stable, ordered morphologies. Recently, it has been demonstrated that dense packing of chains of
hard spheres also crystallize [43–46]. It is possible to effectively control the phase behavior and/or the
state of jamming [47–50] for polymers by properly tuning the bond gaps (or bond tangency) between
successive monomers along the chain [51,52] or the bending angles that dictate chain flexibility [53,54].
Similar control can be achieved by applying spatial confinement; in the most trivial case this can be
realized through the presence of flat, impenetrable, and parallel walls in at least one dimension.

In the past, we used a Monte Carlo (MC) scheme [55], built around chain-connectivity-altering
MC moves [56–59], to generate and equilibrate freely-jointed chains of hard spheres of uniform size
in the bulk. This allowed us to systematically study the effect of packing density, chain length and
bond tangency/gaps on the local and global structure of athermal macromolecules [48,60,61], on the
primitive path network of entanglements [49,62] and on the ability of chains to crystallize [43–46,52].
Recently, based on the original scheme of Ref. [55], we introduced a more general method including
a wall-displacing algorithm which allows the simulation of athermal polymer packings under
confinement [63]. This more general method has allowed us to simulate systems of very long
chains under extreme confinement and at very high packing density and at high cell shape anisotropy.
For the linear chains considered here the number of monomers is, Nmon = N + 1, where N is the number
of bonds. Confining agents are flat, parallel and impenetrable surfaces (walls). Packing density, φ,
is defined as the volume occupied by all chain monomers divided by the volume of the simulation
cell. The number of confined dimensions, dconf, ranges from zero (unconstraint, bulk case) to three
(fully confined). Extreme confinement is reached when the distance between the walls, dwall, in at
least one dimension approaches the size of sphere monomers, σ. Cell shape anisotropy is quantified
through the cell aspect ratio, ζ, which is the ratio of longest length(s) divided by the shortest one(s).
In all cases cell shape corresponds to an orthogonal parallelepiped.

Through the proposed MC scheme we equilibrate dense athermal chain packings under extreme
confinement that correspond to quasi-1D (tube-like) and quasi-2D (plate-like) polymer thin films [63].
In both cases as a critical combination of concentration and confinement is reached polymers transit to
ordered morphologies characterized by structural defects. For plate-like packings this ordered state is a
blend of hexagonal close packed (HCP) and face centered cubic (FCC) domains. Given that the system
is athermal, any phase transition is driven by a change (increase) in the total entropy. Accordingly,
to predict the phase transitions and to identify the thermodynamically stable phase, a first step is to
calculate the configurational entropy of chains. Towards this, we map the corresponding atomistic
chains onto self-avoiding random walks (SAWs) grown step-by-step on regular lattices subject to
specific spatial restrictions. During the growth, the next position to lattice has to be adjacent to the
current one. Self-avoidance condition dictates that no lattice point can be visited twice. In addition,
the imposed spatial restrictions on SAW lattices mimic the ones encountered at the atomistic level. In a
previous paper we enumerated the total number of SAWs for two different lattices SC (simple cubic)
and FCC as a function of the system geometry and the number of chain bonds (or equivalently SAW
steps) for quasi-1D, tube-like morphologies [64]. Here, we employ the same methodology to identify
the SAW number and size distribution in quasi-2D, plate-like polymer films. Apart from the direct
enumeration for moderately long chains our goal is to provide the scaling exponents in the growth



Polymers 2020, 12, 799 3 of 31

formulas that can be used to predict the SAW behavior as a function of chain size, crystal structure,
and level of confinement for significantly longer chains.

The concept of random walk is central to stochastic processes and is applicable to a very wide
range of scientific fields and research topics from mathematics, economics, image processing, and social
networks to computer science, biology, genetics, and materials [65–91]. Self-avoiding random walks
have been used extensively to study randomness as observed in kinetics, dynamics, propagation,
growth, percolation phenomena and molecular conformations in soft matter [92–98]. Of particular
importance is the SAW model in polymer science as it is directly related to the free-flight models
describing chain conformations under various conditions (bulk, confinement, surface adsorption,
non-linear chain architecture, chain flexibility, nanofillers etc.) [99–121]. From the technical perspective,
since the early work of Orr [112], significant progress has been made towards the development of
algorithms that allow efficient SAW enumeration and calculation of the critical exponents in scaling
expressions [87,122–133]. These are important algorithmic milestones in the SAW enumeration problem
that becomes more than exponentially difficult as the number of steps increases.

2. Materials and Methods

In a first step, Monte Carlo simulations have been conducted using the algorithm described in
Ref. [63] to generate and successively equilibrate freely-jointed chains of tangent hard spheres of
uniform size under plate-like confinement (dconf = 1). Average chain lengths range from Nmon = 8 to
1000 and packing densities from φ = 0.20 to 0.55. We recall here that the freezing and melting points for
monomeric hard spheres in the bulk correspond to 0.494 and 0.545, respectively. For chains of tangent
hard spheres in the bulk, given the crucial effect of bond tangency/gaps [51,52], the melting point is
delayed until a concentration range of φ ≈ 0.58 is reached [43–46].

Initial system configurations correspond to cubic cells (ζ = 1) under full confinement (dconf = 3)
which have been generated at dilute conditions and compressed through the wall-displacement (MRoB)
algorithm [63] until the desired volume fraction is reached. Then, MRoB is further employed to
progressively increase the cell aspect ratio. This process results in the inter-wall distance, Dwall, being
reduced until the limit of extreme confinement Dwall → σ. System configurations are generated at
regular intervals during the box transformation phase. Subsequent long MC simulations undertake
the task of equilibration with a duration that exceeds hundreds of billions of steps.

As will be demonstrated in the continuation flexible chains, under extreme plate-like confinement,
crystallize into well-defined patterns at concentrations significantly lower than the ones in the bulk.
Based on this, in the second phase we map the flexible polymer chain onto a SAW on restricted
lattice. Here, we follow the original concept presented by Benito et al. [64] according to which in such
spatially restricted polymer crystals monomers adopt positions which closely approach the sites of
regular lattices. Accordingly, information on the configurational entropy of the freely-jointed chains
in plate-like templates can be extracted by analyzing the corresponding SAWs on restricted crystal
lattices under the same geometry and conditions (SAW length, lattice type).

We enumerate all possible distinct SAWs on regular lattices corresponding to cubic crystals
(SC, BCC and FCC with coordination numbers 6, 8, and 12, respectively). The reference case is the
unrestricted one: SAWs on bulk systems under periodic boundary conditions applied in all dimensions.
For the bulk lattices and given a specific chain model (i.e., fully flexible one) the number of distinct
SAW configurations, cN, and the average SAW size, as quantified through the mean square end-to-end

distance 〈
∣∣∣ωN

∣∣∣2〉, depend solely on the number of SAW steps, N. However, by introducing plate-like
confinement, the spatial group symmetry of the original unrestricted system is reduced from the
original Ia3d. As a result of this, and of the heterogeneity of the confined system, three additional
parameters must be considered: level (or intensity) of confinement, the relative orientation of the
regular lattice with respect to the axis of confinement, and the initial position (origin) of the SAW,
which will be referenced to as “Type” throughout the manuscript. The confinement level can be
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expressed in terms of the number of crystal layers, n, between the parallel plates or as the corresponding
inter-plate distance, Dwall, measured in units of the SAW step length.

The inclusion of the SAW origin (or Type) parameter is a result of the spatial restrictions and the
break of symmetry imposed by the plate confinement: the symmetry of Ia3d of the bulk case is reduced
to I41/acd due to the presence of the flat, impenetrable walls along the confined dimension. As in
Ref. [64] the orientation of the plate axis is defined by direction indices according to the crystallographic
practice: [ijk]. Given that the crystalline domains are formed with their orientation aligned along
the plate section the confining plates are contained in the planes of the crystallographic form [100].
Effectively, a SAW grows on a restricted lattice, RL(Dwall) defined as:

RL(D) =
{
x
∣∣∣ x1, x2 ∈ Z, |x3| < Dwall

}
where x defines the coordinates of every lattice node and Z is the unit hypercube of dimension one.
Due to the symmetry of the cubic system any axis can be designated as the confined one, denoted in
the equation above as x3. The enumeration process and successive analysis take into account the SAW
Type as an additional system parameter: For a given number of steps SAWs starting from origins close
to the plate boundaries are expected to show smaller cN number than the ones growing far from them.
Figure 1 shows various cases of plate confinement and the corresponding distinction of lattice sites
belonging to different types. For simplicity, a 2-D square lattice is displayed with a varied number of
layers, n. For the cubic (or square) lattice the number of layers coincides with the inter-plate distance
(measured in units of SAW step length). However, this is not the case for the BCC and FCC lattices.
Due to symmetry, all nodes that belong to the same layer are characterized by the same Type. Layers are
colored according to their Type (SAW origin), which in turn depends on the distance from the closest
confining boundary. For example, for n = 2, two layers of lattice points exist but both correspond
to the same SAW Type as they are similarly adjacent to a different plate wall. The value n = 3 leads
to two different SAW origins, one in the center and one touching the wall. In general, for the cubic
crystal system (SC, BCC and FCC) under plate confinement for even values of the number of layers, n,
there exist in total n/2 distinct SAW Types, while for odd ones the corresponding number changes to
(n − 1)/2 + 1. In the present work, the assignment of Type starts from the layers adjacent to the walls
(Type 1) and ends at the ones in the middle. In Figure 1 for n = 6, red (closest to the confining plates),
green and yellow (furthest from the confining planes) layers have been assigned Types of 1, 2, and 3,
respectively. Multiplicity corresponds to the number of crystallographically equivalent restricted
lattices points. For even numbers of n all Types have a multiplicity equal to 2, and the same is true
for odd numbers with the only exception being the points of the central layer which show cardinality
of unity. Multiplicity of SAW Type is important to determine symmetry as it effectively reduces the
number of studied systems and the corresponding computational time in SAW enumeration.
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Figure 1. Schematic representation (side view) of distinct origins to be considered for the enumeration
of self-avoiding random walks (SAWs) for systems under plate-like confinement. Black lines at the top
and bottom parts mark the confining boundaries (plates). Level of confinement is quantified through
the number of crystal layers between the plates, n, along the axis of confinement. Labeling according to
SAW origin depends on the distance from the closest plate. Different color corresponds to different
SAW origin (Type). Red, green and yellow colors correspond to Type 1 (closest to the plates), 2 and 3
(furthest from the plates).

A distinction between the different lattices of the cubic system can be established once the number
of layers between plates becomes equal or exceeds 2. Obviously, the most extreme case corresponds
to a single layer under confinement, i.e., n = 1. In such 2-D templates the corresponding lattices,
studied in the present work, are honeycomb (coordination number of 3), square (coordination number
of 4) and triangular (coordination number of 6) as seen in Figure 2.
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Figure 2. Schematic representation (top view) of the 2-D lattice templates studied here corresponding
to extreme thin-film confinement (one layer between confining plates, n = 1). From left to right:
honeycomb (coordination number of 3), square lattice (coordination number of 4) and triangular
(coordination number of 6) lattices.
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To summarize, for the given chain architecture (fully flexible linear chains) the number and size of
SAWs depend on (i) number of steps, N, (ii) lattice type, (iii) level of plate confinement, quantified
primarily here through the number of crystal layers between the parallel plates, n and (iv) Type
(point of SAW origin). The parametric analysis per regular lattice is as follows: SC: N ∈ [1, 18], n ∈ [1, 5];
BCC: N ∈ [1, 15], n ∈ [1, 5]; FCC: N ∈ [1, 13], n ∈ [1, 5]. Obviously, in direct enumeration for a fixed
number of SAW steps computational time increases as the coordination number of the lattice increases.
Accordingly, the longest chains were accessed for the SC lattice and the shortest SAWs were modeled
for the FCC crystal.

In total 376 different 3-D systems were studied: 150 for SC, 117 for BCC and 109 for FCC restricted
lattices. In the most extreme case, corresponding to 2-D polymer films, 58 systems were studied:
25 for the honeycomb, 18 for the square, and 15 for the triangular lattices. The main parameters of
the modeled systems are reported in Table 1. A home-made SAW code for direct enumeration was
developed and all simulations were conducted on Linux-based Intel i7-8700K CPU architectures with
32 Gb of memory.

Table 1. Regular lattices studied in three dimensions (simple cubic (SC), body centered cubic (BCC) and
face centered cubic, (FCC)), and in two dimensions (honeycomb (HON), square (SQU) and triangular
(TRI)). Also shown are the number of layers, n, and the distance, Dwall, between the confining plates
and the different SAW Types (points of origin). Inter-plate distance is measured in units of the SAW
step length.

Lattice Type Number of Layers
between Plates, n

Distance between
Plates, Dwall

Type (SAW Origin)

SC 2 1 1
3 2 1, 2
4 3 1, 2
5 4 1, 2, 3

BCC 2 1/
√

3 1
3 2/

√
3 1, 2

4 3/
√

3 1, 2
5 4/

√
3 1, 2, 3

FCC 2 1/
√

2 1
3

√
2 1, 2

4 3/
√

2 1, 2
5 2

√
2 1, 2, 3

HON 1 0 1
SQU 1 0 1
TRI 1 0 1

3. Results

3.1. Monte Carlo Simulations

Snapshots at the end of the MC equilibration for the Nmon = 12 system can be seen in Figure 3.
The system contains 100 chains with a minimum and maximum chain length of 8 and 16, respectively,
at φ = 0.50 under unidimensional, plate confinement (dconf = 1) and for various cell aspect ratios.
The packing density φ = 0.50 of all structures in Figure 3 is well below the transition point for athermal
chains in the bulk (φ ≈ 0.58). Still, as can be seen from a visual inspection of the bottom-right panel
of Figure 3, which corresponds to extreme confinement (ζ = 12 and Dwall = 2), monomers on both
surfaces show very clear signs of ordering.
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Figure 3. Snapshots of the 100-chain Nmon = 12 hard sphere system atφ= 0.50 and under unidimensional
confinement (dconf = 1) for various cell aspect ratios, ζ, corresponding to plate-like geometries. From left
to right and from top to bottom: ζ = 1 (10.8), 3 (5.2), 7 (3.0) and 12 (2.0). Number in parenthesis indicates
the inter-wall distance in the direction of confinement (in units of sphere diameter). Sphere monomers
are color-coded according to the parent chain. Image panels created with the VMD software [134].
(please see supplementary materials for 3D version).

Crystal nucleation and growth can be accurately identified and then quantified by applying the
characteristic crystallographic element (CCE) norm, which is able to distinguish between different
competing crystal structures [44,135,136]. As the athermal chain packings correspond to high
concentration, we employ the CCE norm with respect to the FCC and HCP crystals as well as
the fivefold local symmetry. The CCE norm is applied on all sites/monomers present in the system.
Once the value of the CCE norm with respect to a specific crystal X, εX, is lower than a critical
threshold (εX < 0.245), the site is identified as of X similarity. Due to the distinguishing nature of the
crystallographic elements, no site can possess dual crystal similarity. Figure 4 hosts configurations,
as the MC simulation evolves, for the 10-chains Nmon = 1000 system at φ = 0.55 (still quite below
the bulk melting point of athermal polymers), showing only monomers with HCP (blue), FCC (red)
and fivefold (green) local environment. All other sites, labeled as “amorphous”, are not shown for
clarity purposes. Starting from the initially amorphous state (upper panel), the system shows a clear
disorder–order transition with the stable crystal increasing in size as the observation time increases.
The final stable configuration is highly close packed with predominant HCP character.
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Figure 4. Snapshots of the 10-chain Nmon = 1000 system at φ = 0.55 under plate-like confinement with
cell anisotropy index, ζ = 5 and interwall distance, Dwall ≈ 7. Top: very early in the simulation (109 MC
steps); middle: (left) 2 × 1010 and 5 × 1010 (right) MC steps; bottom: 12 × 1010 (left) and at the end of
simulation, 14 × 1011 (right) MC steps. Monomers with HCP, FCC and fivefold similarity as identified
by the CCE norm, are shown in blue, red and green, respectively. All other, “amorphous” sites do not
appear for clarity. Image created with the VMD software [134]. (please see supplementary materials
for 3D version).
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3.2. Verification with Available Literature Data

As mentioned in Section 2, centers of the spherical monomers adopt positions that resemble
closely nodes of a perfect crystal. For example, this tendency is particularly evident for the case shown
in the bottom-right panel of Figure 3. Thus, we model linear flexible polymers in confined space as
self-avoiding random walks on restricted lattices.

First, results are compared against literature data on the well-studied SAWs on bulk 3-D SC,
BCC and FCC lattices and on most extremely confined ones that correspond to 2-D lattices (HON, SQU
and TRI). The unrestricted (bulk) case can be modeled either by removing any spatial conditions
related to confinement or by having the number of lattice layers, n, to be larger than the maximum
possible chain extension, i.e. n > N + 1. Data on the number of distinct SAWs, cN, and on the mean

square end-to-end distance, 〈
∣∣∣ωN

∣∣∣2〉, as a function of SAW steps, N, can be found in Tables A1 and A2 of
the Appendix A for the extremely confined 2-D and the unrestricted 3-D lattices, respectively. For all
regular lattices studied here extreme confinement (n = 1) involves a single SAW origin (Type 1); the same
is true for the 3-D bulk cases due to symmetry considerations. Results for the bulk SC and FCC lattices
are in perfect quantitative agreement with our past work conducted through a different numerical
algorithm [64]. Furthermore, for both SAW populations and average sizes our enumeration data
coincide with the ones in Refs. [131] and [132] for SC; in Ref. [133] for bulk BCC and FCC; in Ref. [137]
for the 2-D triangular and in Ref. [128] for square, honeycomb, and SC lattices. We should note here
that, given the large number of systems to be studied (three different lattice types, different Types and
levels of confinement), our goal is not to exceed or even reach the current state-of-the-art in modeled
SAW lengths but rather to establish asymptotic scaling formulas for the confined cases. These will
allow us to predict the behavior of long SAWs (and equivalently of long chains) from results on short or
intermediate ones and establish a systematic connection between plate-like confinement and properties

of the corresponding SAWs. Tables A3–A12 host the properties of SAWs (cN and 〈
∣∣∣ωN

∣∣∣2〉) for all
confined lattices with the number of layers between plates lying in the interval n ∈ [2, 5]. An interesting
trend can be observed for the BCC lattice with n = 2 (Table A3): the number of distinct SAWs coincides
with the one extracted for the SQU lattice (Table A1). This is because with respect to connectivity there
is no distinction between the square and the 2-layer BCC lattices.

3.3. Direct SAW Enumeration

Data (cN vs. N and 〈
∣∣∣ωN

∣∣∣2〉 vs. N) as presented in Tables A1–A12, obtained from SAWs of short to
intermediate length, can be used in the asymptotic formulas [131,133,137] for the scaling of the number
of distinct SAWs in the limit of N→∞:

cN ∼ AµNNγ−1 (1)

and of the mean-square, end-to-end distance:

〈

∣∣∣ωN
∣∣∣2〉 ∼ DN2v (2)

where γ and υ are the critical exponents, A and D are the critical amplitudes, and µ is the connective
constant. While A, D, and µ depend on lattice type the critical exponents γ and υ are considered
universal [133,137–139]. As proven by Duminil-Copin and Smirnov [140] the connective constant for

the honeycomb lattice is equal to µ =

√
2 +
√

2, as originally conjectured by Nienhuis [141,142].
Figures 5–7 present the logarithm of the number of distinct SAWs versus the logarithm of the

number of SAW steps for the restricted SC, BCC, and FCC lattices, respectively. For all systems studied
here, the combination of SAW size (chain length) and applied confinement force the self-avoiding
random walks to “feel” the imposed spatial constraints. In all cases the obvious trend is fully established:
the stronger the restrictions imposed by the film-like confinement the smaller the number of available
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SAWs, or equivalently, the fewer the number of distinct chain configurations and accordingly reduced
configurational entropy. The most extremely confined system (n = 1 for SC (SQU) or n = 2 for BCC and
FCC) is the one that deviates markedly from the unrestricted bulk case. As film thickness (inter-plate
distance) increases SAW properties converge to the ones in the bulk. Between different Types, the lattice
nodes and layers lying closer to the confining surfaces are characterized systematically by smaller cN
than the ones near the center. This is manifestly valid for the SC and FCC lattices, but not always true
for the BCC, as can be readily observed by comparing the different Type columns in the Appendix A
Tables. This difference in trends can be explained by the coordination number which remains the same
for SC but depends on the layer index for BCC. In general, the effect of SAW origin (Type) on SAW
properties is smaller in plate-like (quasi 2-D) confinement, as established here, than in tube-like (quasi
1-D) restricted lattices, as reported in Ref. [64].
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Figure 5. Logarithm of the number of distinct SAWs, cN, versus the logarithm of the number of
SAW steps, N, as obtained from direct enumeration on the SC lattice under plate-like confinement.
n corresponds to the number of layers between the confining plates. Label “Type” corresponds to
different SAW origin as explained in Figure 1 and related text. The most extremely confined case of
n = 1 corresponds to the 2-D square lattice (SQU).
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Figure 7. Logarithm of the number of distinct SAWs, cN, versus the logarithm of the number of SAW
steps, N, as obtained from direct enumeration on the FCC lattice under plate-like confinement.

Comparing the different restricted lattices of the cubic system trends analogous to the bulk case
are established as the number of distinct SAWs increases significantly with the coordination number.
For example, for a fixed number of SAW steps (N = 12), film thickness (n = 3), and SAW origin
(Type 1), SAW population starts from cN = 33,574,732 (SC), increases to 47,788,288 (BCC), and end ups
at 56,963,463,220 (FCC); an increment that spans three orders of magnitude for identical conditions of
spatial restriction and which can be purely attributed to the increase in coordination number.

The dependence of SAW size, as quantified by the mean square end-to-end distance, on the number
of SAW steps is presented in Figures 8–10 for the SC, BCC, and FCC restricted lattices, respectively.
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Figure 8. Logarithm of the mean square end-to-end SAW distance, 〈
∣∣∣ωN

∣∣∣2〉, as a function of the logarithm
of SAW steps, N, as obtained for the SC lattice under plate-like confinement. n corresponds to the
number of layers between the confining plates. Label “Type” corresponds to different SAW origin as
explained in Figure 1 and related text. The limiting case of n = 1 corresponds to the 2-D square lattice
(SQU). Dashed black line corresponds to best linear fit on bulk SAW data.
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line corresponds to best linear fit on the bulk case over the whole range of available data.
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Figure 10. Logarithm of the mean square end-to-end SAW distance, 〈
∣∣∣ωN

∣∣∣2〉, as a function of the
logarithm of SAW steps, N, as obtained for the FCC lattice under plate-like confinement. Dashed black
line corresponds to best linear fit on the bulk case over the whole range of available data.

Based on the log(cN)-vs.-log(N) (Figures 5–7) and the log(〈
∣∣∣ωN

∣∣∣2〉)-vs.-log(N) (Figures 8–10),
non-linear fits on the growth formulas in Equations (1) and (2) yield all critical parameters (A, D,
µ, γ and ν). Results from such statistical analysis can be found in Tables 2–4 for the restricted SC,
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BCC, and FCC lattices, respectively. In all cases data are compared with the reference bulk crystal.
The connectivity constant, µ, decreases as the spatial restriction becomes stronger. It adopts the lowest
value for the most extremely confined system and as the number of layers increases it progressively
converges to the limiting value of the bulk counterpart. Compared to the connectivity constant the
critical amplitude, A and the exponent γ depend rather weakly on level of confinement and SAW origin.
Under the same conditions of confinement, connectivity constant increases as the lattice coordination
number increases (µSC < µBCC < µFCC). In general, for SC and FCC restricted lattices, for layers closer to
the confining agents, µ is higher than for layers near the center, i.e., the connectivity constant decreases
with increasing Type index for SC and FCC while the opposite trend is observed for the BCC lattice.

Table 2. Critical parameters of the asymptotic formulas (Equations (1) and (2)) as obtained from
non-linear fits on the SAW data presented in Figures 5 and 8 for the confined SC lattice. Also shown for
comparison are the results for the bulk (unrestricted) SC.

N Type A µ γ D υ

2 1 1.375 3.622 1.181 0.958 0.631
3 1 1.214 4.090 1.097 0.903 0.619

2 1.515 3.963 1.236 0.761 0.650
4 1 1.137 4.373 0.988 1.267 0.552

2 1.430 4.188 1.226 0.942 0.598
5 1 1.102 4.523 0.919 1.445 0.535

2 1.377 4.353 1.165 1.103 0.569
3 1.387 4.308 1.258 0.983 0.585

Bulk 1.270 4.717 1.103 1.026 0.607

Table 3. Critical parameters of the asymptotic formulas (Equations (1) and (2)) as obtained from
non-linear fits on the SAW data presented in Figures 6 and 9 for the confined BCC lattice. Also shown
for comparison are the results for the bulk (unrestricted) case.

N Type A µ γ D υ

2 1 1.480 2.658 1.228 0.625 0.725
3 1 1.087 3.765 1.559 0.553 0.720

2 1.783 4.326 0.849 0.597 0.709
4 1 0.888 4.548 1.527 0.602 0.682

2 1.634 4.860 1.116 0.603 0.682
5 1 0.782 5.133 1.384 0.847 0.605

2 1.455 5.420 1.058 0.662 0.651
3 1.580 5.115 1.308 0.641 0.656

Bulk 1.214 6.580 1.108 1.101 0.600

Table 4. Critical parameters of the asymptotic formulas (Equations (1) and (2)) as obtained from
non-linear fits on the SAW data presented in Figures 7 and 10 for the confined FCC lattice. Also shown
for comparison are the results for the bulk (unrestricted) case.

N Type A µ γ D υ

2 1 1.358 5.888 1.257 0.606 0.707
3 1 1.088 7.346 1.307 0.653 0.659

2 1.605 7.473 1.163 0.604 0.676
4 1 0.941 8.462 1.145 0.889 0.586

2 1.468 8.178 1.233 0.687 0.634
5 1 0.869 9.171 1.010 1.217 0.525

2 1.356 8.836 1.148 0.860 0.584
3 1.425 8.439 1.359 0.625 0.649

Bulk 1.191 10.08 1.129 0.975 0.587
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The SAW generating function (Equation (1)) is valid for the whole range of available data,
independently of dimensionality, lattice type, level of confinement, and point of origin (Type).
However, the same is not true for the dependence of SAW size on number of SAW steps (Equation (2)).
While the unrestricted lattices show linear scaling all confined ones at short-N deviate significantly
from linearity. Such trends have also been observed in the SAW analysis of restricted lattices under
tube-like confinement [64]. The larger the lattice coordination number and the closer to the confining
plates (low Type index), the most prolonged the duration of the anomalous regime, as can be seen in
Figure 11 where the SAW size evolution is presented for the SC, BCC, and FCC lattices with n = 3 and
Type 1.
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Figure 11. Logarithm of the mean square end-to-end SAW distance, 〈
∣∣∣ωN

∣∣∣2〉, as a function of logarithm
of number of SAW steps for the SC, BCC and FCC lattices under plate confinement (n = 3, Type 1).
Also shown are the lines that correspond to best linear fits in the large-N data range once normal scaling
has been established.

Based on the parameters extracted from the linear fitting in the range of large-N data the following
conclusions can be established: in general, the critical exponent, v, adopts its maximum value under
the most confined case while its minimum corresponds to the unrestricted (bulk) case. All confined
systems are characterized by amplitude values D which are significantly different than the ones of the
bulk lattice. For restricted SC and FCC lattices, SAW origin (practically the distance of the layer from
the confining agents) has an appreciable effect on D and v values. As Type index increases D decreases
appreciably and the opposite trend is observed for v. The behavior of the BCC restricted lattice does
not follow the trends of the other two crystals. Accordingly, no systematic behavior can be identified
for BCC crystal.

3.4. SAW Size Distribution

Information is also available not only on the average SAW size but also on the probability
distribution function (PDF) and cumulative distribution function (CDF) as a function of lattice type,
level of confinement and SAW origin (Type). Additional information can be extracted from the analysis
of the folded CDF variant focusing on the median and the corresponding deviation. Given the plethora
of systems studied and due to space limitations, in the following only selected systems are presented
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for the size distribution. Figure 12 shows the PDF of size as a function of the number of layers between
confinement, n, for the restricted SC having fixed N = 16 and Type 1. As stated before, the case of n = 1
corresponds to the 2-D square lattice. The number of confined layers has a significant effect on the size
distribution: the most extreme confinement (n = 1) and the least confined (n = 5) cases correspond to
the broadest and narrowest distributions, respectively. In general, as confinement increases, the size
distribution becomes broader and shifts to higher values.
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Figure 12. Probability distribution function (PDF) of the square end-to-end distance for the SC restricted
lattice for SAWs of fixed length (N = 16) and point of origin (Type 1). Different curves correspond to
differ number of layers between the confining plates, n. The case of n = 1 corresponds to the 2-D square
lattice (SQU).

Not surprisingly, the number of SAW steps has a stronger effect on the SAW size distribution as
seen in Figure 13 for the BCC restricted lattice (n = 5, Type 3). As chain length increases the distribution
becomes broader, it shifts to higher values and the corresponding maxima get significantly reduced.
The effect of point of SAW origin (Type) on the SAW distribution is presented in Figure 14 for the FCC
lattice (N = 11, n = 5). For up to two layers in plate-like confinement there is no distinction in SAW
Type. Based on the results in Figure 14 it can be concluded that Type (in other words the starting layer)
has a minor effect on SAW size, which is further diminishing as the number of SAW steps increases.
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Figure 13. Probability distribution function (PDF) of the square end-to-end distance for the BCC
restricted lattice for SAWs of fixed number of layers between confining plates (n = 5) and point of origin
(Type 3). Different curves correspond to different number of SAW steps, N.
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Figure 14. Probability distribution function (PDF) of the square end-to-end distance for the FCC
restricted lattice for SAWs of fixed length (N = 11) and number of layers between confining plates (n =

5). Different curves correspond to different point of origin (Type).

Cumulative distribution functions and the folded variants for SAW size, as quantified by the
square end-to-end distance, are presented in Figure 15 (SC lattice with fixed n = 5, Type 3 and varied
N), Figure 16 (BCC lattice with fixed N = 14, n = 5 and varied Type), and Figure 17 (FCC lattice with
fixed N = 11, Type 1 and varied n).
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Figure 15. (Left Panel) Cumulative distribution function (CDF) and (Right Panel) the folded variant of
the square end-to-end distance for the SC restricted lattice for SAWs of fixed number of confined layers
(n = 5) and point of origin (Type 3). Different curves correspond to different number of SAW steps, N.
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Figure 16. (Left Panel) Cumulative distribution function (CDF) and (Right Panel) the folded variant of
the square end-to-end distance for the BCC restricted lattice for SAWs of fixed length (N = 14) and
number of layers between confining planes (n = 5). Different curves correspond to different SAW
origins (Types).

Polymers 2020, 12, x FOR PEER REVIEW 19 of 34 

 

 

Figure 17. (Left Panel) Cumulative distribution function (CDF) and (Right Panel) the folded variant 

for the square end-to-end distance for the FCC restricted lattice for SAWs of fixed length (N = 11) and 

point of origin (Type 1). Different curves correspond to different number of layers between the 

confining plates, n. 

The same conclusions can be drawn from the data of the cumulative and folded distributions. 

As the number of SAW steps increases, the distribution of size becomes broader, shifts to higher 

values, and the intensity of the observed maxima drops. SAW origin has a minor effect on size 

statistics. The inter-plate thickness has the strongest effect as the more confined the polymer chain, 

the more extended it becomes. The statistics of the selected folded distributions (most probable, 

median, and deviation values) can be found in Tables A13–18 of the Appendix. All lattice types show 

identical trends, especially the strong dependence on film thickness and the very weak one on SAW 

origin, as validated by the comparison of the mean value and the corresponding deviation.  

4. Conclusions and Future Plans 

In the present contribution, we have studied the behavior of athermal polymer chains under 

extreme confinement realized through the presence of parallel, flat, and impenetrable walls in one 

dimension. The inter-plate distance is so small that it practically adopts values similar to the size of 

the spherical monomers. Presently, Monte Carlo simulations show that dense packings of highly 

confined chains tend to crystallize at volume fractions which are significantly lower than the 

corresponding threshold of the bulk case. In an effort to identify the thermodynamic stability of the 

corresponding structures and the entropic origins of the phase transitions, we have mapped the 

athermal chains onto self-avoiding random walks (SAWs) on lattices which are further spatially 

confined as the atomistic analogs. Given that the applied confinement breaks the original maximal 

symmetry of the original crystal, we have analyzed the effect of number of SAW steps (chain length), 

the level of confinement (film thickness quantified by the number of lattice layers between the plates), 

and point of origin on the size of chains and on their number of distinct conformations. The latter is 

important as it is directly related to the configurational entropy of the chains.  

The present work on plate-like (quasi 2-D) confinement, as well as the past on tube-like (quasi 

1-D) restrictions [64], constitute the first step of an ongoing research effort. The final goal is to 

investigate and predict phase (disorder-order) transitions in confined athermal polymeric systems, 

for which entropy is the sole driving force. The entropy of the freely-jointed chains in plate-like 

templates can be obtained by direct enumeration of SAWs on restricted crystal lattices under the same 

geometry and conditions (SAW length, lattice type).  

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1: An interactive, 3-D 

version of the manuscript; 3-D versions of Figure 3 and Figure 4; 3-D video showing animated the panels of 

Figure 4. 

Figure 17. (Left Panel) Cumulative distribution function (CDF) and (Right Panel) the folded variant for
the square end-to-end distance for the FCC restricted lattice for SAWs of fixed length (N = 11) and point
of origin (Type 1). Different curves correspond to different number of layers between the confining
plates, n.



Polymers 2020, 12, 799 18 of 31

The same conclusions can be drawn from the data of the cumulative and folded distributions.
As the number of SAW steps increases, the distribution of size becomes broader, shifts to higher
values, and the intensity of the observed maxima drops. SAW origin has a minor effect on size
statistics. The inter-plate thickness has the strongest effect as the more confined the polymer chain,
the more extended it becomes. The statistics of the selected folded distributions (most probable,
median, and deviation values) can be found in Tables A13–A18 of the Appendix A. All lattice types
show identical trends, especially the strong dependence on film thickness and the very weak one on
SAW origin, as validated by the comparison of the mean value and the corresponding deviation.

4. Conclusions and Future Plans

In the present contribution, we have studied the behavior of athermal polymer chains under
extreme confinement realized through the presence of parallel, flat, and impenetrable walls in one
dimension. The inter-plate distance is so small that it practically adopts values similar to the size of the
spherical monomers. Presently, Monte Carlo simulations show that dense packings of highly confined
chains tend to crystallize at volume fractions which are significantly lower than the corresponding
threshold of the bulk case. In an effort to identify the thermodynamic stability of the corresponding
structures and the entropic origins of the phase transitions, we have mapped the athermal chains onto
self-avoiding random walks (SAWs) on lattices which are further spatially confined as the atomistic
analogs. Given that the applied confinement breaks the original maximal symmetry of the original
crystal, we have analyzed the effect of number of SAW steps (chain length), the level of confinement
(film thickness quantified by the number of lattice layers between the plates), and point of origin on
the size of chains and on their number of distinct conformations. The latter is important as it is directly
related to the configurational entropy of the chains.

The present work on plate-like (quasi 2-D) confinement, as well as the past on tube-like (quasi 1-D)
restrictions [64], constitute the first step of an ongoing research effort. The final goal is to investigate
and predict phase (disorder-order) transitions in confined athermal polymeric systems, for which
entropy is the sole driving force. The entropy of the freely-jointed chains in plate-like templates can be
obtained by direct enumeration of SAWs on restricted crystal lattices under the same geometry and
conditions (SAW length, lattice type).

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/4/799/s1:
An interactive, 3-D version of the manuscript; 3-D versions of Figures 3 and 4; 3-D video showing animated the
panels of Figure 4.
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Abbreviations

The following abbreviations have been used in this manuscript:

MC Monte Carlo
MD Molecular Dynamics
SAW Self-Avoiding Random Walk
CCE Characteristic Crystallographic Element (norm)
SC Simple Cubic
BCC Body Center Cubic
FCC Face Center Cubic
PDF Probability Distribution Function
CDF Cumulative Distribution Function
HON Honeycomb
SQU Square
TRI Triangular

Appendix A

In the following Tables, we present the number of distinct configurations, cN, and the mean square end-to-end

distance, 〈
∣∣∣ωN

∣∣∣2〉, for the self-avoiding random walks (SAWs) as a function of the number of SAW steps, N,
under plate-like confinement. System parameters include lattice type, number of layers between confining
plates, n, and Type (SAW origin). Also shown for comparison are the results obtained from simulations on
corresponding 2-D lattices (honeycomb (HON), square (SQU) and triangular (TRI)) corresponding to extreme
(single-layer) confinement.

Table A1. Properties of SAWs on 2-D regular lattices corresponding to extreme, plate-like confinement:
honeycomb (HON), square (SQU) and triangular (TRI). In all cases n = 1 and Type 1.

HON (n = 1, Type 1) SQU (n = 1, Type 1) TRI (n = 1, Type 1)

N cN 〈

∣∣∣ωN
∣∣∣2〉 cN 〈

∣∣∣ωN
∣∣∣2〉 cN 〈

∣∣∣ωN
∣∣∣2〉

1 3 1.000 4 1.000 6 1.000
2 6 3.000 12 2.667 30 2.400
3 12 5.500 36 4.556 138 4.217
4 24 8.250 100 7.040 618 6.350
5 48 11.13 284 9.563 2730 8.741
6 90 15.00 780 12.57 11,946 11.36
7 174 18.69 2172 15.56 51,882 14.20
8 336 22.50 5916 19.01 224,130 17.24
9 648 26.42 16,268 22.41 964,134 20.47

10 1218 31.18 44,100 26.24 4,133,166 23.87
11 2328 35.59 120,292 30.02 17,668,938 27.43
12 4416 40.34 324,932 34.19 75,355,206 31.16
13 8388 45.14 881,500 38.30 320,734,686 35.03
14 15,780 50.49 2,374,444 42.79 1,362,791,250 39.06
15 29,892 55.59 6,416,596 47.22 5,781,765,582 43.22
16 56,628 61.13 17,245,332 51.99
17 106,200 66.60 46,466,676 56.72
18 199,350 72.53 124,658,732 61.77
19 375,504 78.29
20 704,304 84.46
21 1,323,996 90.53
22 2,479,692 97.01
23 4,654,464 103.4
24 8,710,212 110.1
25 16,328,220 116.7
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Table A2. Number of distinct configurations of SAWs on 3-D regular lattices without spatial restrictions
(bulk case): simple cubic (SC), body center cubic (BCC) and face center cubic (FCC). Due to symmetry
all nodes correspond to a single SAW origin (Type 1).

SC (bulk, Type 1) BCC (bulk, Type 1) FCC (bulk, Type 1)

N cN cN cN

1 6 8 12
2 30 56 132
3 150 392 1404
4 726 2648 14,700
5 3534 17,960 152,532
6 16,926 120,056 1,573,716
7 81,390 804,824 16,172,148
8 387,966 5,351,720 165,697,044
9 1,853,886 35,652,680 1,693,773,924
10 8,809,878 236,291,096 17,281,929,564
11 41,934,150 1,568,049,560 176,064,704,412
12 198,842,742 10,368,669,992 1,791,455,071,068
13 943,974,510 68,626,647,608 18,208,650,297,396
14 4,468,911,678 453,032,542,040
15 21,175,146,054 2,992,783,648,424
16 100,121,875,974
17 473,730,252,102
18 2,237,723,684,094

Table A3. Properties of SAWs on the SC, BCC and FCC lattices with two layers between the confining
plates (n = 2, Type 1).

SC (n = 2, Type 1) BCC (n = 2, Type 1) FCC (n = 2, Type 1)

N cN 〈

∣∣∣ωN
∣∣∣2〉 cN 〈

∣∣∣ωN
∣∣∣2〉 cN 〈

∣∣∣ωN
∣∣∣2〉

1 5 1.000 4 1.000 8 1.000
2 20 2.400 12 1.778 56 2.000
3 80 3.800 36 3.370 368 3.152
4 304 5.421 100 4.693 2336 4.510
5 1168 7.000 284 6.709 14,576 6.037
6 4348 8.854 780 8.383 89,928 7.713
7 16,336 10.68 2172 10.70 550,504 9.523
8 60,208 12.77 5916 12.68 3,349,864 11.46
9 223,352 14.83 16,268 15.27 20,290,360 13.51

10 817,852 17.14 44,100 17.50 122,445,504 15.68
11 3,008,872 19.43 120,292 20.35 736,685,008 17.95
12 10,968,400 21.94 324,932 22.79 4,421,048,016 20.32
13 40,123,760 24.42 881,500 25.87
14 145,783,980 27.12 2,374,444 28.52
15 531,100,496 29.78 6,416,596 31.81
16 1,924,770,512 32.65
17 6,990,248,624 35.49
18 25,282,157,540 38.52

Table A4. Properties of SAWS on SC lattice with 3 layers between the confining plates (n = 3, Type 1, 2).

SC (n = 3, Type 1) SC (n = 3, Type 2)

N cN 〈

∣∣∣ωN
∣∣∣2〉 cN 〈

∣∣∣ωN
∣∣∣2〉

1 5 1.000 6 1.000
2 21 2.476 28 2.286
3 92 3.957 124 3.581
4 392 5.571 516 5.054
5 1684 7.090 2156 6.492
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Table A4. Cont.

SC (n = 3, Type 1) SC (n = 3, Type 2)

N cN 〈

∣∣∣ωN
∣∣∣2〉 cN 〈

∣∣∣ωN
∣∣∣2〉

6 7036 8.748 8804 8.125
7 29,396 10.35 36,388 9.717
8 120,776 12.10 148,452 11.50
9 497,196 13.81 609,812 13.25
10 2,026,220 15.68 2,478,484 15.19
11 8,278,076 17.53 10,113,692 17.10
12 33,574,732 19.53 40,934,604 19.18
13 136,456,380 21.52 166,170,388 21.23
14 551,445,764 23.67 670,410,548 23.44
15 2,232,227,600 25.81 2,711,129,404 25.63
16 8,995,089,168 28.09 10,911,074,820 27.97
17 36,297,709,788 30.36 43,995,500,972 30.28

Table A5. Properties of SAWs on SC lattice with four layers between the confining plates (n = 4, Type 1, 2).

SC (n = 4, Type 1) SC (n = 4, Type 2)

N cN 〈

∣∣∣ωN
∣∣∣2〉 cN 〈

∣∣∣ωN
∣∣∣2〉

1 5 1.000 6 1.000
2 21 2.476 29 2.345
3 93 4.011 136 3.706
4 408 5.745 604 5.205
5 1832 7.410 2676 6.644
6 8084 9.192 11,564 8.218
7 35,752 10.88 50,228 9.737
8 155,756 12.65 215,492 11.39
9 677,856 14.34 929,136 13.01

10 2,920,764 16.11 3,972,948 14.76
11 12,582,860 17.84 17,048,772 16.48
12 53,858,044 19.65 72,685,616 18.33
13 230,643,688 21.45 310,668,724 20.16
14 983,162,808 23.34 1,320,897,848 22.12
15 4,193,819,200 25.22 5,626,979,444 24.06
16 17,824,575,272 27.20 23,868,686,764 26.12
17 75,809,092,412 29.17 101,405,080,196 28.15

Table A6. Properties of SAWs on SC lattice with 5 layers between the confining planes (n = 5, Type 1, 2, 3).

SC (n = 5, Type 1) SC (n = 5, Type 2) SC (n = 5, Type 3)

N cN 〈

∣∣∣ωN
∣∣∣2〉 cN 〈

∣∣∣ωN
∣∣∣2〉 cN 〈

∣∣∣ωN
∣∣∣2〉

1 5 1.000 6 1.000 6 1.000
2 21 2.476 29 2.345 30 2.400
3 93 4.011 137 3.745 148 3.811
4 409 5.770 620 5.329 692 5.318
5 1852 7.514 2824 6.875 3196 6.747
6 8308 9.431 12,616 8.547 14,324 8.275
7 37,620 11.29 56,668 10.14 64,076 9.748
8 168,768 13.23 251,500 11.83 282,716 11.33
9 758,340 15.09 1,119,212 13.46 1,251,044 12.88
10 3,379,476 16.98 4,939,768 15.19 5,493,804 14.54
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Table A6. Cont.

SC (n = 5, Type 1) SC (n = 5, Type 2) SC (n = 5, Type 3)

N cN 〈

∣∣∣ωN
∣∣∣2〉 cN 〈

∣∣∣ωN
∣∣∣2〉 cN 〈

∣∣∣ωN
∣∣∣2〉

11 15,051,324 18.80 21,845,116 16.86 24,207,436 16.17
12 66,608,060 20.66 96,043,836 18.63 106,083,764 17.92
13 294,573,648 22.46 422,938,080 20.37 466,189,268 19.64
14 1,296,739,560 24.31 1,854,194,080 22.21 2,039,686,412 21.47
15 5,706,787,808 26.13 8,139,479,608 24.01 8,943,399,564 23.28
16 25,029,783,540 28.01 35,603,096,872 25.91 39,068,913,604 25.20
17 109,780,078,372 29.87 155,900,872,104 27.79 170,957,960,396 27.09

Table A7. Properties of SAWs on BCC lattice with 3 layers between the confining planes (n = 3, Type 1, 2).

BCC (n = 3, Type 1) BCC (n = 3, Type 2)

N cN 〈

∣∣∣ωN
∣∣∣2〉 cN 〈

∣∣∣ωN
∣∣∣2〉

1 4 1.000 8 1.000
2 28 2.286 24 1.778
3 84 3.032 168 3.032
4 560 4.495 448 4.381
5 1512 5.854 3024 5.854
6 10,024 7.471 7776 7.671
7 26,016 9.276 52,032 9.276
8 172,144 11.01 131,392 11.49
9 437,216 13.21 874,432 13.21
10 2,888,704 15.04 2,184,192 15.76
11 7,242,304 17.59 14,484,608 17.59
12 47,788,288 19.52 35,913,728 20.46
13 118,793,664 22.37 237,587,328 22.37
14 783,007,232 24.39 585,931,008 25.53
15 1,934,717,312 27.53 3,869,434,624 27.53

Table A8. Properties of SAWs on the BCC lattice with 4 layers between the confining planes (n = 4,
Type 1, 2).

BCC (n = 4, Type 1) BCC (n = 4, Type 2)

N cN 〈

∣∣∣ωN
∣∣∣2〉 cN 〈

∣∣∣ωN
∣∣∣2〉

1 4 1.000 8 1.000
2 28 2.286 40 2.133
3 148 3.883 216 2.975
4 752 4.482 1100 4.422
5 3928 6.279 5516 5.502
6 19,240 7.061 27,436 7.195
7 96,800 9.129 135,308 8.501
8 471,652 10.12 662,208 10.41
9 2,324,620 12.42 3,234,984 11.92
10 11,266,332 13.59 15,695,400 14.02
11 54,928,996 16.10 76,139,448 15.71
12 264,967,864 17.44 367,445,292 17.98
13 1,283,256,176 20.12 1,773,482,796 19.83
14 6,167,881,032 21.62 8,526,698,460 22.26
15 29,733,461,768 24.46 41,001,069,836 24.27
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Table A9. Properties of SAWs on the BCC lattice with five layers between the confining plates (n = 5,
Type 1, 2, 3).

BCC (n = 5, Type 1) BCC (n = 5, Type 2) BCC (n = 5, Type 3)

N cN 〈

∣∣∣ωN
∣∣∣2〉 cN 〈

∣∣∣ωN
∣∣∣2〉 cN 〈

∣∣∣ωN
∣∣∣2〉

1 4 1.000 8 1.000 8 1.000
2 28 2.286 40 2.133 56 2.286
3 148 3.883 280 3.438 264 2.939
4 1008 5.376 1292 4.425 1752 4.432
5 4696 6.361 8700 5.904 8008 5.369
6 31,208 7.957 38,956 7.001 52,600 7.015
7 140,576 8.985 258,124 8.614 235,096 8.172
8 923,408 10.70 1,137,676 9.908 1,534,264 9.947
9 4,088,104 11.93 7,467,996 11.65 6,759,784 11.31
10 26,673,936 13.75 32,589,060 13.14 43,920,344 13.20
11 116,790,808 15.20 212,627,204 15.000 191,672,792 14.76
12 758,669,728 17.14 921,579,828 16.68 1,241,447,848 16.75
13 3,296,625,336 18.78 5,987,539,924 18.65 5,381,829,176 18.49
14 21,347,913,984 20.82 25,824,254,724 20.50 34,775,532,088 20.58
15 92,254,133,376 22.64 167,265,106,124 22.57 150,021,945,496 22.48

Table A10. Properties of SAWS on FCC lattice with 3 layers between the confining planes (n = 3,
Type 1, 2).

FCC (n = 3, Type 1) FCC (n = 3, Type 2)

N cN 〈

∣∣∣ωN
∣∣∣2〉 cN 〈

∣∣∣ωN
∣∣∣2〉

1 8 1.000 12 1.000
2 72 2.222 100 1.920
3 608 3.355 796 2.990
4 4876 4.523 6292 4.183
5 38,332 5.769 49,020 5.499
6 297,468 7.121 377,996 6.926
7 2,287,380 8.580 2,893,932 8.452
8 17,471,516 10.14 22,030,220 10.07
9 132,758,268 11.80 166,942,556 11.79
10 1,004,552,340 13.55 1,260,417,828 13.59
11 7,575,290,444 15.39 9,487,397,172 15.47
12 56,963,463,220 17.30 71,232,793,460 17.43

Table A11. Properties of SAWS on FCC lattice with 4 layers between the confining plates (n = 4, Type 1, 2).

FCC (n = 4, Type 1) FCC (n = 4, Type 2)

N cN 〈

∣∣∣ωN
∣∣∣2〉 cN 〈

∣∣∣ωN
∣∣∣2〉

1 8 1.000 12 1.000
2 72 2.222 116 2.069
3 672 3.607 1036 3.147
4 6092 4.934 9024 4.285
5 53,676 6.208 77,752 5.501
6 464,316 7.487 665,008 6.790
7 3,972,740 8.805 5,653,120 8.153
8 33,748,832 10.18 47,804,044 9.589
9 285,181,384 11.62 402,465,316 11.10

10 2,399,555,928 13.13 3,376,047,476 12.68
11 20,118,990,904 14.71 28,233,689,900 14.32
12 168,187,509,900 16.37 235,510,903,272 16.03
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Table A12. Properties of SAWs on FCC lattice with 5 layers between the confining plates (n = 5,
Type 1, 2, 3).

FCC (n = 5, Type 1) FCC (n = 5, Type 2) FCC (n = 5, Type 3)

N cN 〈

∣∣∣ωN
∣∣∣2〉 cN 〈

∣∣∣ωN
∣∣∣2〉 cN 〈

∣∣∣ωN
∣∣∣2〉

1 8 1.000 12 1.000 12 1,000
2 72 2.222 116 2.069 132 2.182
3 672 3.607 1100 3.313 1276 3.245
4 6348 5.138 10,240 4.558 11,756 4.340
5 59,564 6.634 93,864 5.810 106,484 5.501
6 550,524 8.062 852,080 7.087 957,524 6.730
7 5,021,572 9.447 7,680,816 8.397 8,578,324 8.022
8 45,364,428 10.82 68,862,952 9.750 76,622,980 9.375
9 407,048,708 12.21 614,763,576 11.15 682,422,404 10.79

10 3,634,621,916 13.62 5,469,051,720 12.60 6,060,924,172 12.26
11 32,334,144,252 15.07 48,511,115,392 14.10 53,692,606,892 13.78
12 286,791,329,140 16.57 429,222,436,536 15.65 475,067,855,437 16.03

In the continuation, we present results from the statistical analysis based on the PDF and the folded variant
for the SAW size as a function of lattice type, SAW length, point of origin (Type), and level of confinement for
selected systems. Calculated statistical variables include the mean value, the most repeated one and for the folded
variant the top point, µH, corresponding to the half of the distribution when the representation changes from
upslope to downslope, and the mean absolute deviation, σ.

Table A13. Statistical parameters of SAW size for the SC restricted lattice as a function of system
characteristics (fixed: N = 16) for selected systems.

System 〈|ω16|
2
〉

Most Repeated
Value (PDF)

Folded Distribution
µH (Top Point) σ (68.3%)

n = 1, Type 1 51.99 50 50 ±32
n = 2, Type 1 32.65 26 26 ±22
n = 3, Type 2 27.97 26 26 ±20
n = 4, Type 2 26.12 26 22 ±18
n = 5, Type 1 28.01 14 24 ±16
n = 5, Type 2 25.91 14 22 ±16
n = 5, Type 3 25.20 14 20 ±16

Table A14. Statistical parameters of SAW size for the SC restricted lattice as a function of SAW steps
(fixed: n = 5, Type 3) for selected systems.

N 〈|ωN|
2
〉

Most Repeated
Value (PDF)

Folded Distribution
µH (Top Point) σ (68.3%)

13 19.64 14 17 ±13
14 21.47 14 18 ±14
15 23.28 17 19 ±16
16 25.20 14 20 ±16

Table A15. Statistical parameters of SAW size for the BCC restricted lattice as a function of system
characteristics (fixed: N = 14) for selected systems.

System 〈|ω14|
2
〉

Most Repeated
Value (PDF)

Folded Distribution
µH (Top Point) σ (68.3%)

n = 2, Type 1 28.52 34 27 ±19
n = 3, Type 2 25.53 34 23 ±17
n = 4, Type 2 22.26 14 19 ±15
n = 5, Type 1 20.82 22 19 ±14
n = 5, Type 2 20.50 14 18 ±14
n = 5, Type 3 20.58 7 18 ±14
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Table A16. Statistical parameters of SAW size for the BCC restricted lattice as a function of SAW steps
(fixed: n = 5, Type 3) for selected systems.

N 〈|ωN|
2
〉

Most Repeated
Value (PDF)

Folded Distribution
µH (Top Point) σ (68.3%)

11 14.76 17 12 ±9
12 16.75 7 14 ±11
13 18.49 12 17 ±14
14 20.58 7 18 ±14

Table A17. Statistical parameters of SAW size for the FCC restricted lattice as a function of system
characteristics (fixed: N = 11) for selected systems.

System 〈|ω11|
2
〉

Most Repeated
Value (PDF)

Folded Distribution
µH (Top Point) σ (68.3%)

n = 2, Type 1 17.95 13 16 ±12
n = 3, Type 2 15.47 13 13 ±11
n = 4, Type 2 14.32 13 13 ±10
n = 5, Type 1 15.07 7 13 ±10
n = 5, Type 2 14.10 7 12 ±10
n = 5, Type 3 13.78 7 12 ±10

Table A18. Statistical parameters of SAW size for the FCC restricted lattice as a function of SAW steps
(fixed: n = 5, Type 3) for selected systems.

N 〈|ωN|
2
〉

Most Repeated
Value (PDF)

Folded Distribution
µH (Top Point) σ (68.3%)

8 9.375 7 7 ±7
9 10.79 7 9 ±8

10 12.26 7 10 ±9
11 13.78 13 12 ±10
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