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Abstract

Inferring new indication of approved drugs is critical not only for the elucidation of the interaction mechanisms between
these drugs and their associated diseases, but also for the development of drug therapy for various human diseases. This
paper proposes a network-based approach to reveal the association between 52 human diseases and potential therapeutic
drugs based on multiple types of data. The advantage of the approach is that it can obtain the global relevance features for
each drug-disease pair in the network by the learning local and global consistency method (LLGC). Cross-validation tests
results demonstrate the proposed approach can achieve better performance comparing with previous methods. More
importantly, it provides a promising strategy to maximize the value of therapeutic drugs and offer safe and effective
treatments for different diseases.
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Introduction

The traditional mode of drug development is a long and costly

process. The investigation shows that it requires an investment of

about 1 billion dollars and takes about 10,15 years to take a

compound from discovery to the approved medication [1]. In fact,

more than 90% of the drugs have been proved ineffective before

being clinically tested [2]. In order to improve the productivity of

drug discovery, there is an urgent need for developing computa-

tional methods to address new treatment opportunities by utilizing

the available information of known drugs. Undoubtedly, inferring

novel indications of approved drugs is an effective way to achieve

this important goal.

Previous studies have demonstrated that genome-wide tran-

scriptional expression data is useful to interpret biological

influence of drugs or disease states [3], there has been a trend

for drug-disease study based solely on the analysis of gene

expression data over the past years. The popular methods

including Gene Enrichment Analysis method (GSEA) and the

Connectivity Map (cMap) have proved effective in discovering

new therapeutic drugs for some diseases [4]. Both of the methods

are based on the hypothesis that if two diseases share similar

therapies, then the drug used for this disease may also be

therapeutic for other diseases [5]. For instance, GSEA can be used

to determine whether a priori defined set of genes shows

statistically significant, concordant differences between two bio-

logical states [6]. cMap is often used to seek the functional

associations between drug response profiles and diseases through

the transitory feature of common gene-expression changes [7].

However, the methods are greatly affected by the quality of gene

expression data due to the profiles generated under different

conditions. Therefore, it is incapability to capture drug-disease

associations that are not manifested on the gene expression level.

Recently, some researchers attempted to incorporate the

biological and chemical knowledge to construct effective feature

vectors of drug-disease pairs with different learning methods. For

instance, Li et al. [8] proposed a literature mining method to build

disease-specific drug protein cMaps via protein interaction

networks. Gottlieb et al. [9] attempted to predict new drug

indications by different feature information including gene

expression profile, chemical structure, side effects and chemical

protein interactome. Nevertheless, few researches have attempted

to maximize the information flow in the disease network for

uncovering new drug-disease pairs. Further, the similarity measure

methods they used were limited and did not adjust the algorithm

according to the specific situations of the samples.

Here, we propose a method by learning with local and global

consistency (LLGC) to predict new drug-disease associations [10].

For each drug-disease pair in a network, we obtain the feature

vectors of 609 known drug-disease associations based on different

types of data. Compared with the PREDICT method, our method

can obtain a higher specificity and sensitivity. Further, we expect

the top-scored drug-disease pairs highly enriched in literature can

be used for further clinical trial.

Materials and Methods

Data sets
In this work, we first collect 42 kinds of drugs associated with

breast cancer from KEGG database [11]. Then we obtain other

51 kinds of diseases with which the 42 drugs are associated. These

52 diseases totally have 609 known associations with 203 FDA
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approved drugs. Since each selected disease has at least one public

associated drug with breast cancer, drugs treating one or several of

these 51 diseases may also has some effect on treating breast

cancer [7]. Finally, we got 609 drug-disease pairs and 668 drug-

target interaction pairs (192 targets corresponding to these 203

drugs) in the disease network.

Overview of the method
According to the LLGC method, we first constructed the

disease-drug networks based on multiple types of feature

information. Then, the feature vectors for all of the possible

drug-disease pairs were obtained based on LLGC methods.

Finally, new possible drug-disease associations can be predicted

based on the analysis of network topology. Figure 1 shows an

illustration of the above procedure.

Similarity measures
In the paper, four similarity measures were used to obtain

results that are more reasonable.

(1) Chemical structure similarity. SIMCOMP [12] is an

online tool provided by the KEGG LIGAND database

(http://www.genome.jp/ligand), which offers a global simi-

larity score by the ratio between the size of common sub-

structures and the size of the union structures of two

compounds. The similarity between two compounds c and

c9 is usually computed as follows:

sc(c,c
0
)~Dc\c

0
D=Dc|c

0
D ð1Þ

SIMCOMP can only calculate the compounds whose similar

scores are greater than a certain threshold. Therefore, we used the

SIMCOMP2 (http://www.genome.jp/tools/simcomp2/) to ob-

tain the chemical structure similarity between any two compounds

in order to construct a similarity matrix denoted (sc)nd |nd
(nd is the

number of drugs).

(2) Phenotypic similarity. We used the phenotypic similarity

constructed by van Driel et al. (2006) [13]. The phenotypic

similarity (sp)ns|ns
was constructed by identifying the

similarity between MeSH terms [14] appearing in the medical

description of diseases from OMIM database [15] (ns is the

number of diseases).

(3) Network topology information. In our study, we

constructed an adjacency matrix to represent all of the known

drug-disease associations. The underlying assumption here is

that if two drugs (diseases) share more diseases (drugs), they

are more similar. If a drug associates with a disease, the

corresponding element was set a value 1. Otherwise, it was set

a value 0. We defined two sharing degree similarity matrixes

(Kd )nd |nd
and (KS)ns|ns

based on Xia et al. (2010) [16]. The

element in the ith row and jth column of Kd (Ks) represents the

number of diseases shared by the ith drug (disease) and the jth

Figure 1. The flowchart of the prediction method.
doi:10.1371/journal.pone.0107100.g001
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drug (disease). Meanwhile, Floyd algorithm was used to seek

the shortest paths between any two nodes in the graph M4

(has been described in Network topology features). For the ith
drug, we obtain a vector vdi

constituted of the lengths between

the ith drug and all of the diseases. Then we compute the

Pearson correlation coefficient between the vectors of any two

drugs to construct a similarity matrix (Pd )nd |nd
which reflects

the topology similarities of drugs. Similarly, we construct a

similarity matrix (Ps)ns|ns
to reflect the topology similarities of

diseases.

Pearson correlation coefficient is used to measure the degree of

correlation between two variables X and Y, which is described as

follows:

Pearson(x,y)~

Pn
k~1 (xk{�xx)(yk{�yy)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k~1 (xk{�xx)2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k~1 (yk{�yy)2
q ð2Þ

Obviously, the absolute value of it is bigger, the degree of

correlation between X and Y is higher. For two drugs di, dj the

shortest path similarity of them is computed as follows:

Pd (i,j)~DPearson(vdi
,vdj

)D ð3Þ

Based on the method of Perlman et al. (2011) [17], we combine

two similarities including the sharing degree similarity and the

shortest path similarity to a single topology similarity by

computing their weighted geometric mean. In this way, we obtain

the topology similarity matrix (Td )nd |nd
and (Ts)ns|ns

.

(4) Combination of the biology similarity and the
topology similarity. The drug similarity matrix can be

obtained by the linear combination Sdrug~wdScz(1{wd )Td

based on Chen et al (2012) [18]. Similarly, the disease

similarity matrix can be obtained by Sdisease~wsSpz

(1{ws)Ts. Here, the parameter wd and ws represent the

weight of biology similarity evaluation in the integrated

similarity measure.

Construction of graph relevance vectors
The relevance between a drug D and a disease node in the

disease network depends on whether the drug has an association

with the disease. If the drug has an association with the disease, the

relevance score is 1, otherwise the relevance score is 0. We can get

the relevance score between disease S and a drug node in the

disease network. The calculation process of the relevance score

between a drug D (or a disease S) with a node in the disease

network is introduced as follows:

a) We used the relevance score between drug D and other drug

node to describe the drug similarity. Further, we used the

relevance between disease S and a disease node to describe

the disease similarity. If drug D and a target has known

interaction, the relevance score is 1, otherwise, the relevance

score is the maximum value of the similarities between drug

D and drugs with known interactions with the target.

b) We used the relevance score between disease S and a target

node in the disease network to describe the maximum value

of the relevance scores between the target and all of the drugs

with associations with disease S.

Construction of the feature vectors
The graph relevance vector of the drug-disease pair ,d, s. is

447-dimension vectors. Then we calculate the similarity of the

graph relevance vector and obtain 609-dimension feature vectors

of each drug-disease pair based on Laarhoven et al. (2011) [19].

The similarity between the graph relevance vector of ,d, s. and

the graph relevance of a known drug-disease pair can be computed

as follows:

SRv,Rk
~e({r� Rv{Rkk k) ð4Þ

Where Rv is the graph relevance vector of ,d, s., Rs is the

graph relevance vector of a known drug-disease pair, r is the

control parameter:

r~1

,
(
1

n

Xn

i~1

Rik k2) ð5Þ

Where n is the number of the known drug-disease associations,

Ri is the graph relevance vector of a known drug-disease pair.

Computation of network topology features
In order to investigate the network topology features of the

disease network, we first embedded four kinds of relationship

networks (drug-disease network, drug-drug network, drug-target

network, target-target network) into one integrated network. Then,

seven types of topological features were used to analyze the

topological structures [20–21]. The topological features are

introduced as follows, respectively.

(1) Network diameter. The network diameter D refers to

the maximum value of the shortest path lengths of between all

nodes in the graph G, which is computed as follows:

D~Maxfdi,j Di=j; i,j~1,2,:::,mg ð6Þ

di,j refers to the length of the shortest path between vi and vj, m
is the number of nodes. If the network is an unconnected graph,

we use its maximal connected sub-graph replace of using infinity to

describe the network diameter.

(2) The characteristic path length. The characteristic path

length refers to the mean value of the shortest path lengths among

all nodes in the graph G, which is computed as follows:

L~
X

d

d:f (d)

,X
d

f (d) ð7Þ

F(d) refers to the frequency that the shortest path length d
appears. If the network is an unconnected graph, its characteristic

path length represents the mean path lengths of the nodes.

(3) Network connectivity efficiency. Network connectivity

efficiency E is an index describing the degree of separation of

nodes in the network. E is bigger means the connectivity of the

network is better. E is described as follows:

Drug Indications Prediction
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E~

P
i=j

1
di,j

m(m{1)
ð8Þ

(4) The average degree of network. The average degree of

network kv is the mean value of the degrees of all nodes in the

network, which is computed as follows:

kv~
Xm

u~1

eu,v ð9Þ

(5) The coefficient of variation. The coefficient of var-

iationjdescribes the extent of network heterogeneity, which is

computed as follows:

j~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i~1 (ki{k)2

q
k

|100 ð10Þ

ki is the degree of node vi, k is the mean degree of all the nodes.

(6) Clustering coefficient. kv is the degree of node v, Ev is

the number of edges among the adjacent kv nodes, then the

clustering coefficient of node v is:

Cv~
2Ev

kv(kv{1)
ð11Þ

The clustering coefficient of the network represents the average

value of the clustering coefficients of all the nodes, which describes

the extent of relationships among the adjacent nodes.

(7) Network structure entropy. Entropy is a measure of the

uniformity of the energy distribution. Higher entropy means the

message contain more information and vice versa. The calculation

process of network structure entropy is described as follows:

For the undirected graph G that has m nodes, ki is the degree of

node vi, then the importance of Ii is vi:

Ii~
kiPm

j~1 kj

ð12Þ

The network structure entropy of the undirected graph is

described as:

En~{
Xm

i~1
Iiln Ii ð13Þ

When the network is completely uniform, Ii = 1/m, the maximal

value Enmax~ln m; When the network is star-like, the network is

more uneven. This moment, the network structure entropy is

minimum and has the minimal value Enmin ln 4(m{1)=2.

In order to eliminate the effect of the number of nodes on the

entropy, we attempt to normalize the network structure entropy.

The normalized network structure entropy is computed as:

NE~
Enmax{En

Enmax{Enmin

ð14Þ

T
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Results and Discussion

Network topology and reliability analysis
(1) Analysis of network topology features. B refers to the

number of edges in the network, D refers to the network diameter,

L refers to the characteristic path length, E refers to the network

connectivity efficiency, K refers to the average degree of the

network, C refers to the clustering coefficient, NE refers to the

standard network structure entropy,j refers to the characteristic

value of the variation coefficient of degree, M1 refers to the drug-

disease network, M2 refers to a network including M1 and the

drug-drug network, M3 refers to a network including M2 and the

drug-target network, M4 refers to a network including M3 and the

target-target network. Table 1 lists the feature information used in

the disease network.

As we can see from Table 1, the variation coefficient of

degreejin these networks are high, indicating that the networks

are all considerable heterogeneous (meaning that only a few nodes

in the network have a large number of connections, most of the

nodes only have a few connections). Further, the connectivity

efficiency E is relatively low, yet the connectivity efficiency has

been greatly improved after adding new relationships in M1. This

reflects that there are more reachable paths among the nodes in

the network to make the connectivity better.

(2) Analysis of network connectivity and path. The path

length distribution of four networks is shown in Figure 2. The

horizontal ordinate represents the path length of four networks

and the ordinate represents the proportion of the path of length d.

(3) The characteristic of network degree distribu-

tion. The proportion of nodes with different degrees in the

networks is shown in Table 2. We can see the number of nodes

with high degrees increased after adding new interaction

relationships in the disease network (Table 2).

(4) Analysis of network reliability. In the paper, we

analyze the effect of nodes removal on network reliability by

randomly removing and determinately removing according to two

methods. (a) Randomly removing a certain proportion nodes,

removal ratio rises from 0% to 10%. (b) Orderly removing a

certain proportion nodes of high degree, removal ratio rises from

0% to 10%.

The effect of these two operations on network connectivity

efficiency and standard network structure entropy is shown in

Figure 3 and Figure 4. For the random removal, we repeated

this operation for 20 times and used their average values in order

to avoid the deviation.

It is clear that the random removal of nodes has hardly affected

the connectivity efficiency and standard network structure entropy

of the networks (Figure 3). Similarly, the sequential removal has

Figure 2. The path length distribution of four types of networks.
doi:10.1371/journal.pone.0107100.g002

Table 2. The proportion of nodes with different degrees in the networks.

Maximum degree k = 1 k, = 5 k, = 10 k, = 15 k.20

M1 43 45.10% 71.76% 85.88% 92.55% 4.31%

M2 136 7.06% 20.78% 36.08% 45.10% 49.80

M3 148 15.88% 42.73% 58.39% 66.67% 30.65%

M4 148 10.96% 39.82% 55.93% 65.55% 30.65%

doi:10.1371/journal.pone.0107100.t002
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little effect on the network connectivity efficiency, although the

standard network structure entropy decreases slightly (Figure 4).

In summary, the influence caused by randomly removing and

orderly removing on the disease network is very slight, which

indicates that the disease network is of great shock resistance and

reliability.

Learning with local and global consistency
The basic idea of LLGC method is to achieve a global stability

result through the iteratively outward conductance of local known

labels. In the study, all of the drug-disease pairs were first divided

into two categories including the pairs with associations and the

pairs without associations. Then, we construct a weighted

undirected graph using the characteristic values of all the training

data based on the manifold and clustering assumption. Nodes in

the graph represented all the training examples, and a radial basis

function was used to define the weights of edges in the graph.

In order to maximize the effect of the local label diffusion and

emphasize the sparse zone of Euclidean distances, we improved

the Gauss kernel function:

Wij~e
{

$ij
2

c

� �h

ð15Þ

where h,c are the variable parameter, xi and xj are the feature

vector of a drug-disease pair.

We calculate the regularization matrix S of the weight matrix W

in order to ensure the convergence of the algorithm:

Sij~
Wijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(
Pn

k~1 Wik)(
Pn

k~1 Wkj)
p ð16Þ

We make an iterative calculation through the iteration formula:

Ftz1~aSFtz(1za) Y ð17Þ

Figure 3. The effect by randomly removing the nodes.
doi:10.1371/journal.pone.0107100.g003

Figure 4. The effect by orderly removing the nodes with high degree.
doi:10.1371/journal.pone.0107100.g004
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Where Y is a drug-disease association matrix, the element in the

ith row and jth column of Y represents whether the ith disease and

the jth drug is a known drug-disease pair.

This iteration formula adheres to the concept of topological

manifold, topologically mapping the neighborhood of points to the

high dimensional space. Thus, the diffusion extent of the label of a

Figure 5. The effect brought by a on the results of classification.
doi:10.1371/journal.pone.0107100.g005

Figure 6. The change of the Euclidean distances between feature vectors.
doi:10.1371/journal.pone.0107100.g006
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point in the high dimensional space can be measured by the

weights of edges passing through the point in the graph.

Algorithm analysis
According to the iteration formula, we discovery that Ft has a

limit F�~limt??Ft~ (1{a) Y
I{aS

only when DSDv1. Since S is a

regularization matrix, DSDv1 is inevitable, which means F� is

existent. We can ignore the constant (1{a) in the calculation

process, so we use F�~ Y
I{aS

to replace of the iteration formula in

order to ensure that there is only truncation error. The energy

function of LLGC learning method is described as:

E(f)~
1

2
m
Xn

i~1

(f i{yi)
2z

X
i,j

vij(f i

. ffiffiffiffiffiffi
Dii

p
{fj

� ffiffiffiffiffiffi
Djj

p
)2

 !
ð18Þ

First, we can get the same iteration limit by calculating the

derivative of the energy function.

Figure 7. The number of Euclidean distances between feature vectors.
doi:10.1371/journal.pone.0107100.g007

Figure 8. Performance comparison between LLGC and PREDICT method.
doi:10.1371/journal.pone.0107100.g008
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Figure 9. The drug-disease network of breast cancer.
doi:10.1371/journal.pone.0107100.g009

Figure 10. Some drug-target interactions and drug-disease associations in the disease network of breast cancer.
doi:10.1371/journal.pone.0107100.g010
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Then, we set the initial labels of drug-disease pairs:

Fi,j~
1 pair i belongs to label j

0 otherwise

�
ð19Þ

Where F is a n62 matrix.

Finally, we analyze the results and label the unknown drug-

disease pairs:

labeli~
1 F1

�
§F2

�

2 F1
�
vF2

�

�
ð20Þ

We infer a drug-disease pair is highly possible to be an

associated drug-disease pair if it is labeled with 1.

Parameter optimization
In this study, three parameters a,c and h have a significant

impact on the performance of the algorithm.a controls the

relational degree between each iteration and the initial label

information, and the relational degree between each iteration and

the label information obtained after iteration. a is smaller, the

relational degree between each iteration and the initial label

information is bigger while the relational degree between each

iteration and the label information obtained after iteration is

smaller.

In the classic two crescent-shaped Toy dataset, we set two

instances of known labels for two types of labels. As shown in

Figure 5, there is a significant influence brought by a on the

results of classification labels. For a dataset with little known labels,

local label propagation is more important, meaning that a is bigger

and the classification result is better. There are little known labels

in our dataset, so we set a~0:99 in order to maximize label

transfer iteration.

c,h are the constructional parameters of the weight matrix. c is a

reference value. If the Euclidean distance between feature vectors

of two drug-disease pairs is smaller than c, it will be smaller than it

is before the transformation. If the Euclidean distance between

feature vectors of two drug-disease pairs is bigger than c, it will be

bigger than it is before the transformation. h plays a role in

amplification and reduction. We take h~2 as an example

(Figure 6). After the transformation, all the distances except the

distance with the value equaled to c (blue circle) have been

amplified or lessened. The distance transform can amplify the

local effect of the algorithm, thus make the result better.

The selection of the value of c is based on the statistics of the

Euclidean distances among feature vectors of all the drug-disease

pairs. As shown in Figure 7, there is a trough for the number of

distances in [0.088, 0.152] which is equivalent to a sparse band for

the locations of a vertex relative to the other vertexes in the graph.

The semi-supervised learning method based on manifold assump-

tion uses the sparse band like this as the classification boundary.

We take the mean value 0.12 of the sparse band as the value of c,

which can make the classification effect more obvious.

Prediction assessment
PREDICT is a method that can obtain good performance in

predicting drug indications by previous references [9]. In order to

compare the performance of our method with it, we executed 10-

fold cross-validation procedures for 10 times: the dataset of drug-

target pairs was divided into 10 subsets, each subset was then taken

in turn as a test set and the remaining 9 folds were performed as

training set. In each cross-validation, the 548 drug-disease

associations are used for training classifier while the remaining

994 unknown drug-disease pairs and 61 drug-disease associations

are designated as the testing dataset. The performances of the two

methods are evaluated with two quality measures called AUC

(Area under the ROC curve) and AUPR (Area under the

precision-recall curve). Figure 8 shows the ROC curves and

Precision-Recall curves of different methods. As demonstrated in

Figure 8, the proposed method obtain the best results with the

AUC score of 97.2% and AUPR score of 79.1%, which is

increased by 4% on the AUC scores, and 11% on the AUPR

scores comparing with PREDICT method.

Predicted drug-disease associations in the networks
Breast cancer is the most common cancer in women worldwide.

It is estimated that more than 1.6 million new cases of breast

cancer occurred among women [22]. We focus on the drug-

disease network for this important disease in the study. The

topological graph of the predicted drug-disease network for breast

cancer is demonstrated in Figure 9. We highlighted the predicted

drug-disease associations with thick lines. It is shown that breast

cancer may have associations with CISPLATIN, IFOSFAMIDE,

CARBOPLATIN, Nedaplatin and Bleomycin hydrochloride (Fig-
ure 9). Moreover, Doxorubicin and Ovarian cancer, PACLI-

TAXEL and Cervical cancer should be associated drug-disease

pairs.

As shown in the left of Figure 10, the drugs like ETOPOSIDE,
Aclacinon, IRINOTECAN HYDROCHLORIDE and EPIRUBI-
CIN HYDROCHLORIDE have many common targets. So we

inferred these drugs may have similar pharmacological functions,

thus can be used to treat the same diseases. On the other hand,

these drugs have indeed associations with some common diseases

in the disease network of breast cancer. Therefore, it is reasonable

to encourage further investigation and consider progression to

clinical trials for this important disease.
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