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BACKGROUND AND OBJECTIVES

Pharmacometrics, as a science that is concerned with 
the effects of both real and hypothetical interventions, 
necessarily involves causal reasoning. Causal reasoning 
is implicit whenever a scientist uses the word “because,” 
“effect,” or “confounding” to name just a few of the telltale 
signs. In recognizing the value of “mechanistic” models1–3 
and in recognizing the importance of theory (as distinct 
from direct empiricism),4 pharmacometrics inherently 
prioritizes models with causal interpretability. Moreover, 
pharmacometric analyses typically involve nonrandom-
ized comparisons (e.g., comparing predicted outcomes 
at a high exposure to predicted effects at a low exposure 
when exposure is not randomized or predicted outcomes 
for patients with normal renal function to predicted out-
comes for patients with impaired renal function when 
renal function status is—necessarily—not randomized), 
which is precisely the setting that motivates most causal 
inference research.

In contrast to colloquial causal reasoning (e.g., sim-
ply using words such as “because,” “effect,” and “con-
founding”), the term causal inference will be used here 
to specifically connote formal (i.e., mathematized) causal 

reasoning. Several influential publications in pharma-
cometrics made extensive use of causal formalisms, in-
cluding instrumental variables and potential outcomes 
notation.5–7 However, aside from those seminal efforts, 
the pharmacometric literature has been mostly devoid 
of explicit causal inference. To clarify, pharmacometric 
models often rely on mathematical representations of 
pharmacological and biological processes, but the explicit 
mathematization of causal questions is far less common. 
Although pharmacometrics has undoubtedly flourished 
even without the benefit of an explicit causal lens, there 
are several signs that a resurgent awareness of causal in-
ference in pharmacometrics would be timely. These signs 
include:

•	 The application of analytic techniques arising from 
causal inference research, such as propensity-based 
matching, in exposure–response analyses for regulatory 
decision making.8

•	 The use of directed acyclic graphs (DAGs) to articulate 
the nature of causal confounding of exposure–response 
in immuno-oncology.9

•	 The use of DAGs for covariate selection in epidemio-
logical studies of relevance to pharmacometrics, for 
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example, for characterizing longitudinal progression 
toward end-stage renal disease10 or for characterizing 
overall survival in oncology in response to immune 
checkpoint inhibitors (CPIs).11,12

•	 The application of interpretable artificial intelligence/
machine-learning (AI/ML) algorithms (e.g., with in-
terpretation assisted by Shapley values) to population 
pharmacokinetic modeling13 and prediction of relapse 
and related disease activity in multiple sclerosis,14 con-
temporaneous with an increased recognition of the in-
terpretive value of formal causal frameworks in AI/ML 
research.15–18

•	 The advent of real-world evidence (RWE) usage in 
pharmacometric analyses,19 contemporaneous with a 
growing body of guidance for the use of RWE that advo-
cates for the use of causal DAGs.20

•	 The increasingly favorable environment for employing 
external or synthetic control arms in clinical trials, with 
the intent of generating estimates of (causal) treatment 
effects using methods that approximate the effects of 
randomization.21

•	 A renewed focus in pharmacometrics on what to es-
timate22 (as distinct from how to do the estimation), 
contemporaneous with a broader recognition that most 
estimands are best expressed as causal quantities.23

Our objective in this tutorial is therefore to provide 
an introductory exposition of three fundamental causal 
concepts that we deem to be particularly relevant for 
pharmacometric research: potential outcomes notation, 
g-formula, and causal DAGs. It is beyond the scope of 
this effort to provide a complete guide to the application 
of these concepts. Our present intent is rather to lay the 
groundwork for future application-oriented instruction by 
establishing the fundamental terminological and notation 
distinctions that are used in causal inference.

POTENTIAL OUTCOMES NOTATION

Quantities of interest (i.e., estimands) in pharmacometric 
research are very often causal estimands, that is, they are 
quantities summarizing what would happen in a popula-
tion if a particular intervention were enacted. Potential 
outcomes notation greatly facilitates the mathematical 
expression of such estimands. The pioneering use of po-
tential outcomes notation in pharmacometrics went hand 
in hand with efforts to prioritize what questions as distinct 
from how questions.6,7,22

The representational value of potential outcomes no-
tation may be understood by contrasting it with standard 
notational conventions for conditional and unconditional 
probability statements. In what follows, we make this 

distinction linguistically; a more precise understanding 
can be gained by exploring the same distinction using the 
R code in Supplementary Material S1.

In relation to an outcome Yi and an intervention Ai for 
subjects indexed by i:

•	 Yi (with a capital “Y”) refers to the as-yet-uncertain out-
come that will occur for subject i. Strictly speaking, Yi 
conveys only notional uncertainty and not necessarily 
future tense, but using the future tense is perhaps the 
easiest linguistic approach to expressing uncertainty in 
Yi; one can then read the expression P

(
Yi = y

)
 as, “the 

probability that the outcome for subject i will be y.”
•	 Yi ∣ Ai = a refers to the as-yet-uncertain (or notionally 

uncertain) outcome that will occur for subject i given 
that, in the system under observation, subject i receives 
treatment a.

•	 Ya
i

 (the “potential outcome” under intervention a, 
sometimes equivalently notated as Yi(a)) refers to the 
outcome that would occur (modal verb rather than fu-
ture tense) if one intervened in the observational system 
to assign treatment a to subject i.24

It is self-evident that Ya
i

 is not necessarily equal to Yi. 
What may be less obvious is that Ya

i
 is also not necessarily 

equal to Yi ∣ Ai = a. The intended distinction is best un-
derstood by thinking about the as-yet-uncertain quantities 
epistemically: if one learns that a subject, in the natural 
course of affairs, has taken a medication as a matter of 
voluntary initiative, one's knowledge about that subject's 
outcome changes, but not in the same way that one's 
knowledge changes upon learning that the subject took 
the medication after being exogenously enjoined to do so 
as a matter protocol, prescription, or policy.

For illustration, consider a hypothetical oncology 
scenario where a = 0 represents standard of care, a = 1 
represents treatment with a novel agent under develop-
ment, and Y  represents objective tumor response, taking 
value Y = 1 for a complete recovery and Y = 0 otherwise. 
For simplicity, suppose the novel agent is being devel-
oped as a first-line therapy. In reality, each patient can 
only receive one first-line therapy, but causal inference 
frameworks encourage us to think about “counterfactu-
als”25–27 and not merely what is practically observable. 
(The term counterfactual outcome is often used inter-
changeably with “potential outcome.”) One might nat-
urally assume (even though one can never verify this 
empirically) that:

•	 Some patients would completely recover on either treat-
ment, corresponding to Ya=0

i
= 1 and Ya=1

i
= 1.

•	 Some patients would not completely recover on either 
treatment, corresponding to Ya=0

i
= 0 and Ya=1

i
= 0.
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•	 Some patients would completely recover on standard 
of care but not on the novel agent, corresponding to 
Ya=0
i

= 1 and Ya=1
i

= 0.
•	 Some patients would completely recover on the novel 

agent but not on standard of care, corresponding to 
Ya=0
i

= 0 and Ya=1
i

= 1.

Supplementary Material S1 includes the R code to sim-
ulate an observational study with these features. In that 
code, Y 0 and Y 1 are represented as the complete (“unfil-
tered”) columns Y0 and Y1, whereas the conditional vari-
ables Y ∣ A = 0 and Y ∣ A = 1 are obtained by taking row 
subsets of (a.k.a. “filtering”) the column of observations 
YOBS (which corresponds to Y  in our mathematical nota-
tion). In this simulated environment, one can explore the 
differing characteristics of the distribution of Y 0 and the 
distribution of Y ∣ A = 0 (or similarly for Y 1 and Y ∣ A = 1 ).

The distinction between Ya
i

 and Yi ∣ Ai = a lies at the 
heart of causal inference, which generally seeks to make in-
ferences about the distributions of Y 0 and Y 1 in an entire pop-
ulation, even though Y 1

i
 and Y 0

i
 are never observed in the same 

subject. (In the words that Plato attributes to Heraclitus: “… 
all things move and nothing remains still … you cannot step 
twice into the same stream.”)28 The challenge arises because, 
to estimate the marginal (whole population) distribution of 
Y 1, one would need to estimate the conditional distributions 
of both Y 1 ∣ A = 1 and Y 1 ∣ A = 0 (and only estimation of 
the former is straightforward) and to estimate the marginal 
distribution of Y 0, one would need estimates of the condi-
tional distributions of both Y 0 ∣ A = 1 and Y 0 ∣ A = 0 (and 
only estimation of the latter is straightforward). The missing 
conditional distributions can only be estimated under certain 
conditional exchangeability assumptions, as discussed in 
the next section. Supposing that one does make the requisite 
assumptions to allow estimation of the joint distribution of (
Y 0,Y 1

)
, that joint distribution may then be summarized in 

any number of ways. In the causal inference literature, there 
is often a special focus on E

[
Y 1 − Y 0

]
, but this is just one par-

ticular quantity that can be derived from the joint distribu-
tion of Y 0 and Y 1; an estimand of the form P

(
Y 1 < q

)
 may be 

of greater interest in many pharmacometric applications and 
is explored in the next section.

G-­FORMULA

The causal logic of g-­formula and 
adjustment sets

The gap between what we want to know (e.g., the distribu-
tion of Ya=1) and what we can actually observe (e.g., the 
distribution of Y ∣ A = 1) presents a challenge. This chal-
lenge can be addressed by finding conditions that allow for 

conditional exchangeability (also referred to as “conditional 
ignorability” in this context). Focusing specifically for the 
moment on the distribution of Y 1 ∣ A = 0, the key is to find 
covariates or conditions L such that 

(
Y 1 ∣ A = 0,L

)
 (which 

we do not observe) would be expected to have the same 
distribution as 

(
Y 1 ∣ A = 1,L

)
 (which we do “observe” 

when a consistency assumption holds)29 and similarly, 
conditions such that 

(
Y 0 ∣ A = 0,L

)
∼
(
Y 0 ∣ A = 1,L

)
 . 

In words, the challenge is to find covariates such that, 
once those covariate values and the assigned treatment 
is known, there is no additional value in knowing the 
treatment status toward which the subject would have 
been naturally inclined. These requirements are typically 
summarized as 

(
Ya=0,Ya=1

)
⊥A ∣ L, where ⊥ signifies in-

dependence and the set of covariates L is referred to as a 
sufficient adjustment set if this criterion is satisfied. (As 
we will see later, DAGs provide a mechanism to find and 
evaluate potential adjustment sets.)

Under the conditions described previously, one can in 
fact estimate the entire marginal (whole population) distri-
bution of Y 1 and Y 0 using what is known as the g-formula. 
In the causal inference literature, g-formula is most often 
derived with reference to an expected value such as E

[
Ya

]
, 

but we offer a derivation here in relation to P(Ya < q) (for 
arbitrary q), as population quantiles and tail probabilities 
are often of particular interest in pharmacometric applica-
tions. For the simple case of non–time-varying treatment 
variables (a.k.a. “point exposures”), the relationship and 
its derivation are as follows:

g-­formula in pharmacometrics

The last expression in the previous derivation consists 
of terms that pharmacometric modelers typically esti-
mate, although the connection may not yet be obvious. 
To begin with, we will suppose the usual scenario where 
P(L) (the multivariate covariate distribution in the target 
population) is estimated with an empirical distribution 
with observed (multivariate) covariate values at l1, … , lN 
and where we have a model that allows estimation of 
P
(
Y < q ∣ A = a,L = li

)
 for each value of li, where i in-

dexes subjects. In that case, the estimate version of the 
preceding expectation can be expressed as:

(1)P
(
Ya

< q
)
= EL

[
P
(
Ya

< q| L
)]

Iterated expectation

(2)

=EL
[
P
(
Ya

<q ∣ A=a,L
)]

Conditional exchangeability given L

(3)= EL
[
P(Y < q ∣ A = a,L)

]
Consistency assumption

1

N

N∑

i=1

�P
(
Y < q ∣ A = a,L = li

)
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(The “model” for P(L) in this case is simply a point 
mass of 1∕N  at each of the observed li values). This in-
tuitive operation—generating predictions conditional 
on treatment and covariates and then averaging those 
predictions over a covariate distribution—will be fa-
miliar to pharmacometricians, who often refer to the 
procedure simply as “population simulation.”30 The 
same procedure is also referred to in epidemiology as 
“standardization.”31 Although the g-formula operation 
is straightforward in the context of point exposures, 
it is important to note that this approach generalizes 
(whence the “g-” in g-formula) to more complex settings 
with time-varying exposures and treatment-confounder 
feedback. These more complex settings were in fact the 
motivation for Robins' seminal 1986 article,32 which in-
augurated research on g-methods.

In pharmacometrics, the probability in the previ-
ous g-formula summand will typically be replaced by a 
simulation-based estimate, with simulations typically gen-
erated from a parametric nonlinear mixed-effects model 
(such a model would be referred to in the causal infer-
ence literature as an “outcome model” or a “Q model”33). 
Specifically, for each subject i, let y∗

i1
, … y∗

iM
 be values 

simulated from the model for 
(
Y ∣ A = a,L = li

)
, with M 

suitably large to accurately characterize the simulation 
distribution. Then:

In summary, the simulation-based estimate of P
(
Y 1 < q

)
 is:

More commonly, a simplification is employed to avoid com-
puting this as a nested sum. In the simplified version, one 
samples with replacement a large number of times M from 
the empirical distribution for L to obtain l∗

1
, … , l∗

M
 and then 

simulates each y∗
i
 from the model for 

(
Y ∣ A,L = l∗

i

)
, finally 

computing the estimate as:

Statistical biases and causal biases

When the estimate 1
N

∑N
i=1

�P
�
Y < q ∣ A = a,L = li

�
 is bi-

ased relative to the true value (or “estimand”) P(Ya < q), 	
the reason(s) for the bias can be categorized according to 
the following scheme:

•	 “Statistical biases” related to the outcome model, con-
tributing to the difference between the expectation of 
the estimator �P(Y < q ∣ A = a,L) and its “statistical esti-
mand” P(Y < q ∣ A = a,L). This is typically the meaning 
of the term model misspecification in pharmacometrics, 
and model diagnostics in pharmacometrics typically 
only aspire to investigate deficiencies of this nature.

•	 “Statistical biases” in the model for P(L), that is, in the 
model for the multivariate covariate distribution in the 
target population. As noted already, a common prac-
tice is to simply use the empirical covariate distribution 
in the available sample, although it is often contestable 
whether this adequately reflects the target population. 
More targeted nonparametric approaches may leverage 
an epidemiological database such as the National Health 
and Nutrition Examination Survey database,34 and para-
metric approaches have been proposed as well.35

•	 The “causal bias” attributable to the difference be-
tween the statistical estimand EL

[
P(Y < q ∣ A = a,L)

]
 

and the causal estimand P(Ya < q). Specifically, as 
is evident in Step 2 of our derivation of g-formula, 
these two quantities will fail to be equal if the con-
ditional exchangeability condition is not met, that 
is, if L is not a sufficient adjustment set. In terms of 
pharmacometric population simulation, this differ-
ence arises if simulations from the outcome model do 
not reflect the true distribution of 

(
Y 1 ∣ A = 0,L = li

)
 

or 
(
Y 0 ∣ A = 1,L = li

)
, that is, when counterfactual 

outcomes cannot be correctly simulated. This failure 
mode is often conceived of as arising from “unmea-
sured covariates,” but a failure to achieve conditional 
exchangeability can also arise from including certain 
types of covariates in the adjustment set (resulting in 
selection biases). In general, suspected biases arising 
from an inadequate adjustment set can be articulated 
using causal DAGs, as discussed in the next section. 
Depending on what has been measured, some bi-
ases of this type may be remediated by simply mod-
ifying the adjustment set. When unmeasured (and/
or unmeasurable) confounders are hypothesized to 
exist, the likely magnitude of the bias may be eval-
uated through sensitivity analyses,7 and Bayesian 
frameworks may be particularly appealing for this 
purpose.36 Notwithstanding the value of such sensi-
tivity analyses, we emphasize that the most essential 
features of the causal bias problem—defining what 
one wants to estimate and identifying the most likely 
sources of causal bias in that estimation—can be ar-
ticulated without incurring the overhead of a simula-
tion framework and/or a formal Bayesian framework. 
To this end, it is the opinion of the authors that causal 
DAGs are particularly helpful, a position that we elab-
orate in the next section.

�P
(
Y < q ∣ A = a,L = li

)
=

1

M

M∑

j=1

1[
y∗
ij
<q

]

1

N

N∑

i=1

1

M

M∑

j=1

1[
y∗
ij
<q

]

1

M

M∑

i=1

1[y∗
i
<q

]
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Other adjustment strategies

The implicit use of g-formula is perhaps the most com-
mon strategy in pharmacometrics for obtaining covariate-
adjusted estimates of causal effects, but it is not the only 
such strategy. Adjustment methodologies based on pro-
pensity scores (especially inverse propensity weighting) 
are an attractive alternative for removing causal biases. 
Propensity-based methods are out of scope for the current 
tutorial, except to note that such methods also involve co-
variate adjustment (because propensity scores are them-
selves functions of covariates) and that they rely on the 
same assumption of conditional exchangeability that g-
formula relies on.37

CAUSAL DAGS

Schematics and mathematical structures

At a cursory level, the meaning of a causal DAG is likely to 
be intuitive: variables (represented graphically as nodes) 
have a dependence structure relative to each other, and 
directed edges (arrows) in some way signify those depend-
encies. For example, letting AUC denote the area under 
a pharmacokinetic concentration versus time curve, the 
DAG “Dose→ AUC→ Outcome” intuitively conveys the 
assumption that the effect of Dose on Outcome is in some 
sense mediated via AUC.

Although the intuitive schematic value of DAGs is very 
important, we emphasize that DAGs are also mathemat-
ical structures that have specific logical and statistical 
implications. The DAG “Dose→ AUC→ Outcome” would 
specifically imply that intervening to change Dose while 
holding AUC constant would not result in any change in 
Outcome. (Depending on the specific definition of Dose 
and AUC, this could be a very strong and contestable as-
sumption: for example, if different formulations and/or 
routes of administration were in play, these alternate dos-
ing strategies could result in the same AUC but with other 
dispositional differences—reflected by different maxi-
mum concentrations (Cmax), for example—that might en-
tail a different Outcome distribution.) This specific causal 
implication of the DAG would further entail the statistical 
implication that Dose and Outcome are conditionally inde-
pendent given AUC.

Although the preceding example is fairly trivial, it 
serves to illustrate that a formal causal DAG will typically 
entail specific probabilistic conditional independencies.26 
This suggests the essential connection between DAGs and 
the conditional exchangeability assumption presented 
in the previous section: conditional exchangeability of 
counterfactual outcomes is a specific type of conditional 

independence, and a hypothesized DAG can be analyzed 
to determine whether this type of  conditional indepen-
dence is likely to obtain in a given situation.

In summary, a DAG serves two purposes:

•	 It provides an explicit representation of one's primary 
causal assumptions (so that those assumptions can be 
publicly critiqued and debated), and

•	 When analyzed as a mathematical structure, it can be 
used to deduce the consequences of those assumptions. 
In particular, it allows one to assess whether the re-
quirement of conditional exchangeability—essential 
to causal effect estimation—is logically consistent with 
one's primary causal assumptions.

The latter use of DAGs, wherein they are treated as 
mathematical structures that can be subjected to formal 
analysis, distinguishes them from many superficially sim-
ilar diagrams that are used in pharmacometrics for merely 
schematic purposes.30 In the context of causal effect esti-
mation, the relevant mathematical deductions involve the 
identification of particular paths through the DAG known 
as “backdoor paths.” Before examining backdoor paths in 
detail, we first consider some principles of DAG construc-
tion that are essential if a DAG is to support such logical 
deductions.

DAG completeness

A DAG is said to represent the complete causal structure 
between a treatment and an outcome if all sources of 
dependence between the treatment and outcome are ex-
plained by causal links.38 In practice this means that the 
following conditions must hold:

•	 Treatment and outcome themselves must be repre-
sented. We state this requirement explicitly to em-
phasize that a DAG is complete or incomplete only 
in relation to a given question (i.e., no DAG needs to 
be complete as such, in the sense of encapsulating all 
causal knowledge on a topic). “Treatment” in this case 
should be understood in the most general sense, that is, 
as the variable whose causal effect is of primary inter-
est. For example, “renal impairment status” could be 
the “treatment” variable in a context where the causal 
effects of renal impairment were of interest, notwith-
standing a lack of interest in, for example, the effects of 
kidney transplants. We acknowledge that this terminol-
ogy is potentially confusing in pharmacometric applica-
tions; to make matters worse, the “treatment” variable 
is variously referred to as the “exposure” variable (this 
is the convention used by DAGitty, for example39); this 
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potentially induces even greater confusion because ex-
posure (in the sense of, e.g., the plasma concentration 
of a drug) is in fact the “outcome” in a pharmacokinetic 
model!

•	 For any two variables already on the graph, all common 
causes of those two variables are also represented.38

•	 All selection variables are represented. A selection vari-
able is a variable that causes distributional differences 
in the available data compared to the target population. 
For example, if the available data are composed of sev-
eral studies, some of which only enrolled male subjects, 
the distribution of sex in the available data is not likely 
to represent the target population. In terms of patient-
level variables, study enrollment is the “cause” of a pa-
tient's inclusion or exclusion in the available data, so 
this status should be included as a selection node. The 
inclusion of study enrollment as a node would then fur-
ther entail that sex, if causally related to the outcome, be 
included as well (because sex would then be a common 
cause of two variables already on the DAG: study en-
rollment status and the outcome). The inclusion of se-
lection variables is particularly important because these 
are nodes on which one has inevitably conditioned (the 
very act of obtaining the data involves conditioning on 
the selection node). When the selection variable is also 
a “collider” node, that is, a variable that is a causal de-
scendant of two other nodes on the graph, conditioning 
on the collider node will induce a noncausal statistical 
dependency between the two other variables.40 For ex-
ample, the first exposition of this phenomenon consid-
ered the bias induced when analyzing only hospitalized 
patients to study the association between two variables 
that were themselves determinants of hospitaliza-
tion.41 Representing all selection variables ensures that 
collider-induced dependencies are represented.

The aforementioned conditions are minimally suffi-
cient and may be used to simplify DAG representations.42 
On the other hand, the inclusion of additional variables 
that are not strictly entailed by these conditions is not 
harmful. Indeed, more verbose representations may be 
helpful initially to elicit an intelligible causal narrative 
from subject matter experts.

Not all variables represented in a DAG need to be ob-
servable. In fact, it is very important to represent any vari-
able entailed by the conditions listed previously, whether 
observed or not.43 For example, as represented in Figure 1b, 
medication status may be a function of access to health 
care, which may in turn be a function of socioeconomic 
status, and socioeconomic status may affect diet, which 
in turn affects hemoglobin A1c. To the degree that such 
relationships are plausible, one should represent them on 
the DAG—at least initially—whether they are observable 

or not. In the representation of Figure  1, rectangles are 
used to represent observable variables, and ovals are used 
to represent unobservable variables. Having elicited this 
causal narrative in terms of partially unobserved vari-
ables, one could then revisit the minimal requirements 
listed previously and consider removing the Access and 
Diet variables because neither of these is a common cause 
of both treatment and outcome, while necessarily retain-
ing socioeconomic status because it is a common cause of 
both treatment and outcome (Figure 1c).

Determinism and stochasticity

As one might expect, an arrow emanating from node X  
and pointing at node Y  indicates a belief that X  is a cause 
of Y . More precisely, this means X  is an argument in an 
unseen function (or “law of nature”) that determines Y .

Technically, this functional interpretation of arrows 
only allows for the representation of deterministic rela-
tionships between variables, as described by Pearl: “This 
quasi-deterministic functional model mirrors Laplace's 
conception of nature (Laplace 1814), according to which 
of [sic] nature's laws are deterministic, and randomness 
surfaces merely due to our ignorance of the underly-
ing boundary conditions.”26 Nonetheless, a DAG can 
represent unexplained “random” variation in any vari-
able by representing its dependence on unobserved and 
parent-less “background” or “exogenous” variables, often 
denoted with a “U” (Figure 1a). Each exogenous “U vari-
able” represents an amalgam of unknown causal factors 
that influences the endogenous variables. Our ignorance 
of the exogenous factors may induce an apparent random-
ness in the endogenous variables, but the relationships 
represented by the arrows are presumed to be determin-
istic. This conceptual framework allows us to assign a 
consistent meaning to the arrows (they always represent 
deterministic relationships), even while allowing the 
nodes to represent variables with unexplained (“random”) 
variability. In many contexts (and in most of our exposi-
tion), DAGs are simplified by leaving “U  variables” un-
represented and implicit. Such omission is, however, only 
valid when the “U variable” in question has only a single 
immediate descendant on the graph; per the completeness 
criterion, “U variables” that are direct causes of more than 
one of the depicted nodes must themselves be depicted.

An essential point in relation to the arrows (a.k.a. 
“edges”) is that the presence of an arrow reflects possible 
causal influence. As stated previously, an arrow always rep-
resents a functional relationship, but sometimes it may be 
the “constant” function, Y = f (X ) = c that does not depend 
on its arguments. As such, the inclusion of an arrow is es-
sentially noncommittal, whereas the absence of an arrow 
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encodes a commitment to the potentially very strong as-
sumption of “no causal influence.” Of course, it is generally 
not practically possible to rule out causal influence with 
certainty (except in a randomized setting, where arrows 
into the randomized treatment variable can be removed, 
as in Figure  1d). However, if (as we advocate) one's goal 
in creating DAGs is simply to articulate reasonable beliefs 
and deduce the consequences of those beliefs, thereby 
identifying the most likely biases, then the use of arrows 
to represent highly speculative causal connections becomes 
unnecessary.

Total causal effects and direct 
causal effects

Causal inference research has developed standard ter-
minology that distinguishes between two types of causal 
effects: total and direct. Absent the ability to clearly ar-
ticulate this distinction, two or more quantitative sci-
entists may unwittingly use the same word (“effect”) to 
talk about two different concepts, resulting in confused 

debates about whether a given effect estimate is biased or 
not. We introduce this distinction using the definitions 
provided by Pearl44:

Definition of total causal effect: “[The total causal effect] 
measures the probability that response variable Y  would 
take on the value y when X  is set to x by external inter-
vention. This probability function is what we normally 
assess in a controlled experiment in which X  is random-
ized and in which the distribution of Y  is estimated for 
each level x of X .”44

Definition of direct causal effect: “The term 'direct effect’ 
is meant to quantify an influence that is not mediated by 
other variables in the model or, more accurately, the sen-
sitivity of Y  to changes in X  while all other factors in the 
analysis are held fixed. Naturally, holding those factors 
fixed would sever all causal paths from X  to Y  with the ex-
ception of the direct link X → Y , which is not intercepted 
by any intermediaries.”44 

We revisit this distinction and depict it with a DAG in the 
pharmacokinetic example at the end of this article.

F I G U R E  1   Directed acyclic graphs (DAGs) representing plausible sources of statistical dependence between a treatment variable 
(“Medication,” represented in yellow) and an outcome (“HbA1c”, represented in blue). Unspecified exogenous background variables are 
sometimes represented in a DAG with “U variables”, as in DAG (a). Representation of such exogenous causes may be helpful during the 
initial development of a plausible causal structure, but for analytic purposes the DAG may be simplified by removing these variables as long 
as none of them is a common cause of two more variables remaining on the graph, resulting in DAG (b). Similarly, causal intermediaries 
such as (in this case) Diet and Access may be removed when they are not common causes of two or more variables remaining on the graph, 
resulting in the further simplified DAG (c). In a randomized treatment context, the further simplification reflected in DAG (d) would be 
justified, and in fact socioeconomic status could be removed from the DAG altogether (not shown). HbA1c, hemoglobin A1c.
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What DAGs do not represent

In their most typical implementation (the one we wish to 
promote), DAGs do not attempt to represent any of the 
following:

•	 The direction of effects (the direction of causality is of 
course represented, but whether the average causal ef-
fect corresponds to a positive or negative association is 
not represented).

•	 The magnitude of effects.
•	 The statistical distributions of the variables.
•	 Interactions. When a variable has more than one cause, 

the DAG representational scheme simply represents 
arbitrary multiple-argument functional dependence 
without distinguishing whether the multiple effects are 
additive, super-additive, multiplicative, and so on.

Given the aforementioned limitations, DAGs may 
seem to provide an overly laconic representational system. 
Scientists are of course free to embellish DAGs in what-
ever manner they like, but we emphasize that even the 
minimal assumptions about causal structure that are en-
coded in a typical DAG are sufficient to generate powerful 
insights regarding potential biases and adjustment strate-
gies. Significantly, assumptions about causal structure are 
often available from subject matter experts at the earliest 
planning stages, when it may be neither necessary nor de-
sirable to speculate about the directions and magnitudes 
of effects or about the nature of interactions.

Practical guidance for DAG development

In the context of use that we are proposing, DAG creation 
begins by eliciting assumptions that subject matter experts 
already have (implicitly) and encoding those assumptions 
graphically to make them explicit. Such elicitation will gen-
erally require directed questioning by a quantitative scientist 
with an understanding of the eventual use of the DAG. To 
elicit these assumptions as effectively as possible from sub-
ject matter experts, we recommend applying the following 
principles, which summarize a number of points made in 
the preceding subsections, and which reflect a combination 
of personal experience and published recommendations43:

•	 Relax and have fun drawing. For a DAG development 
process to be successful, all participants in the pro-
cess should be aware that the goal is simply to articu-
late shared assumptions and deduce the consequences 
of those assumptions, thereby identifying the most 
likely biases that attend (or will attend) an analysis. 
Because the goal is not to “prove” that a particular 

causal interpretation will be valid, it is not essential that 
any particular DAG be identified as “the correct one.” 
Iterative and collaborative DAG development may be 
fostered with an interactive tool such as DAGitty.39 With 
this iterative approach in mind, DAG development may 
begin at the earliest stages of analysis planning and/
or study design, when the scientific questions are still 
being formulated and refined, with the understanding 
that early DAG iterations may represent only tentative 
and personal opinions, whereas more mature iterations 
of the DAG should ideally represent a mature and well-
researched consensus.

•	 Know where to begin. Begin by representing the inter-
vention variable (a.k.a. the “treatment” or “exposure” 
variable) and the outcome.

•	 Respect the rules. As the term itself implies, a DAG 
must be both directed and acyclic. For a graph to be di-
rected, each edge must be an arrow pointing in only one 
direction. As a practical matter, bidirectional arrows are 
sometimes used, but this is merely a shorthand imply-
ing an unspecified common parent, that is, “X ↔ Y” 
does not imply that “X  is a cause of Y  and Y  is a cause 
of X” but, rather, is used as a convenient shorthand 
for “X ← U → Y  (for some unspecified U)”. An acy-
clic graph must of course be devoid of directed cycles, 
corresponding to the tautological premise that no vari-
able may be a cause of itself (not even indirectly). Any 
feedback loops must therefore be represented using dis-
tinct nodes to represent the same variables at different 
timepoints. For example, an adaptive dosing regimen in 
response to adverse events (AE) cannot be represented 
as Dose↔ AE, but must instead be represented as 
Dose1 → AE1 → Dose2 → AE2 … (with subscripts used 
to distinguish the same variables at different points in 
time). Anecdotally, the essential causal structure of 
such a feedback loop can often be revealed by represent-
ing only two distinct timepoints.

•	 Think carefully about the data that you do not see. Any 
selection process that may affect which records we see 
in the data and which we do not should be reflected by 
a selection node. For example, if the available data only 
represent study completers, completion status should 
be a node.

•	 When in doubt, draw the arrow. The absence of an 
arrow represents the strong assumption that the origi-
nating node does not exert causal influence on the re-
ceiving node. The presence of an arrow merely indicates 
possible causal influence.

•	 Focus first on what you believe to be true. Do not 
limit depicted nodes to measurable quantities only. Of 
course, one can only adjust for covariates that are mea-
sured, but depicting latent (unmeasured, and perhaps 
unmeasurable) variables is often helpful to articulate a 
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plausible causal narrative. The explicit representation 
of one's implicit assumptions should be prioritized at 
the outset, deferring concerns with the feasibility of par-
ticular covariate adjustments until a later stage.

•	 When the time is right, be practical. Notwithstanding 
the previous point, there is generally no harm in rep-
resenting latent “true causes” with measurable proxies. 
In a pharmacokinetic context, for example, estimated 
glomerular filtration rate (EGFR) will generally suffice 
as a proxy for the true glomerular filtration rate (GFR); 
EGFR can therefore be represented as a “cause” of other 
variables, even though the estimate per se does not par-
ticipate in any physiological process.

•	 Know when to stop. Progress toward representation of 
all likely common causes (including common indirect 
causes) and all common effects (including common 
indirect effects) of the intervention variable and the 
outcome variable. In practice, the exercise may be con-
sidered complete when the most likely common causes 
and effects are represented, stopping before the addition 
of nodes relationships becomes highly speculative.

Backdoor paths

Once a treatment A and an outcome Y  are identified and 
a complete DAG is developed that includes potential co-
variates L, the conditional exchangeability condition (
Ya=0,Ya=1

)
⊥A ∣ L can be evaluated to determine if L is 

a sufficient adjustment set. We note that this assessment 
will only be correct if the DAG is complete in the techni-
cal sense described previously. Significantly, we have now 
pivoted slightly with our terminology: whereas we intro-
duced conditional exchangeability as an assumption, we 
now refer to it as a condition to emphasize that its truth 
or falsity can be derived from the more primary causal as-
sumptions represented in a DAG. Specifically, the condi-
tion can be evaluated by identifying “backdoor paths” and 
determining whether those paths are “open” or “closed” 
conditional on L.

For the practitioner in pharmacometrics who simply 
wishes to apply these concepts, it may suffice to recognize 
that reliable tools exist to automatically analyze backdoor 
paths and thereby identify and evaluate adjustment sets.39 
Nonetheless, technical definitions of the most central 
concepts are uncomplicated (if somewhat abstract and 
not particularly supportive of intuition). For convenience, 
we therefore provide several verbatim excerpts from 
Greenland and Pearl38:

Definition of back-door path: “A back-door path from X  
to Y  is a path that begins with a parent of X  (i.e., leaves 
X  from a ‘backdoor’) and ends at Y .”38 [Such a path need 

not be directed, i.e., any sequence of adjacent edges can be 
used to compose a backdoor path, regardless of the direc-
tion of the arrows.]
Definition of collider: “A variable is a collider on the path 
if the path enters and leaves the variable via arrowheads 
(a term suggested by the collision of causal forces at the 
variable).”38

Definition of open/blocked: in the absence of condition-
ing, “a path is open or unblocked at noncolliders and closed 
or blocked at colliders.”38 Conditioning on a variable re-
verses its blocking status: “Conditioning on a variable C 
closes open paths that pass through C. Conversely, condi-
tioning on C opens paths that were blocked only at C or at 
an ancestral collider A.”38

Definition of adjustment set: "A set S [L, in our notation] 
then satisfies the back-door criterion [and is therefore a 
sufficient adjustment set, in our terminology] with respect 
to X  and Y  if (a) S contains no descendant of X  and (b) 
there are no open back-door paths from X  to Y  after con-
ditioning on S."38

Fuller exposition of these concepts is provided by 
Greenland and Pearl.38 Considering again the perspective 
of the applied practitioner, the essential point is to recog-
nize that algorithmic analyses of backdoor paths can be 
used to ensure a logical consistency between the qualita-
tive beliefs of subject matter experts (as reflected in a DAG 
elicited from those subject matter experts) and the set of 
covariates used by a quantitative modeler (as reflected by 
the covariate effects in a formal statistical model).

APPLICATIONS

Detecting collider bias

An exploratory analysis from a single-arm, phase I, 
immuno-oncology trial revealed an intriguing association. 
By design, all enrolled patients had received the investiga-
tional therapy; about half of them had a treatment history 

T A B L E  1   Baseline patient disposition and (fictionalized) 
overall response rates (ORRs) for a phase I oncology trial

Treatment history
Phase I 
treatment ORR

PD1i (first 
line)

Chemo (second 
line)

Novel Tx (third 
line)

30%

PD1i + chemo 
(first line)

Novel Tx (second 
line)

20%

Note: ORR varied as a function of Tx history (30% for sequential therapy vs. 
20% for combination therapy), perhaps suggesting that the patients’ ability 
to respond to the novel Tx was modified by Tx history.
Abbreviations: PD1i, programmed death 1 inhibitor; Tx, treatment.
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of combination therapy (programmed cell death protein 1 
[PD1] inhibitor plus chemotherapy) and half had a treat-
ment history of sequential monotherapy (PD1 inhibitor 
then chemotherapy). The (fictionalized and anonymized) 
overall response rates (ORRs) for these two groups are 
represented in Table  1, revealing a higher success rate 
(30%) for those with a history of sequential therapy com-
pared with the rate for those with a history of combination 
therapy (20%).

This observed difference gave rise to a hypothesis that 
seemed to have some plausibility: prior combination ther-
apy might have resulted in a greater immunosuppressive 
effect compared with prior sequential therapy, making pa-
tients less likely to respond to the novel immunotherapy 
(a “detrimental effect modification” hypothesis). Such a 
hypothesis is consistent with the observation that some 
(although not all) types of chemotherapy are associated 
with lymphocytopenia.45 On the other hand, it was also 
recognized that some chemotherapeutic effects are me-
diated through the immune system,46 and in that sense 
the opposite trend might have been expected a priori, that 
is, one would at least expect prior chemotherapy to be 
synergistic with prior PD1 inhibition and to be perhaps 
synergistic with the novel immunotherapy as well (in the 
latter case, this would be a “beneficial effect modification” 
hypothesis).

Naïvely, one might suppose that the observed phase 
I results provide some support for the detrimental effect 
modification hypothesis, but the nonrandomized nature 
of the comparison requires careful consideration. To char-
acterize the potential biases in this nonrandomized com-
parison, a DAG was developed, represented in Figure 2. 
In addition to the variables already described, this DAG 
includes CPI resistance as a cause of both prior tumor re-
sponse and tumor response in the phase I trial. (For pa-
tients with a history of sequential therapy, prior tumor 
response may be understood as either failure on both of 
their prior therapies or else success on at at least one of 
those therapies.) The DAG includes an arrow from the CPI 
resistance node to the prior tumor response node because 
patients with higher levels of CPI resistance are less likely 
to respond to PD1 inhibitors (PD1 inhibition is a type of 
checkpoint inhibition). The novel therapeutic regimen 
also included a PD1 inhibitor as one of its components, 
so an arrow is drawn from CPI resistance to phase I tumor 
response as well.

Analysis of backdoor paths in the DAG revealed that 
(unavoidable) conditioning on prior tumor response had 
opened up a “backdoor path,”25 a fact that can be veri-
fied manually using the definition or programmatically 
using the DAGitty R package or via interactive use of the 
DAGitty web application.39 Programmatic verification is 
illustrated in Supplementary Material S1 for this article. 

The existence of this backdoor path implies that the ob-
served association between prior treatment and tumor 
response is biased with respect to the true causal rela-
tionship. This particular backdoor path would be elim-
inated if we also conditioned on CPI resistance (which 
could be done via covariate adjustment), but for present 
purposes we will suppose that this adjustment was not 
made.

The essential intuition related to this backdoor path 
is that prior failure on either of the historical regimens 
may be a marker for CPI resistance, but perhaps not to 
the same degree. As already mentioned, chemother-
apy is expected to be synergistic with PD1 inhibition. If 
true, this would have created a selection effect: those in 
the current phase I study who failed to respond to prior 
combination therapy may have been harder to treat 
(i.e., may have had greater CPI resistance) from the very 
beginning—prior to any treatment whatsoever—than 
those in the current study who failed to respond to prior 
sequential therapy. To explain the observed association, 
therefore, it suffices to hypothesize that prior combina-
tion therapy was more efficacious than prior sequential 
therapy in CPI-resistant patients, without invoking any 
effect modification hypotheses. Indeed, retrospective 
feedback from key opinion leaders was that there was no 
plausible explanation for a better response in the cohort 
that previously received sequential treatment and that 
there may have been a selection bias for better patients in 
that cohort (without commenting on the mechanism of 
the selection bias).

F I G U R E  2   A directed acyclic graph developed to characterize 
potential biases in an analysis of a phase I oncology study. 
Elicitation from subject matter experts indicated that checkpoint 
inhibitor (CPI) resistance would have potentially affected both 
prior tumor response and tumor response in the phase I study. In 
the absence of any conditioning, the backdoor path through prior 
response would be closed and so would not introduce any bias. 
However, the phase I study (necessarily) only enrolled patients who 
had failed prior therapies, which amounts to conditioning on prior 
tumor response(s). Conditioning on this collider node opens the 
backdoor path (shown in red), signaling that the apparent affect of 
treatment history is biased.
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We note that the DAG-based analysis could also have 
been applied before any data were available, that is, it could 
have been recognized at the outset that the phase I study 
would not be capable of generating evidence in support 
of (or against) an effect modification hypothesis. Or, more 
subtly, it could have been recognized at the outset that the 
phase I study would only be capable of providing evidence 
for or against effect modification to the extent that one 
could successfully adjust for CPI resistance. Among other 
things, this would highlight—at the planning stages—the 
importance of having a good measure of CPI resistance.

Interpreting effects for correlated  
covariates

In any regression model, the effect estimate for a given 
covariate may change substantially when a correlated co-
variate is added to the model. This phenomenon is very 
familiar to the pharmacometrics community and has led 
to various correlation-based “rules of thumb” for flagging 
correlations that could compromise the interpretation 
of effect estimates.47 Such rules of thumb, proposed ini-
tially as guides to prompt careful reflection, have unfortu-
nately been interpreted at times as definitive proscriptions 
against ever including highly correlated covariates in a 
model. From a causal perspective, this proscriptive stance 
seems to labor under a false premise that estimates of co-
variate effects should always strive to be unbiased with re-
spect to total causal effects, an unnecessary requirement 
in many cases.

For example, in modeling the pharmacokinetics of a 
drug that is at least partially renally cleared, it would 
be common to consider both age and EGFR (assumed 
here to be expressed per unit of body surface area) as 
potential covariates. The correlation between these two 
variables can easily exceed (in absolute value) rule-of-
thumb thresholds such as 0.6, potentially prompting 
less-experienced pharmacometric modelers to agonize 
over the simultaneous inclusion of both covariates. 
More illuminating guidance can be offered in such cases 
by drawing a DAG based on prior knowledge, analyz-
ing it for backdoor paths, and adjusting analyses and 
interpretations accordingly. Such a DAG in this case is 
likely to reflect the prior knowledge that the aging pro-
cesses typically causes a decline in renal function (re-
flected by the arrow from age to EGFR in Figure 3) and 
might also (depending on the drug) reflect a prior belief 
that other age-related processes also affect exposure (re-
flected by the arrow directly from age to exposure; note 
that for simplicity we have not specified other mediat-
ing variables such as would be involved in, e.g., a he-
patic clearance mechanism; recall that the DAG needs 

to encapsulate our prior causal knowledge only to the 
extent required by the completeness criteria discussed 
previously).

In such a context, there are at least two distinct causal 
questions related to renal impairment that are potentially 
of interest:

Q1.	 What is the causal effect of EGFR (expressed per 
unit of body surface area) on exposure? For ex-
ample, how would exposures differ if—an entirely 
hypothetical scenario—we could somehow intervene 
to improve EGFR while holding everything else 
constant? (Strictly speaking, an estimate of GFR 
is not a cause of physiological or pharmacokinetic 
processes, but to simplify matters we will gloss over 
the difference between GFR and EGFR.)

Q2.	 What is the causal effect of dose level on exposure 
in a clinically identifiable subpopulation defined by 
an EGFR threshold, for example, what would expo-
sures be in the subpopulation if they received a lower 
dose?

We begin by noting that Q1, despite its hypothetical 
nature, is a question of definite import, as implied by US 
Food and Drug Administration guidance to evaluate the 
potential for confounding due to baseline factors such as 
age when estimating the pharmacokinetic effects of renal 
function48 (a concern with confounding would be inco-
herent if the causal effect of renal impairment per se were 
not of interest). Having established this, we now examine 
question Q1 with the benefit of a causal lens. Assuming 
one accepts the basic causal assumptions embedded in the 
DAG in Figure 3a on the basis of prior knowledge, it fol-
lows that there is a “backdoor path” through age (shown 
in red in Figure 3) that connects EGFR to exposure. This 
backdoor path can only be closed by conditioning on age, 
and we can only condition on age if we include this as 
a covariate in our model (the existence of this backdoor 
path can be discovered and/or confirmed using DAGitty in 
the event that one does not want to work manually from 
the definitions). The need to adjust for age would only be 
obviated if we (a priori) eliminated the arrow connecting 
age to exposure, corresponding to a strong prior assump-
tion that the effect of age on exposure is entirely medi-
ated by its effect on renal function (this relatively strong 
assumption could be warranted in a context where there 
was strong prior evidence of an entirely renal clearance 
mechanism but would probably be unjustified otherwise). 
Thus, far from proscribing the simultaneous inclusion of 
these two correlated covariates, the DAG-based analysis 
shows that (in the absence of a strong assumption) the 
inclusion of both covariates is necessary if one wishes to 
estimate the causal effect of EGFR on exposure.
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What about questions related to Q2, for example, what 
is required if we want to estimate the effect of dose level 
on exposure in a subpopulation defined by an EGR thresh-
old? In the simplest of cases, if our analysis were based 
only on a single study in which dose level had been ran-
domized (thereby removing the possibility of confounding 
the effects of dose), it would suffice to include only EGFR 
in the model and then simulate exposures in the EGFR-
restricted population. More commonly, however, pharma-
cometric datasets will include multiple studies, each with 
potentially different inclusion/exclusion criteria. In such 
a multistudy context, both age and EGFR could easily be 
causes of dose level, for example, if higher doses were 
only given in earlier studies that enrolled subjects with 
age and EGFR restrictions (confounding of this nature is 

a hallmark of analyses based on integrated evidence). The 
resulting DAG in that case would include backdoor paths 
through age and EGFR connecting dose to exposure, in-
dicated in red in Figure 3c. As such, closure of backdoor 
paths would require conditioning on both age and EGFR 
and so would require the inclusion of both covariates in 
the model. Given an outcome model with both of these 
covariates included, the causal effect of dose level may be 
computed by g-formula, as illustrated in Supplementary 
Material S1.

In summary, adequate answers to questions Q1 and Q2 
will in most cases require inclusion of both age and EGFR, 
regardless of the correlation between these two variables 
(so long as this correlation is less than one to avoid strict 
problems of nonidentifiability).

F I G U R E  3   Directed acyclic graphs (DAGs) for determining whether to include the correlated covariates age and estimated glomerular 
filtration rate (EGFR) in a population pharmacokinetic model. If prior knowledge suggests that the effects of age will be partially but not 
entirely mediated by EGFR, then failure to adjust for age leaves open a backdoor path (depicted in red), signaling a potentially biased 
estimate for the effect of EGFR on plasma concentration (a). This backdoor path would be closed by adjusting for age, that is, including age 
as an additional covariate. If it were not possible to adjust for age, one could simply state as a caveat to interpretation that the estimated 
effect of EGFR will only be unbiased if the effects of age are entirely mediated through EGFR; in this case, a DAG could be helpful for 
communicating the assumption underlying the caveat (b). When multiple studies are represented in the dataset, age and EGFR may be 
causal determinants of dose (because of inclusion/exclusion differences in the various studies). In such a case, failure to adjust for either 
age or EGFR will result in biased estimates for the effect of dose (represented in yellow to indicate that this is now the explantory variable 
of interest) on plasma concentration, signaled in this case by the red pathway passing through age when this variable is not in the outcome 
model (c). When both age and EGFR are included in the model, the direct (not EGFR-mediated) effect of age (now represented as the 
explanatory variable of interest) can still be estimated (depicted with thick black arrow), but adjustment for EGFR prevents estimation of the 
total effect of age (d).
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Our previous discussion has neglected questions 
related to the causal effect of age. Given the DAG in 
Figure 3d, the inclusion of EGFR as a covariate permits 
the unbiased estimation of the direct causal effect of age, 
but prevents the unbiased estimation of the total causal 
effect of age. Given space constraints for this article, we 
simply invite the reader to consider which (if any) of these 
two estimands is likely to be of interest.

CONCLUDING REMARKS

As suggested by the citations in our introductory sec-
tion, causal concepts are being leveraged with increas-
ing frequency in a number of disciplines that intersect 
with pharmacometrics, including epidemiology and 
AI/ML. This observation gave rise to one of our goals 
in writing this tutorial: to foster cross-disciplinary dia-
logue by way of helping pharmacometricians to become 
more conversant in the language and notation of causal 
inference.

Although we are indeed very hopeful that causal 
inference may provide a basis for new interdisciplin-
ary directions in pharmacometric research, we wish to 
emphasize that causal inference is not merely periph-
eral to our field of study but, rather, is central and even 
foundational to it. In his highly influential 1989 article, 
Sheiner called attention to the importance of address-
ing “what if” questions4 (notably, What If is now the 
title of one of the definitive references on causal in-
ference that has been cited throughout this article37). 
Soon thereafter, Sheiner came to articulate his advo-
cacy for “theory” (as distinct from mere “empiricism”) 
and his related critique of the excessive emphasis on 
intention-to-treat estimands49 using Rubin's potential 
outcomes framework.5 Current beneficiaries of these 
efforts within pharmacometrics have perhaps varying 
degrees of awareness as to the role played by formal 
causal inference in their own intellectual pedigree. 
Nonetheless, the enduring and far-reaching nature 
of that work (extending beyond the pharmacometric 
community, as evidenced by its recent permeation into 
statistical regulatory guidance,22,50 for example) seems 
at least partly attributable to the decision of Sheiner 
and Rubin to phrase their arguments in the formal lan-
guage of causal inference. Our hope is that by fostering 
a greater awareness of this formal language, we will 
enable pharmacometricians to more comfortably nav-
igate both the periphery and the deepest roots of their 
discipline.
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