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BACKGROUND AND OBJECTIVES

Pharmacometrics,	 as	 a	 science	 that	 is	 concerned	 with	
the	 effects	 of	 both	 real	 and	 hypothetical	 interventions,	
necessarily	 involves	 causal	 reasoning.	 Causal	 reasoning	
is	implicit	whenever	a	scientist	uses	the	word	“because,”	
“effect,”	or	“confounding”	to	name	just	a	few	of	the	telltale	
signs.	In	recognizing	the	value	of	“mechanistic”	models1–	3	
and	 in	recognizing	 the	 importance	of	 theory	(as	distinct	
from	 direct	 empiricism),4	 pharmacometrics	 inherently	
prioritizes	models	with	causal	interpretability.	Moreover,	
pharmacometric	 analyses	 typically	 involve	 nonrandom-
ized	 comparisons	 (e.g.,	 comparing	 predicted	 outcomes	
at	a	high	exposure	to	predicted	effects	at	a	low	exposure	
when	exposure	is	not	randomized	or	predicted	outcomes	
for	patients	with	normal	renal	function	to	predicted	out-
comes	 for	 patients	 with	 impaired	 renal	 function	 when	
renal	 function	 status	 is—	necessarily—	not	 randomized),	
which	is	precisely	the	setting	that	motivates	most	causal	
inference	research.

In	 contrast	 to	 colloquial	 causal	 reasoning	 (e.g.,	 sim-
ply	 using	 words	 such	 as	 “because,”	 “effect,”	 and	 “con-
founding”),	 the	 term	 causal inference	 will	 be	 used	 here	
to	specifically	connote	formal	(i.e.,	mathematized)	causal	

reasoning.	 Several	 influential	 publications	 in	 pharma-
cometrics	 made	 extensive	 use	 of	 causal	 formalisms,	 in-
cluding	 instrumental	 variables	 and	 potential	 outcomes	
notation.5–	7	 However,	 aside	 from	 those	 seminal	 efforts,	
the	 pharmacometric	 literature	 has	 been	 mostly	 devoid	
of	 explicit	 causal	 inference.	 To	 clarify,	 pharmacometric	
models	 often	 rely	 on	 mathematical	 representations	 of	
pharmacological	and	biological	processes,	but	the	explicit	
mathematization	of	causal	questions	is	far	less	common.	
Although	 pharmacometrics	 has	 undoubtedly	 flourished	
even	without	the	benefit	of	an	explicit	causal	lens,	there	
are	several	signs	that	a	resurgent	awareness	of	causal	in-
ference	in	pharmacometrics	would	be	timely.	These	signs	
include:

•	 The	 application	 of	 analytic	 techniques	 arising	 from	
causal	 inference	 research,	 such	 as	 propensity-	based	
matching,	in	exposure–	response	analyses	for	regulatory	
decision	making.8

•	 The	use	of	directed	acyclic	graphs	(DAGs)	to	articulate	
the	nature	of	causal	confounding	of	exposure–	response	
in	immuno-	oncology.9

•	 The	 use	 of	 DAGs	 for	 covariate	 selection	 in	 epidemio-
logical	 studies	 of	 relevance	 to	 pharmacometrics,	 for	
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Abstract
As	formal	causal	inference	begins	to	play	a	greater	role	in	disciplines	that	inter-
sect	with	pharmacometrics,	such	as	biostatistics,	epidemiology,	and	artificial	in-
telligence/machine	learning,	pharmacometricians	may	increasingly	benefit	from	
a	basic	fluency	in	foundational	causal	inference	concepts.	This	tutorial	seeks	to	
orient	pharmacometricians	 to	 three	 such	 fundamental	concepts:	potential	out-
comes,	g- formula,	and	directed	acyclic	graphs	(DAGs).
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example,	 for	 characterizing	 longitudinal	 progression	
toward	 end-	stage	 renal	 disease10	 or	 for	 characterizing	
overall	 survival	 in	 oncology	 in	 response	 to	 immune	
checkpoint	inhibitors	(CPIs).11,12

•	 The	application	of	 interpretable	artificial	 intelligence/
machine-	learning	 (AI/ML)	 algorithms	 (e.g.,	 with	 in-
terpretation	 assisted	 by	 Shapley	 values)	 to	 population	
pharmacokinetic	modeling13	and	prediction	of	relapse	
and	related	disease	activity	in	multiple	sclerosis,14	con-
temporaneous	with	an	increased	recognition	of	the	in-
terpretive	value	of	formal	causal	frameworks	in	AI/ML	
research.15–	18

•	 The	 advent	 of	 real-	world	 evidence	 (RWE)	 usage	 in	
pharmacometric	 analyses,19	 contemporaneous	 with	 a	
growing	body	of	guidance	for	the	use	of	RWE	that	advo-
cates	for	the	use	of	causal	DAGs.20

•	 The	increasingly	favorable	environment	for	employing	
external	or	synthetic	control	arms	in	clinical	trials,	with	
the	intent	of	generating	estimates	of	(causal)	treatment	
effects	 using	 methods	 that	 approximate	 the	 effects	 of	
randomization.21

•	 A	 renewed	 focus	 in	 pharmacometrics	 on	 what	 to	 es-
timate22	 (as	 distinct	 from	 how	 to	 do	 the	 estimation),	
contemporaneous	with	a	broader	recognition	that	most	
estimands	are	best	expressed	as	causal	quantities.23

Our	 objective	 in	 this	 tutorial	 is	 therefore	 to	 provide	
an	 introductory	 exposition	 of	 three	 fundamental	 causal	
concepts	 that	 we	 deem	 to	 be	 particularly	 relevant	 for	
pharmacometric	 research:	 potential	 outcomes	 notation,	
g- formula,	 and	 causal	 DAGs.	 It	 is	 beyond	 the	 scope	 of	
this	effort	to	provide	a	complete	guide	to	the	application	
of	these	concepts.	Our	present	intent	is	rather	to	lay	the	
groundwork	for	future	application-	oriented	instruction	by	
establishing	the	fundamental	terminological	and	notation	
distinctions	that	are	used	in	causal	inference.

POTENTIAL OUTCOMES NOTATION

Quantities	of	interest	(i.e.,	estimands)	in	pharmacometric	
research	are	very	often	causal	estimands,	that	is,	they	are	
quantities	summarizing	what	would	happen	in	a	popula-
tion	 if	 a	 particular	 intervention	 were	 enacted.	 Potential	
outcomes	 notation	 greatly	 facilitates	 the	 mathematical	
expression	of	such	estimands.	The	pioneering	use	of	po-
tential	outcomes	notation	in	pharmacometrics	went	hand	
in	hand	with	efforts	to	prioritize	what	questions	as	distinct	
from	how	questions.6,7,22

The	representational	value	of	potential	outcomes	no-
tation	may	be	understood	by	contrasting	it	with	standard	
notational	conventions	for	conditional	and	unconditional	
probability	 statements.	 In	 what	 follows,	 we	 make	 this	

distinction	 linguistically;	 a	 more	 precise	 understanding	
can	be	gained	by	exploring	the	same	distinction	using	the	
R	code	in	Supplementary	Material	S1.

In	relation	to	an	outcome	Yi	and	an	intervention	Ai	for	
subjects	indexed	by	i:

•	 Yi	(with	a	capital	“Y”)	refers	to	the	as-	yet-	uncertain	out-
come	that	will	occur	for	subject	 i.	Strictly	speaking,	Yi	
conveys	only	notional	uncertainty	and	not	necessarily	
future	tense,	but	using	the	future	tense	 is	perhaps	the	
easiest	linguistic	approach	to	expressing	uncertainty	in	
Yi;	one	can	then	read	the	expression	P

(
Yi = y

)
	as,	“the	

probability	that	the	outcome	for	subject	i	will	be	y.”
•	 Yi ∣ Ai = a	 refers	 to	 the	as-	yet-	uncertain	 (or	notionally	

uncertain)	outcome	 that	will	occur	 for	 subject	 i	 given	
that,	in	the	system	under	observation,	subject	i	receives	
treatment	a.

•	 Ya
i

	 (the	 “potential	 outcome”	 under	 intervention	 a,	
sometimes	 equivalently	 notated	 as	Yi(a))	 refers	 to	 the	
outcome	that	would	occur	(modal	verb	rather	than	fu-
ture	tense)	if	one	intervened	in	the	observational	system	
to	assign	treatment	a	to	subject	i.24

It	is	self-	evident	that	Ya
i

	is	not	necessarily	equal	to	Yi.	
What	may	be	less	obvious	is	that	Ya

i
	is	also	not	necessarily	

equal	 to	Yi ∣ Ai = a.	The	 intended	distinction	 is	best	un-
derstood	by	thinking	about	the	as-	yet-	uncertain	quantities	
epistemically:	 if	one	 learns	that	a	subject,	 in	 the	natural	
course	 of	 affairs,	 has	 taken	 a	 medication	 as	 a	 matter	 of	
voluntary	initiative,	one's	knowledge	about	that	subject's	
outcome	 changes,	 but	 not	 in	 the	 same	 way	 that	 one's	
knowledge	 changes	 upon	 learning	 that	 the	 subject	 took	
the	medication	after	being	exogenously	enjoined	to	do	so	
as	a	matter	protocol,	prescription,	or	policy.

For	 illustration,	 consider	 a	 hypothetical	 oncology	
scenario	where	a = 0	 represents	standard	of	care,	a = 1	
represents	treatment	with	a	novel	agent	under	develop-
ment,	and	Y 	represents	objective	tumor	response,	taking	
value	Y = 1	for	a	complete	recovery	and	Y = 0	otherwise.	
For	 simplicity,	 suppose	 the	 novel	 agent	 is	 being	 devel-
oped	as	a	first-	line	therapy.	In	reality,	each	patient	can	
only	receive	one	first-	line	therapy,	but	causal	inference	
frameworks	encourage	us	to	think	about	“counterfactu-
als”25–	27	and	not	merely	what	 is	practically	observable.	
(The	 term	 counterfactual outcome	 is	 often	 used	 inter-
changeably	with	“potential	outcome.”)	One	might	nat-
urally	 assume	 (even	 though	 one	 can	 never	 verify	 this	
empirically)	that:

•	 Some	patients	would	completely	recover	on	either	treat-
ment,	corresponding	to	Ya=0

i
= 1	and	Ya=1

i
= 1.

•	 Some	patients	would	not	completely	recover	on	either	
treatment,	corresponding	to	Ya=0

i
= 0	and	Ya=1

i
= 0.
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•	 Some	 patients	 would	 completely	 recover	 on	 standard	
of	 care	 but	 not	 on	 the	 novel	 agent,	 corresponding	 to	
Ya=0
i

= 1	and	Ya=1
i

= 0.
•	 Some	 patients	 would	 completely	 recover	 on	 the	 novel	

agent	 but	 not	 on	 standard	 of	 care,	 corresponding	 to	
Ya=0
i

= 0	and	Ya=1
i

= 1.

Supplementary	Material	S1	includes	the	R	code	to	sim-
ulate	an	observational	 study	with	 these	 features.	 In	 that	
code,	Y 0	and	Y 1	are	represented	as	the	complete	(“unfil-
tered”)	columns	Y0	and	Y1,	whereas	the	conditional	vari-
ables	Y ∣ A = 0	and	Y ∣ A = 1	are	obtained	by	taking	row	
subsets	of	 (a.k.a.	“filtering”)	 the	column	of	observations	
YOBS	(which	corresponds	to	Y 	in	our	mathematical	nota-
tion).	In	this	simulated	environment,	one	can	explore	the	
differing	characteristics	of	the	distribution	of	Y 0	and	the	
distribution	of	Y ∣ A = 0	(or	similarly	for	Y 1	and	Y ∣ A = 1	).

The	distinction	between	Ya
i

	and	Yi ∣ Ai = a	 lies	at	 the	
heart	of	causal	inference,	which	generally	seeks	to	make	in-
ferences	about	the	distributions	of	Y 0	and	Y 1	in	an	entire	pop-
ulation,	even	though	Y 1

i
	and	Y 0

i
	are	never	observed	in	the	same	

subject.	(In	the	words	that	Plato	attributes	to	Heraclitus:	“…	
all	things	move	and	nothing	remains	still …	you	cannot	step	
twice	into	the	same	stream.”)28	The	challenge	arises	because,	
to	estimate	the	marginal	(whole	population)	distribution	of	
Y 1,	one	would	need	to	estimate	the	conditional	distributions	
of	both	Y 1 ∣ A = 1	 and	Y 1 ∣ A = 0	 (and	only	estimation	of	
the	former	is	straightforward)	and	to	estimate	the	marginal	
distribution	of	Y 0,	one	would	need	estimates	of	 the	condi-
tional	distributions	of	both	Y 0 ∣ A = 1	and	Y 0 ∣ A = 0	(and	
only	estimation	of	the	latter	is	straightforward).	The	missing	
conditional	distributions	can	only	be	estimated	under	certain	
conditional	 exchangeability	 assumptions,	 as	 discussed	 in	
the	next	section.	Supposing	that	one	does	make	the	requisite	
assumptions	to	allow	estimation	of	the	joint	distribution	of	(
Y 0,Y 1

)
,	that	joint	distribution	may	then	be	summarized	in	

any	number	of	ways.	In	the	causal	inference	literature,	there	
is	often	a	special	focus	on	E

[
Y 1 − Y 0

]
,	but	this	is	just	one	par-

ticular	quantity	that	can	be	derived	from	the	joint	distribu-
tion	of	Y 0	and	Y 1;	an	estimand	of	the	form	P

(
Y 1 < q

)
	may	be	

of	greater	interest	in	many	pharmacometric	applications	and	
is	explored	in	the	next	section.

G-FORMULA

The causal logic of g-formula and 
adjustment sets

The	gap	between	what	we	want	to	know	(e.g.,	the	distribu-
tion	of	Ya=1)	and	what	we	can	actually	observe	(e.g.,	the	
distribution	of	Y ∣ A = 1)	presents	a	challenge.	This	chal-
lenge	can	be	addressed	by	finding	conditions	that	allow	for	

conditional exchangeability	(also	referred	to	as	“conditional	
ignorability”	in	this	context).	Focusing	specifically	for	the	
moment	on	the	distribution	of	Y 1 ∣ A = 0,	the	key	is	to	find	
covariates	or	conditions	L	such	that	

(
Y 1 ∣ A = 0,L

)
	(which	

we	do	not	observe)	would	be	expected	to	have	the	same	
distribution	 as	

(
Y 1 ∣ A = 1,L

)
	 (which	 we	 do	 “observe”	

when	 a	 consistency	 assumption	 holds)29	 and	 similarly,	
conditions	 such	 that	

(
Y 0 ∣ A = 0,L

)
∼
(
Y 0 ∣ A = 1,L

)
	.	

In	 words,	 the	 challenge	 is	 to	 find	 covariates	 such	 that,	
once	 those	 covariate	 values	 and	 the	 assigned	 treatment	
is	 known,	 there	 is	 no	 additional	 value	 in	 knowing	 the	
treatment	 status	 toward	 which	 the	 subject	 would	 have	
been	naturally	inclined.	These	requirements	are	typically	
summarized	as	

(
Ya=0,Ya=1

)
⊥A ∣ L,	where	⊥	signifies	in-

dependence	and	the	set	of	covariates	L	is	referred	to	as	a	
sufficient	 adjustment set	 if	 this	 criterion	 is	 satisfied.	 (As	
we	will	see	later,	DAGs	provide	a	mechanism	to	find	and	
evaluate	potential	adjustment	sets.)

Under	the	conditions	described	previously,	one	can	in	
fact	estimate	the	entire	marginal	(whole	population)	distri-
bution	of	Y 1	and	Y 0	using	what	is	known	as	the	g- formula.	
In	the	causal	inference	literature,	g- formula	is	most	often	
derived	with	reference	to	an	expected	value	such	as	E

[
Ya

]
,	

but	we	offer	a	derivation	here	in	relation	to	P(Ya < q)	(for	
arbitrary	q),	as	population	quantiles	and	tail	probabilities	
are	often	of	particular	interest	in	pharmacometric	applica-
tions.	For	the	simple	case	of	non–	time-	varying	treatment	
variables	(a.k.a.	“point	exposures”),	 the	relationship	and	
its	derivation	are	as	follows:

g-formula in pharmacometrics

The	 last	 expression	 in	 the	 previous	 derivation	 consists	
of	 terms	 that	 pharmacometric	 modelers	 typically	 esti-
mate,	 although	 the	 connection	 may	 not	 yet	 be	 obvious.	
To	begin	with,	we	will	suppose	the	usual	scenario	where	
P(L)	(the	multivariate	covariate	distribution	in	the	target	
population)	 is	 estimated	 with	 an	 empirical	 distribution	
with	observed	(multivariate)	covariate	values	at	l1, … , lN	
and	 where	 we	 have	 a	 model	 that	 allows	 estimation	 of	
P
(
Y < q ∣ A = a,L = li

)
	 for	 each	 value	 of	 li,	 where	 i	 in-

dexes	 subjects.	 In	 that	 case,	 the	 estimate	 version	 of	 the	
preceding	expectation	can	be	expressed	as:

(1)P
(
Ya

< q
)
= EL

[
P
(
Ya

< q| L
)]

Iterated expectation

(2)

=EL
[
P
(
Ya

<q ∣ A=a,L
)]

Conditional exchangeability given L

(3)= EL
[
P(Y < q ∣ A = a,L)

]
Consistency assumption

1

N

N∑

i=1

�P
(
Y < q ∣ A = a,L = li

)
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(The	 “model”	 for	 P(L)	 in	 this	 case	 is	 simply	 a	 point	
mass	of	1∕N 	at	each	of	the	observed	li	values).	This	in-
tuitive	 operation—	generating	 predictions	 conditional	
on	 treatment	 and	 covariates	 and	 then	 averaging	 those	
predictions	 over	 a	 covariate	 distribution—	will	 be	 fa-
miliar	 to	 pharmacometricians,	 who	 often	 refer	 to	 the	
procedure	 simply	 as	 “population	 simulation.”30	 The	
same	 procedure	 is	 also	 referred	 to	 in	 epidemiology	 as	
“standardization.”31	 Although	 the	 g- formula	 operation	
is	 straightforward	 in	 the	 context	 of	 point	 exposures,	
it	 is	 important	 to	 note	 that	 this	 approach	 generalizes	
(whence	the	“g- ”	in	g- formula)	to	more	complex	settings	
with	time-	varying	exposures	and	treatment-	confounder	
feedback.	These	more	complex	settings	were	in	fact	the	
motivation	for	Robins'	seminal	1986	article,32	which	in-
augurated	research	on	g- methods.

In	 pharmacometrics,	 the	 probability	 in	 the	 previ-
ous	 g- formula	 summand	 will	 typically	 be	 replaced	 by	 a	
simulation-	based	estimate,	with	simulations	typically	gen-
erated	 from	a	parametric	nonlinear	mixed-	effects	model	
(such	 a	 model	 would	 be	 referred	 to	 in	 the	 causal	 infer-
ence	literature	as	an	“outcome	model”	or	a	“Q	model”33).	
Specifically,	 for	 each	 subject	 i,	 let	 y∗

i1
, … y∗

iM
	 be	 values	

simulated	 from	the	model	 for	
(
Y ∣ A = a,L = li

)
,	with	M	

suitably	 large	 to	 accurately	 characterize	 the	 simulation	
distribution.	Then:

In	summary,	the	simulation-	based	estimate	of	P
(
Y 1 < q

)
	is:

More	commonly,	a	simplification	is	employed	to	avoid	com-
puting	this	as	a	nested	sum.	In	the	simplified	version,	one	
samples	with	replacement	a	large	number	of	times	M	from	
the	empirical	distribution	for	L	to	obtain	l∗

1
, … , l∗

M
	and	then	

simulates	each	y∗
i
	from	the	model	for	

(
Y ∣ A,L = l∗

i

)
,	finally	

computing	the	estimate	as:

Statistical biases and causal biases

When	 the	 estimate	 1
N

∑N
i=1

�P
�
Y < q ∣ A = a,L = li

�
	 is	 bi-

ased	relative	to	the	true	value	(or	“estimand”)	P(Ya < q),		
the	reason(s)	for	the	bias	can	be	categorized	according	to	
the	following	scheme:

•	 “Statistical	biases”	related	to	the	outcome	model,	con-
tributing	 to	 the	 difference	 between	 the	 expectation	 of	
the	estimator	�P(Y < q ∣ A = a,L)	and	its	“statistical	esti-
mand”	P(Y < q ∣ A = a,L).	This	is	typically	the	meaning	
of	the	term	model misspecification	in	pharmacometrics,	
and	 model	 diagnostics	 in	 pharmacometrics	 typically	
only	aspire	to	investigate	deficiencies	of	this	nature.

•	 “Statistical	biases”	in	the	model	for	P(L),	 that	is,	 in	the	
model	 for	 the	multivariate	covariate	distribution	 in	 the	
target	 population.	 As	 noted	 already,	 a	 common	 prac-
tice	is	to	simply	use	the	empirical	covariate	distribution	
in	the	available	sample,	although	it	is	often	contestable	
whether	 this	 adequately	 reflects	 the	 target	 population.	
More	 targeted	nonparametric	approaches	may	 leverage	
an	epidemiological	database	such	as	the	National	Health	
and	Nutrition	Examination	Survey	database,34	and	para-
metric	approaches	have	been	proposed	as	well.35

•	 The	 “causal	 bias”	 attributable	 to	 the	 difference	 be-
tween	 the	statistical	estimand	EL

[
P(Y < q ∣ A = a,L)

]
	

and	 the	 causal	 estimand	 P(Ya < q).	 Specifically,	 as	
is	 evident	 in	 Step	 2	 of	 our	 derivation	 of	 g- formula,	
these	 two	 quantities	 will	 fail	 to	 be	 equal	 if	 the	 con-
ditional	 exchangeability	 condition	 is	 not	 met,	 that	
is,	 if	L	 is	not	a	sufficient	adjustment	set.	In	terms	of	
pharmacometric	 population	 simulation,	 this	 differ-
ence	arises	if	simulations	from	the	outcome	model	do	
not	 reflect	 the	 true	 distribution	 of	

(
Y 1 ∣ A = 0,L = li

)
	

or	
(
Y 0 ∣ A = 1,L = li

)
,	 that	 is,	 when	 counterfactual	

outcomes	cannot	be	correctly	simulated.	This	failure	
mode	 is	often	conceived	of	as	arising	 from	“unmea-
sured	covariates,”	but	a	failure	to	achieve	conditional	
exchangeability	can	also	arise	from	including	certain	
types	of	covariates	in	the	adjustment	set	(resulting	in	
selection	biases).	In	general,	suspected	biases	arising	
from	an	inadequate	adjustment	set	can	be	articulated	
using	causal	DAGs,	as	discussed	 in	 the	next	section.	
Depending	 on	 what	 has	 been	 measured,	 some	 bi-
ases	of	 this	 type	may	be	remediated	by	simply	mod-
ifying	 the	 adjustment	 set.	 When	 unmeasured	 (and/
or	 unmeasurable)	 confounders	 are	 hypothesized	 to	
exist,	 the	 likely	 magnitude	 of	 the	 bias	 may	 be	 eval-
uated	 through	 sensitivity	 analyses,7	 and	 Bayesian	
frameworks	 may	 be	 particularly	 appealing	 for	 this	
purpose.36	 Notwithstanding	 the	 value	 of	 such	 sensi-
tivity	analyses,	we	emphasize	that	the	most	essential	
features	 of	 the	 causal	 bias	 problem—	defining	 what	
one	wants	to	estimate	and	identifying	the	most	likely	
sources	of	causal	bias	in	that	estimation—	can	be	ar-
ticulated	without	incurring	the	overhead	of	a	simula-
tion	framework	and/or	a	formal	Bayesian	framework.	
To	this	end,	it	is	the	opinion	of	the	authors	that	causal	
DAGs	are	particularly	helpful,	a	position	that	we	elab-
orate	in	the	next	section.

�P
(
Y < q ∣ A = a,L = li

)
=

1

M

M∑

j=1
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Other adjustment strategies

The	 implicit	 use	 of	 g- formula	 is	 perhaps	 the	 most	 com-
mon	strategy	in	pharmacometrics	for	obtaining	covariate-	
adjusted	estimates	of	causal	effects,	but	it	is	not	the	only	
such	 strategy.	 Adjustment	 methodologies	 based	 on	 pro-
pensity	 scores	 (especially	 inverse	 propensity	 weighting)	
are	 an	 attractive	 alternative	 for	 removing	 causal	 biases.	
Propensity-	based	methods	are	out	of	scope	for	the	current	
tutorial,	except	to	note	that	such	methods	also	involve	co-
variate	adjustment	(because	propensity	scores	are	 them-
selves	 functions	 of	 covariates)	 and	 that	 they	 rely	 on	 the	
same	 assumption	 of	 conditional	 exchangeability	 that	 g- 
formula	relies	on.37

CAUSAL DAGS

Schematics and mathematical structures

At	a	cursory	level,	the	meaning	of	a	causal	DAG	is	likely	to	
be	intuitive:	variables	(represented	graphically	as	nodes)	
have	 a	 dependence	 structure	 relative	 to	 each	 other,	 and	
directed	edges	(arrows)	in	some	way	signify	those	depend-
encies.	For	example,	 letting	AUC	denote	 the	area	under	
a	 pharmacokinetic	 concentration	 versus	 time	 curve,	 the	
DAG	 “Dose→ AUC→ Outcome”	 intuitively	 conveys	 the	
assumption	that	the	effect	of	Dose	on	Outcome	is	in	some	
sense	mediated	via	AUC.

Although	the	intuitive	schematic	value	of	DAGs	is	very	
important,	we	emphasize	that	DAGs	are	also	mathemat-
ical	 structures	 that	 have	 specific	 logical	 and	 statistical	
implications.	The	DAG	“Dose→ AUC→ Outcome”	would	
specifically	 imply	 that	 intervening	 to	change	Dose	while	
holding	AUC	constant	would	not	result	in	any	change	in	
Outcome.	 (Depending	 on	 the	 specific	 definition	 of	 Dose	
and	AUC,	this	could	be	a	very	strong	and	contestable	as-
sumption:	 for	 example,	 if	 different	 formulations	 and/or	
routes	of	administration	were	in	play,	these	alternate	dos-
ing	strategies	could	result	in	the	same	AUC	but	with	other	
dispositional	 differences—	reflected	 by	 different	 maxi-
mum	concentrations	(Cmax),	for	example—	that	might	en-
tail	a	different	Outcome	distribution.)	This	specific	causal	
implication	of	the	DAG	would	further	entail	the	statistical	
implication	that	Dose	and	Outcome	are	conditionally	inde-
pendent	given	AUC.

Although	 the	 preceding	 example	 is	 fairly	 trivial,	 it	
serves	to	illustrate	that	a	formal	causal	DAG	will	typically	
entail	specific	probabilistic	conditional	independencies.26	
This	suggests	the	essential	connection	between	DAGs	and	
the	 conditional	 exchangeability	 assumption	 presented	
in	 the	 previous	 section:	 conditional	 exchangeability	 of	
counterfactual	outcomes is	a	specific	type	of	conditional	

independence,	and	a	hypothesized	DAG	can	be	analyzed	
to	 determine	 whether	 this	 type	 of  conditional	 indepen-
dence	is	likely	to	obtain	in	a	given	situation.

In	summary,	a	DAG	serves	two	purposes:

•	 It	provides	an	explicit	 representation	of	one's	primary	
causal	assumptions	(so	 that	 those	assumptions	can	be	
publicly	critiqued	and	debated),	and

•	 When	analyzed	as	a	mathematical	structure,	 it	can	be	
used	to	deduce	the	consequences	of	those	assumptions.	
In	 particular,	 it	 allows	 one	 to	 assess	 whether	 the	 re-
quirement	 of	 conditional	 exchangeability—	essential	
to	causal	effect	estimation—	is	logically	consistent	with	
one's	primary	causal	assumptions.

The	 latter	 use	 of	 DAGs,	 wherein	 they	 are	 treated	 as	
mathematical	 structures	 that	 can	be	 subjected	 to	 formal	
analysis,	distinguishes	them	from	many	superficially	sim-
ilar	diagrams	that	are	used	in	pharmacometrics	for	merely	
schematic	purposes.30	In	the	context	of	causal	effect	esti-
mation,	the	relevant	mathematical	deductions	involve	the	
identification	of	particular	paths	through	the	DAG	known	
as	“backdoor	paths.”	Before	examining	backdoor	paths	in	
detail,	we	first	consider	some	principles	of	DAG	construc-
tion	that	are	essential	if	a	DAG	is	to	support	such	logical	
deductions.

DAG completeness

A	DAG	is	said	to	represent	the	complete	causal	structure	
between	 a	 treatment	 and	 an	 outcome	 if	 all	 sources	 of	
dependence	between	the	treatment	and	outcome	are	ex-
plained	by	causal	links.38	In	practice	this	means	that	the	
following	conditions	must	hold:

•	 Treatment	 and	 outcome	 themselves	 must	 be	 repre-
sented.	 We	 state	 this	 requirement	 explicitly	 to	 em-
phasize	 that	 a	 DAG	 is	 complete	 or	 incomplete	 only	
in relation to a given question	 (i.e.,	 no	 DAG	 needs	 to	
be	complete	as such,	 in	 the	 sense	of	encapsulating	all	
causal	knowledge	on	a	topic).	“Treatment”	in	this	case	
should	be	understood	in	the	most	general	sense,	that	is,	
as	the	variable	whose	causal	effect	is	of	primary	inter-
est.	 For	 example,	 “renal	 impairment	 status”	 could	 be	
the	“treatment”	variable	in	a	context	where	the	causal	
effects	 of	 renal	 impairment	 were	 of	 interest,	 notwith-
standing	a	lack	of	interest	in,	for	example,	the	effects	of	
kidney	transplants.	We	acknowledge	that	this	terminol-
ogy	is	potentially	confusing	in	pharmacometric	applica-
tions;	to	make	matters	worse,	the	“treatment”	variable	
is	variously	referred	to	as	the	“exposure”	variable	(this	
is	the	convention	used	by	DAGitty,	for	example39);	this	



32 |   ROGERS et al.

potentially	induces	even	greater	confusion	because	ex-
posure	(in	the	sense	of,	e.g.,	 the	plasma	concentration	
of	a	drug)	is	in	fact	the	“outcome”	in	a	pharmacokinetic	
model!

•	 For	any	two	variables	already	on	the	graph,	all	common	
causes	of	those	two	variables	are	also	represented.38

•	 All	selection	variables	are	represented.	A	selection	vari-
able	is	a	variable	that	causes	distributional	differences	
in	the	available	data	compared	to	the	target	population.	
For	example,	if	the	available	data	are	composed	of	sev-
eral	studies,	some	of	which	only	enrolled	male	subjects,	
the	distribution	of	sex	in	the	available	data	is	not	likely	
to	represent	the	target	population.	In	terms	of	patient-	
level	variables,	study	enrollment	is	the	“cause”	of	a	pa-
tient's	 inclusion	 or	 exclusion	 in	 the	 available	 data,	 so	
this	status	should	be	included	as	a	selection	node.	The	
inclusion	of	study	enrollment	as	a	node	would	then	fur-
ther	entail	that	sex,	if	causally	related	to	the	outcome,	be	
included	as	well	(because	sex	would	then	be	a	common	
cause	 of	 two	 variables	 already	 on	 the	 DAG:	 study	 en-
rollment	status	and	the	outcome).	The	inclusion	of	se-
lection	variables	is	particularly	important	because	these	
are	nodes	on	which	one	has	inevitably	conditioned	(the	
very	act	of	obtaining	the	data	involves	conditioning	on	
the	selection	node).	When	the	selection	variable	is	also	
a	“collider”	node,	that	is,	a	variable	that	is	a	causal	de-
scendant	of	two	other	nodes	on	the	graph,	conditioning	
on	the	collider	node	will	induce	a	noncausal	statistical	
dependency	between	the	two	other	variables.40	For	ex-
ample,	the	first	exposition	of	this	phenomenon	consid-
ered	the	bias	induced	when	analyzing	only	hospitalized	
patients	to	study	the	association	between	two	variables	
that	 were	 themselves	 determinants	 of	 hospitaliza-
tion.41	Representing	all	selection	variables	ensures	that	
collider-	induced	dependencies	are	represented.

The	 aforementioned	 conditions	 are	 minimally	 suffi-
cient	and	may	be	used	to	simplify	DAG	representations.42	
On	 the	other	hand,	 the	 inclusion	of	additional	variables	
that	 are	 not	 strictly	 entailed	 by	 these	 conditions	 is	 not	
harmful.	 Indeed,	 more	 verbose	 representations	 may	 be	
helpful	 initially	 to	 elicit	 an	 intelligible	 causal	 narrative	
from	subject	matter	experts.

Not	all	variables	represented	in	a	DAG	need	to	be	ob-
servable.	In	fact,	it	is	very	important	to	represent	any	vari-
able	entailed	by	the	conditions	listed	previously,	whether	
observed	or	not.43	For	example,	as	represented	in	Figure 1b,	
medication	 status	 may	 be	 a	 function	 of	 access	 to	 health	
care,	which	may	in	turn	be	a	function	of	socioeconomic	
status,	 and	 socioeconomic	 status	 may	 affect	 diet,	 which	
in	 turn	affects	hemoglobin	A1c.	To	 the	degree	 that	such	
relationships	are	plausible,	one	should	represent	them	on	
the	DAG—	at	least	initially—	whether	they	are	observable	

or	 not.	 In	 the	 representation	 of	 Figure  1,	 rectangles	 are	
used	to	represent	observable	variables,	and	ovals	are	used	
to	 represent	 unobservable	 variables.	 Having	 elicited	 this	
causal	 narrative	 in	 terms	 of	 partially	 unobserved	 vari-
ables,	 one	 could	 then	 revisit	 the	 minimal	 requirements	
listed	 previously	 and	 consider	 removing	 the	 Access	 and	
Diet	variables	because	neither	of	these	is	a	common	cause	
of	both	treatment	and	outcome,	while	necessarily	retain-
ing	socioeconomic	status	because	it	is	a	common	cause	of	
both	treatment	and	outcome	(Figure 1c).

Determinism and stochasticity

As	one	might	expect,	 an	arrow	emanating	 from	node	X 	
and	pointing	at	node	Y 	indicates	a	belief	that	X 	is	a	cause	
of	Y .	More	precisely,	this	means	X 	is	an	argument	in	an	
unseen	function	(or	“law	of	nature”)	that	determines	Y .

Technically,	 this	 functional	 interpretation	 of	 arrows	
only	 allows	 for	 the	 representation	 of	 deterministic	 rela-
tionships	between	variables,	as	described	by	Pearl:	“This	
quasi-	deterministic	 functional	 model	 mirrors	 Laplace's	
conception	of	nature	(Laplace	1814),	according	to	which	
of	 [sic]	 nature's	 laws	 are	 deterministic,	 and	 randomness	
surfaces	 merely	 due	 to	 our	 ignorance	 of	 the	 underly-
ing	 boundary	 conditions.”26	 Nonetheless,	 a	 DAG	 can	
represent	 unexplained	 “random”	 variation	 in	 any	 vari-
able	 by	 representing	 its	 dependence	 on	 unobserved	 and	
parent-	less	“background”	or	“exogenous”	variables,	often	
denoted	with	a	“U”	(Figure 1a).	Each	exogenous	“U	vari-
able”	represents	an	amalgam	of	unknown	causal	 factors	
that	influences	the	endogenous	variables.	Our	ignorance	
of	the	exogenous	factors	may	induce	an	apparent	random-
ness	 in	 the	 endogenous	 variables,	 but	 the	 relationships	
represented	by	the	arrows	are	presumed	to	be	determin-
istic.	 This	 conceptual	 framework	 allows	 us	 to	 assign	 a	
consistent	meaning	to	the	arrows	(they	always	represent	
deterministic	 relationships),	 even	 while	 allowing	 the	
nodes	to	represent	variables	with	unexplained	(“random”)	
variability.	In	many	contexts	(and	in	most	of	our	exposi-
tion),	 DAGs	 are	 simplified	 by	 leaving	 “U  variables”	 un-
represented	and	implicit.	Such	omission	is,	however,	only	
valid	when	the	“U	variable”	in	question	has	only	a	single	
immediate	descendant	on	the	graph;	per	the	completeness	
criterion,	“U	variables”	that	are	direct	causes	of	more	than	
one	of	the	depicted	nodes	must	themselves	be	depicted.

An	 essential	 point	 in	 relation	 to	 the	 arrows	 (a.k.a.	
“edges”)	 is	 that	 the	presence	of	an	arrow	reflects	possible	
causal	influence.	As	stated	previously,	an	arrow	always	rep-
resents	a	functional	relationship,	but	sometimes	it	may	be	
the	“constant”	function,	Y = f (X ) = c	that	does	not	depend	
on	its	arguments.	As	such,	the	inclusion	of	an	arrow	is	es-
sentially	noncommittal,	whereas	 the	absence	of	an	arrow	
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encodes	 a	 commitment	 to	 the	 potentially	 very	 strong	 as-
sumption	of	“no	causal	influence.”	Of	course,	it	is	generally	
not	 practically	 possible	 to	 rule	 out	 causal	 influence	 with	
certainty	 (except	 in	 a	 randomized	 setting,	 where	 arrows	
into	 the	 randomized	 treatment	 variable	 can	 be	 removed,	
as	 in	 Figure  1d).	 However,	 if	 (as	 we	 advocate)	 one's	 goal	
in	creating	DAGs	is	simply	to	articulate	reasonable	beliefs	
and	 deduce	 the	 consequences	 of	 those	 beliefs,	 thereby	
identifying	 the	most	 likely	biases,	 then	 the	use	of	arrows	
to	represent	highly	speculative	causal	connections	becomes	
unnecessary.

Total causal effects and direct 
causal effects

Causal	 inference	 research	 has	 developed	 standard	 ter-
minology	that	distinguishes	between	two	types	of	causal	
effects:	 total	 and	 direct.	 Absent	 the	 ability	 to	 clearly	 ar-
ticulate	 this	 distinction,	 two	 or	 more	 quantitative	 sci-
entists	 may	 unwittingly	 use	 the	 same	 word	 (“effect”)	 to	
talk	 about	 two	 different	 concepts,	 resulting	 in	 confused	

debates	about	whether	a	given	effect	estimate	is	biased	or	
not.	 We	 introduce	 this	 distinction	 using	 the	 definitions	
provided	by	Pearl44:

Definition	of	total	causal	effect:	“[The	total	causal	effect]	
measures	the	probability	that	response	variable	Y 	would	
take	on	the	value	y	when	X 	is	set	to	x	by	external	inter-
vention.	This	 probability	 function	 is	 what	 we	 normally	
assess	in	a	controlled	experiment	in	which	X 	is	random-
ized	and	in	which	the	distribution	of	Y 	 is	estimated	for	
each	level	x	of	X .”44

Definition	of	direct	causal	effect:	“The	term	 'direct	effect’	
is	meant	to	quantify	an	influence	that	is	not	mediated	by	
other	variables	 in	the	model	or,	more	accurately,	 the	sen-
sitivity	of	Y 	to	changes	in	X 	while	all	other	factors	in	the	
analysis	 are	 held	 fixed.	 Naturally,	 holding	 those	 factors	
fixed	would	sever	all	causal	paths	from	X 	to	Y 	with	the	ex-
ception	of	the	direct	link	X → Y ,	which	is	not	intercepted	
by	any	intermediaries.”44	

We	revisit	this	distinction	and	depict	it	with	a	DAG	in	the	
pharmacokinetic	example	at	the	end	of	this	article.

F I G U R E  1  Directed	acyclic	graphs	(DAGs)	representing	plausible	sources	of	statistical	dependence	between	a	treatment	variable	
(“Medication,”	represented	in	yellow)	and	an	outcome	(“HbA1c”,	represented	in	blue).	Unspecified	exogenous	background	variables	are	
sometimes	represented	in	a	DAG	with	“U	variables”,	as	in	DAG	(a).	Representation	of	such	exogenous	causes	may	be	helpful	during	the	
initial	development	of	a	plausible	causal	structure,	but	for	analytic	purposes	the	DAG	may	be	simplified	by	removing	these	variables	as	long	
as	none	of	them	is	a	common	cause	of	two	more	variables	remaining	on	the	graph,	resulting	in	DAG	(b).	Similarly,	causal	intermediaries	
such	as	(in	this	case)	Diet	and	Access	may	be	removed	when	they	are	not	common	causes	of	two	or	more	variables	remaining	on	the	graph,	
resulting	in	the	further	simplified	DAG	(c).	In	a	randomized	treatment	context,	the	further	simplification	reflected	in	DAG	(d)	would	be	
justified,	and	in	fact	socioeconomic	status	could	be	removed	from	the	DAG	altogether	(not	shown).	HbA1c,	hemoglobin	A1c.
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What DAGs do not represent

In	their	most	typical	implementation	(the	one	we	wish	to	
promote),	 DAGs	 do	 not	 attempt	 to	 represent	 any	 of	 the	
following:

•	 The	direction	of	effects	(the	direction	of	causality	is	of	
course	represented,	but	whether	the	average	causal	ef-
fect	corresponds	to	a	positive	or	negative	association	is	
not	represented).

•	 The	magnitude	of	effects.
•	 The	statistical	distributions	of	the	variables.
•	 Interactions.	When	a	variable	has	more	than	one	cause,	

the	 DAG	 representational	 scheme	 simply	 represents	
arbitrary	 multiple-	argument	 functional	 dependence	
without	distinguishing	whether	the	multiple	effects	are	
additive,	super-	additive,	multiplicative,	and	so	on.

Given	 the	 aforementioned	 limitations,	 DAGs	 may	
seem	to	provide	an	overly	laconic	representational	system.	
Scientists	are	of	course	 free	 to	embellish	DAGs	 in	what-
ever	 manner	 they	 like,	 but	 we	 emphasize	 that	 even	 the	
minimal	assumptions	about	causal	structure	that	are	en-
coded	in	a	typical	DAG	are	sufficient	to	generate	powerful	
insights	regarding	potential	biases	and	adjustment	strate-
gies.	Significantly,	assumptions	about	causal	structure	are	
often	available	from	subject	matter	experts	at	the	earliest	
planning	stages,	when	it	may	be	neither	necessary	nor	de-
sirable	to	speculate	about	the	directions	and	magnitudes	
of	effects	or	about	the	nature	of	interactions.

Practical guidance for DAG development

In	the	context	of	use	that	we	are	proposing,	DAG	creation	
begins	by	eliciting	assumptions	that	subject	matter	experts	
already	have	 (implicitly)	and	encoding	 those	assumptions	
graphically	to	make	them	explicit.	Such	elicitation	will	gen-
erally	require	directed	questioning	by	a	quantitative	scientist	
with	an	understanding	of	the	eventual	use	of	the	DAG.	To	
elicit	these	assumptions	as	effectively	as	possible	from	sub-
ject	matter	experts,	we	recommend	applying	the	following	
principles,	which	summarize	a	number	of	points	made	 in	
the	preceding	subsections,	and	which	reflect	a	combination	
of	personal	experience	and	published	recommendations43:

•	 Relax	and	have	 fun	drawing.	For	a	DAG	development	
process	 to	 be	 successful,	 all	 participants	 in	 the	 pro-
cess	should	be	aware	that	 the	goal	 is	simply	to	articu-
late	shared	assumptions	and	deduce	the	consequences	
of	 those	 assumptions,	 thereby	 identifying	 the	 most	
likely	 biases	 that	 attend	 (or	 will	 attend)	 an	 analysis.	
Because	 the	 goal	 is	 not	 to	 “prove”	 that	 a	 particular	

causal	interpretation	will	be	valid,	it	is	not	essential	that	
any	particular	DAG	be	 identified	as	“the	correct	one.”	
Iterative	 and	 collaborative	 DAG	 development	 may	 be	
fostered	with	an	interactive	tool	such	as	DAGitty.39	With	
this	iterative	approach	in	mind,	DAG	development	may	
begin	 at	 the	 earliest	 stages	 of	 analysis	 planning	 and/
or	study	design,	when	the	scientific	questions	are	still	
being	formulated	and	refined,	with	the	understanding	
that	early	DAG	iterations	may	represent	only	tentative	
and	personal	opinions,	whereas	more	mature	iterations	
of	the	DAG	should	ideally	represent	a	mature	and	well-	
researched	consensus.

•	 Know	where	to	begin.	Begin	by	representing	the	inter-
vention	 variable	 (a.k.a.	 the	 “treatment”	 or	 “exposure”	
variable)	and	the	outcome.

•	 Respect	 the	 rules.	 As	 the	 term	 itself	 implies,	 a	 DAG	
must	be	both	directed	and	acyclic.	For	a	graph	to	be	di-
rected,	each	edge	must	be	an	arrow	pointing	in	only	one	
direction.	As	a	practical	matter,	bidirectional	arrows	are	
sometimes	used,	but	this	is	merely	a	shorthand	imply-
ing	 an	 unspecified	 common	 parent,	 that	 is,	 “X ↔ Y”	
does	not	imply	that	“X 	is	a	cause	of	Y 	and	Y 	is	a	cause	
of	 X”	 but,	 rather,	 is	 used	 as	 a	 convenient	 shorthand	
for	 “X ← U → Y 	 (for	 some	 unspecified	U)”.	 An	 acy-
clic	graph	must	of	course	be	devoid	of	directed	cycles,	
corresponding	to	the	tautological	premise	that	no	vari-
able	may	be	a	cause	of	itself	(not	even	indirectly).	Any	
feedback	loops	must	therefore	be	represented	using	dis-
tinct	nodes	to	represent	the	same	variables	at	different	
timepoints.	For	example,	an	adaptive	dosing	regimen	in	
response	to	adverse	events	(AE)	cannot	be	represented	
as	 Dose↔ AE,	 but	 must	 instead	 be	 represented	 as	
Dose1 → AE1 → Dose2 → AE2 …	 (with	 subscripts	 used	
to	distinguish	the	same	variables	at	different	points	in	
time).	 Anecdotally,	 the	 essential	 causal	 structure	 of	
such	a	feedback	loop	can	often	be	revealed	by	represent-
ing	only	two	distinct	timepoints.

•	 Think	carefully	about	the	data	that	you	do	not	see.	Any	
selection	process	that	may	affect	which	records	we	see	
in	the	data	and	which	we	do	not	should	be	reflected	by	
a	selection	node.	For	example,	if	the	available	data	only	
represent	 study	 completers,	 completion	 status	 should	
be	a	node.

•	 When	 in	 doubt,	 draw	 the	 arrow.	 The	 absence	 of	 an	
arrow	represents	the	strong	assumption	that	the	origi-
nating	node	does	not	exert	causal	influence	on	the	re-
ceiving	node.	The	presence	of	an	arrow	merely	indicates	
possible	causal	influence.

•	 Focus	 first	 on	 what	 you	 believe	 to	 be	 true.	 Do	 not	
limit	depicted	nodes	to	measurable	quantities	only.	Of	
course,	one	can	only	adjust	for	covariates	that	are	mea-
sured,	 but	 depicting	 latent	 (unmeasured,	 and	 perhaps	
unmeasurable)	variables	is	often	helpful	to	articulate	a	



   | 35CAUSAL INFERENCE FOR PHARMACOMETRICIANS

plausible	 causal	 narrative.	 The	 explicit	 representation	
of	 one's	 implicit	 assumptions	 should	 be	 prioritized	 at	
the	outset,	deferring	concerns	with	the	feasibility	of	par-
ticular	covariate	adjustments	until	a	later	stage.

•	 When	 the	 time	 is	 right,	 be	 practical.	 Notwithstanding	
the	 previous	 point,	 there	 is	 generally	 no	 harm	 in	 rep-
resenting	latent	“true	causes”	with	measurable	proxies.	
In	 a	 pharmacokinetic	 context,	 for	 example,	 estimated	
glomerular	filtration	rate	(EGFR)	will	generally	suffice	
as	a	proxy	for	the	true	glomerular	filtration	rate	(GFR);	
EGFR	can	therefore	be	represented	as	a	“cause”	of	other	
variables,	even	though	the	estimate	per	se	does	not	par-
ticipate	in	any	physiological	process.

•	 Know	when	to	stop.	Progress	toward	representation	of	
all	 likely	common	causes	 (including	common	indirect	
causes)	 and	 all	 common	 effects	 (including	 common	
indirect	 effects)	 of	 the	 intervention	 variable	 and	 the	
outcome	variable.	In	practice,	the	exercise	may	be	con-
sidered	complete	when	the	most	likely	common	causes	
and	effects	are	represented,	stopping	before	the	addition	
of	nodes	relationships	becomes	highly	speculative.

Backdoor paths

Once	a	treatment	A	and	an	outcome	Y 	are	identified	and	
a	complete	DAG	is	developed	that	includes	potential	co-
variates	 L,	 the	 conditional	 exchangeability	 condition	(
Ya=0,Ya=1

)
⊥A ∣ L	can	be	evaluated	to	determine	if	L	is	

a	sufficient	adjustment	set.	We	note	that	this	assessment	
will	only	be	correct	if	the	DAG	is	complete	in	the	techni-
cal	sense	described	previously.	Significantly,	we	have	now	
pivoted	slightly	with	our	terminology:	whereas	we	intro-
duced	conditional	exchangeability	as	an	assumption,	we	
now	refer	to	it	as	a	condition	 to	emphasize	that	 its	truth	
or	falsity	can	be	derived	from	the	more	primary	causal	as-
sumptions	represented	in	a	DAG.	Specifically,	the	condi-
tion	can	be	evaluated	by	identifying	“backdoor	paths”	and	
determining	whether	those	paths	are	“open”	or	“closed”	
conditional	on	L.

For	 the	 practitioner	 in	 pharmacometrics	 who	 simply	
wishes	to	apply	these	concepts,	it	may	suffice	to	recognize	
that	reliable	tools	exist	to	automatically	analyze	backdoor	
paths	and	thereby	identify	and	evaluate	adjustment	sets.39	
Nonetheless,	 technical	 definitions	 of	 the	 most	 central	
concepts	 are	 uncomplicated	 (if	 somewhat	 abstract	 and	
not	particularly	supportive	of	intuition).	For	convenience,	
we	 therefore	 provide	 several	 verbatim	 excerpts	 from	
Greenland	and	Pearl38:

Definition	of	back-	door	path:	“A	back-	door	path	from	X 	
to	Y 	 is	a	path	that	begins	with	a	parent	of	X 	(i.e.,	 leaves	
X 	from	a	‘backdoor’)	and	ends	at	Y .”38	[Such	a	path	need	

not	be	directed,	i.e.,	any	sequence	of	adjacent	edges	can	be	
used	to	compose	a	backdoor	path,	regardless	of	the	direc-
tion	of	the	arrows.]
Definition	of	collider:	“A	variable	is	a	collider	on	the	path	
if	the	path	enters	and	leaves	the	variable	via	arrowheads	
(a	term	suggested	by	the	collision	of	causal	forces	at	the	
variable).”38

Definition	of	open/blocked:	in	the	absence	of	condition-
ing,	“a	path	is	open	or	unblocked	at	noncolliders	and	closed	
or	 blocked	 at	 colliders.”38	 Conditioning	 on	 a	 variable	 re-
verses	 its	blocking	status:	“Conditioning	on	a	variable	C	
closes	open	paths	that	pass	through	C.	Conversely,	condi-
tioning	on	C	opens	paths	that	were	blocked	only	at	C	or	at	
an	ancestral	collider	A.”38

Definition	of	adjustment	set:	"A	set	S	[L,	in	our	notation]	
then	 satisfies	 the	 back-	door	 criterion	 [and	 is	 therefore	 a	
sufficient	adjustment	set,	in	our	terminology]	with	respect	
to	X 	and	Y 	 if	(a)	S	contains	no	descendant	of	X 	and	(b)	
there	are	no	open	back-	door	paths	from	X 	to	Y 	after	con-
ditioning	on	S."38

Fuller	 exposition	 of	 these	 concepts	 is	 provided	 by	
Greenland	and	Pearl.38	Considering	again	the	perspective	
of	the	applied	practitioner,	the	essential	point	is	to	recog-
nize	 that	algorithmic	analyses	of	backdoor	paths	can	be	
used	to	ensure	a	logical	consistency	between	the	qualita-
tive	beliefs	of	subject	matter	experts	(as	reflected	in	a	DAG	
elicited	from	those	subject	matter	experts)	and	the	set	of	
covariates	used	by	a	quantitative	modeler	(as	reflected	by	
the	covariate	effects	in	a	formal	statistical	model).

APPLICATIONS

Detecting collider bias

An	 exploratory	 analysis	 from	 a	 single-	arm,	 phase	 I,	
immuno-	oncology	trial	revealed	an	intriguing	association.	
By	design,	all	enrolled	patients	had	received	the	investiga-
tional	therapy;	about	half	of	them	had	a	treatment	history	

T A B L E  1 	 Baseline	patient	disposition	and	(fictionalized)	
overall	response	rates	(ORRs)	for	a	phase	I	oncology	trial

Treatment history
Phase I 
treatment ORR

PD1i	(first	
line)

Chemo	(second	
line)

Novel	Tx	(third	
line)

30%

PD1i	+	chemo	
(first	line)

Novel	Tx	(second	
line)

20%

Note:	ORR	varied	as	a	function	of	Tx	history	(30%	for	sequential	therapy	vs.	
20%	for	combination	therapy),	perhaps	suggesting	that	the	patients’	ability	
to	respond	to	the	novel	Tx	was	modified	by	Tx	history.
Abbreviations:	PD1i,	programmed	death	1	inhibitor;	Tx,	treatment.
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of	combination	therapy	(programmed	cell	death	protein	1	
[PD1]	inhibitor	plus	chemotherapy)	and	half	had	a	treat-
ment	 history	 of	 sequential	 monotherapy	 (PD1	 inhibitor	
then	chemotherapy).	The	(fictionalized	and	anonymized)	
overall	 response	 rates	 (ORRs)	 for	 these	 two	 groups	 are	
represented	 in	 Table  1,	 revealing	 a	 higher	 success	 rate	
(30%)	for	those	with	a	history	of	sequential	therapy	com-
pared	with	the	rate	for	those	with	a	history	of	combination	
therapy	(20%).

This	observed	difference	gave	rise	to	a	hypothesis	that	
seemed	to	have	some	plausibility:	prior	combination	ther-
apy	might	have	resulted	in	a	greater	immunosuppressive	
effect	compared	with	prior	sequential	therapy,	making	pa-
tients	less	likely	to	respond	to	the	novel	immunotherapy	
(a	 “detrimental	 effect	 modification”	 hypothesis).	 Such	 a	
hypothesis	 is	 consistent	 with	 the	 observation	 that	 some	
(although	 not	 all)	 types	 of	 chemotherapy	 are	 associated	
with	 lymphocytopenia.45	 On	 the	 other	 hand,	 it	 was	 also	
recognized	 that	 some	 chemotherapeutic	 effects	 are	 me-
diated	 through	 the	 immune	 system,46	 and	 in	 that	 sense	
the	opposite	trend	might	have	been	expected	a	priori,	that	
is,	 one	 would	 at	 least	 expect	 prior	 chemotherapy	 to	 be	
synergistic	 with	 prior	 PD1	 inhibition	 and	 to	 be	 perhaps	
synergistic	with	the	novel	immunotherapy	as	well	(in	the	
latter	case,	this	would	be	a	“beneficial	effect	modification”	
hypothesis).

Naïvely,	 one	 might	 suppose	 that	 the	 observed	 phase	
I	results	provide	some	support	 for	 the	detrimental	effect	
modification	 hypothesis,	 but	 the	 nonrandomized	 nature	
of	the	comparison	requires	careful	consideration.	To	char-
acterize	the	potential	biases	in	this	nonrandomized	com-
parison,	a	DAG	was	developed,	 represented	 in	Figure 2.	
In	 addition	 to	 the	 variables	 already	 described,	 this	 DAG	
includes	CPI	resistance	as	a	cause	of	both	prior	tumor	re-
sponse	and	tumor	response	 in	the	phase	I	 trial.	 (For	pa-
tients	 with	 a	 history	 of	 sequential	 therapy,	 prior	 tumor	
response	may	be	understood	as	either	 failure	on	both	of	
their	prior	 therapies	or	else	success	on	at	at least one	of	
those	therapies.)	The	DAG	includes	an	arrow	from	the	CPI	
resistance	node	to	the	prior	tumor	response	node	because	
patients	with	higher	levels	of	CPI	resistance	are	less	likely	
to	respond	to	PD1	inhibitors	(PD1	inhibition	is	a	type	of	
checkpoint	 inhibition).	 The	 novel	 therapeutic	 regimen	
also	 included	a	PD1	 inhibitor	as	one	of	 its	 components,	
so	an	arrow	is	drawn	from	CPI	resistance	to	phase	I	tumor	
response	as	well.

Analysis	of	backdoor	paths	in	the	DAG	revealed	that	
(unavoidable)	conditioning	on	prior	tumor	response	had	
opened	up	a	“backdoor	path,”25	a	 fact	 that	can	be	veri-
fied	manually	using	 the	definition	or	programmatically	
using	the	DAGitty	R	package	or	via	interactive	use	of	the	
DAGitty	web	application.39	Programmatic	verification	is	
illustrated	in	Supplementary	Material	S1	for	this	article.	

The	existence	of	this	backdoor	path	implies	that	the	ob-
served	 association	 between	 prior	 treatment	 and	 tumor	
response	 is	 biased	 with	 respect	 to	 the	 true	 causal	 rela-
tionship.	This	 particular	 backdoor	 path	 would	 be	 elim-
inated	 if	we	also	conditioned	on	CPI	 resistance	 (which	
could	be	done	via	covariate	adjustment),	but	for	present	
purposes	 we	 will	 suppose	 that	 this	 adjustment	 was	 not	
made.

The	essential	 intuition	related	 to	 this	backdoor	path	
is	 that	prior	 failure	on	either	of	 the	historical	regimens	
may	be	a	marker	 for	CPI	resistance,	but	perhaps	not	 to	
the	 same	 degree.	 As	 already	 mentioned,	 chemother-
apy	is	expected	to	be	synergistic	with	PD1	inhibition.	If	
true,	this	would	have	created	a	selection	effect:	those	in	
the	current	phase	I	study	who	failed	to	respond	to	prior	
combination	 therapy	 may	 have	 been	 harder	 to	 treat	
(i.e.,	may	have	had	greater	CPI	resistance)	from	the	very	
beginning—	prior	 to	 any	 treatment	 whatsoever—	than	
those	in	the	current	study	who	failed	to	respond	to	prior	
sequential	therapy.	To	explain	the	observed	association,	
therefore,	 it	suffices	 to	hypothesize	that	prior	combina-
tion	therapy	was	more	efficacious	than	prior	sequential	
therapy	 in	CPI-	resistant	patients,	without	 invoking	any	
effect	 modification	 hypotheses.	 Indeed,	 retrospective	
feedback	from	key	opinion	leaders	was	that	there	was	no	
plausible	explanation	for	a	better	response	in	the	cohort	
that	 previously	 received	 sequential	 treatment	 and	 that	
there	may	have	been	a	selection	bias	for	better	patients	in	
that	cohort	(without	commenting	on	the	mechanism	of	
the	selection	bias).

F I G U R E  2  A	directed	acyclic	graph	developed	to	characterize	
potential	biases	in	an	analysis	of	a	phase	I	oncology	study.	
Elicitation	from	subject	matter	experts	indicated	that	checkpoint	
inhibitor	(CPI)	resistance	would	have	potentially	affected	both	
prior	tumor	response	and	tumor	response	in	the	phase	I	study.	In	
the	absence	of	any	conditioning,	the	backdoor	path	through	prior	
response	would	be	closed	and	so	would	not	introduce	any	bias.	
However,	the	phase	I	study	(necessarily)	only	enrolled	patients	who	
had	failed	prior	therapies,	which	amounts	to	conditioning	on	prior	
tumor	response(s).	Conditioning	on	this	collider	node	opens	the	
backdoor	path	(shown	in	red),	signaling	that	the	apparent	affect	of	
treatment	history	is	biased.
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We	 note	 that	 the	 DAG-	based	 analysis	 could	 also	 have	
been	applied	before	any	data	were	available,	that	is,	it	could	
have	been	recognized	at	the	outset	that	the	phase	I	study	
would	 not	 be	 capable	 of	 generating	 evidence	 in	 support	
of	(or	against)	an	effect	modification	hypothesis.	Or,	more	
subtly,	it	could	have	been	recognized	at	the	outset	that	the	
phase	I	study	would	only	be	capable	of	providing	evidence	
for	 or	 against	 effect	 modification	 to	 the	 extent	 that	 one	
could	successfully	adjust	for	CPI	resistance.	Among	other	
things,	this	would	highlight—	at	the	planning	stages—	the	
importance	of	having	a	good	measure	of	CPI	resistance.

Interpreting effects for correlated  
covariates

In	 any	 regression	 model,	 the	 effect	 estimate	 for	 a	 given	
covariate	may	change	substantially	when	a	correlated	co-
variate	 is	added	 to	 the	model.	This	phenomenon	 is	very	
familiar	to	the	pharmacometrics	community	and	has	led	
to	various	correlation-	based	“rules	of	thumb”	for	flagging	
correlations	 that	 could	 compromise	 the	 interpretation	
of	 effect	 estimates.47	Such	 rules	of	 thumb,	proposed	 ini-
tially	as	guides	to	prompt	careful	reflection,	have	unfortu-
nately	been	interpreted	at	times	as	definitive	proscriptions	
against	 ever	 including	 highly	 correlated	 covariates	 in	 a	
model.	From	a	causal	perspective,	this	proscriptive	stance	
seems	to	labor	under	a	false	premise	that	estimates	of	co-
variate	effects	should	always	strive	to	be	unbiased	with	re-
spect	to	total	causal	effects,	an	unnecessary	requirement	
in	many	cases.

For	example,	in	modeling	the	pharmacokinetics	of	a	
drug	 that	 is	 at	 least	 partially	 renally	 cleared,	 it	 would	
be	 common	 to	 consider	 both	 age	 and	 EGFR	 (assumed	
here	 to	 be	 expressed	 per	 unit	 of	 body	 surface	 area)	 as	
potential	covariates.	The	correlation	between	these	two	
variables	 can	 easily	 exceed	 (in	 absolute	 value)	 rule-	of-	
thumb	 thresholds	 such	 as	 0.6,	 potentially	 prompting	
less-	experienced	 pharmacometric	 modelers	 to	 agonize	
over	 the	 simultaneous	 inclusion	 of	 both	 covariates.	
More	illuminating	guidance	can	be	offered	in	such	cases	
by	 drawing	 a	 DAG	 based	 on	 prior	 knowledge,	 analyz-
ing	 it	 for	 backdoor	 paths,	 and	 adjusting	 analyses	 and	
interpretations	accordingly.	Such	a	DAG	in	this	case	 is	
likely	to	reflect	the	prior	knowledge	that	the	aging	pro-
cesses	 typically	 causes	 a	 decline	 in	 renal	 function	 (re-
flected	by	the	arrow	from	age	to	EGFR	in	Figure 3)	and	
might	also	(depending	on	the	drug)	reflect	a	prior	belief	
that	other	age-	related	processes	also	affect	exposure	(re-
flected	by	the	arrow	directly	from	age	to	exposure;	note	
that	 for	 simplicity	we	have	not	 specified	other	mediat-
ing	 variables	 such	 as	 would	 be	 involved	 in,	 e.g.,	 a	 he-
patic	 clearance	 mechanism;	 recall	 that	 the	 DAG	 needs	

to	 encapsulate	 our	 prior	 causal	 knowledge	 only	 to	 the	
extent	 required	 by	 the	 completeness	 criteria	 discussed	
previously).

In	such	a	context,	there	are	at	least	two	distinct	causal	
questions	related	to	renal	impairment	that	are	potentially	
of	interest:

Q1.	 What	 is	 the	 causal	 effect	 of EGFR (expressed per 
unit of body surface area)	 on	 exposure?	 For	 ex-
ample,	 how	 would	 exposures	 differ	 if—	an	 entirely	
hypothetical	scenario—	we	could	somehow	intervene	
to	 improve	 EGFR	 while	 holding	 everything	 else	
constant?	 (Strictly	 speaking,	 an	 estimate	 of	 GFR	
is	 not	 a	 cause	 of	 physiological	 or	 pharmacokinetic	
processes,	but	to	simplify	matters	we	will	gloss	over	
the	 difference	 between	 GFR	 and	 EGFR.)

Q2.	 What	 is	 the	 causal	 effect	 of dose level	 on	 exposure	
in	a	clinically	identifiable	subpopulation	defined	by	
an	EGFR	threshold,	for	example,	what	would	expo-
sures	be	in	the	subpopulation	if	they	received	a	lower	
dose?

We	 begin	 by	 noting	 that	 Q1,	 despite	 its	 hypothetical	
nature,	is	a	question	of	definite	import,	as	implied	by	US	
Food	and	Drug	Administration	guidance	 to	evaluate	 the	
potential	for	confounding	due	to	baseline	factors	such	as	
age	when	estimating	the	pharmacokinetic	effects	of	renal	
function48	 (a	 concern	 with	 confounding	 would	 be	 inco-
herent	if	the	causal	effect	of	renal	impairment	per	se	were	
not	of	interest).	Having	established	this,	we	now	examine	
question	Q1	with	the	benefit	of	a	causal	 lens.	Assuming	
one	accepts	the	basic	causal	assumptions	embedded	in	the	
DAG	in	Figure 3a	on	the	basis	of	prior	knowledge,	it	fol-
lows	that	there	is	a	“backdoor	path”	through	age	(shown	
in	red	in	Figure	3)	that	connects	EGFR	to	exposure.	This	
backdoor	path	can	only	be	closed	by	conditioning	on	age,	
and	 we	 can	 only	 condition	 on	 age	 if	 we	 include	 this	 as	
a	covariate	 in	our	model	 (the	existence	of	 this	backdoor	
path	can	be	discovered	and/or	confirmed	using	DAGitty	in	
the	event	that	one	does	not	want	to	work	manually	from	
the	definitions).	The	need	to	adjust	for	age	would	only	be	
obviated	if	we	(a	priori)	eliminated	the	arrow	connecting	
age	to	exposure,	corresponding	to	a	strong	prior	assump-
tion	 that	 the	 effect	 of	 age	 on	 exposure	 is	 entirely	 medi-
ated	by	its	effect	on	renal	function	(this	relatively	strong	
assumption	could	be	warranted	in	a	context	where	there	
was	 strong	 prior	 evidence	 of	 an	 entirely	 renal	 clearance	
mechanism	but	would	probably	be	unjustified	otherwise).	
Thus,	far	from	proscribing	the	simultaneous	inclusion	of	
these	 two	 correlated	 covariates,	 the	 DAG-	based	 analysis	
shows	 that	 (in	 the	 absence	 of	 a	 strong	 assumption)	 the	
inclusion	of	both	covariates	is	necessary	if	one	wishes	to	
estimate	the	causal	effect	of	EGFR	on	exposure.



38 |   ROGERS et al.

What	about	questions	related	to	Q2,	for	example,	what	
is	required	if	we	want	to	estimate	the	effect	of	dose	level	
on	exposure	in	a	subpopulation	defined	by	an	EGR	thresh-
old?	 In	 the	 simplest	of	 cases,	 if	our	analysis	were	based	
only	on	a	single	study	in	which	dose	level	had	been	ran-
domized	(thereby	removing	the	possibility	of	confounding	
the	effects	of	dose),	it	would	suffice	to	include	only	EGFR	
in	the	model	and	then	simulate	exposures	 in	the	EGFR-	
restricted	population.	More	commonly,	however,	pharma-
cometric	datasets	will	include	multiple	studies,	each	with	
potentially	different	inclusion/exclusion	criteria.	In	such	
a	multistudy	context,	both	age	and	EGFR	could	easily	be	
causes	 of	 dose	 level,	 for	 example,	 if	 higher	 doses	 were	
only	 given	 in	 earlier	 studies	 that	 enrolled	 subjects	 with	
age	and	EGFR	restrictions	(confounding	of	this	nature	is	

a	hallmark	of	analyses	based	on	integrated	evidence).	The	
resulting	DAG	in	that	case	would	include	backdoor	paths	
through	age	and	EGFR	connecting	dose	to	exposure,	 in-
dicated	in	red	in	Figure 3c.	As	such,	closure	of	backdoor	
paths	would	require	conditioning	on	both	age	and	EGFR	
and	so	would	require	the	inclusion	of	both	covariates	in	
the	 model.	 Given	 an	 outcome	 model	 with	 both	 of	 these	
covariates	included,	the	causal	effect	of	dose	level	may	be	
computed	 by	 g- formula,	 as	 illustrated	 in	 Supplementary	
Material	S1.

In	summary,	adequate	answers	to	questions	Q1	and	Q2	
will	in	most	cases	require	inclusion	of	both	age	and	EGFR,	
regardless	of	the	correlation	between	these	two	variables	
(so	long	as	this	correlation	is	less	than	one	to	avoid	strict	
problems	of	nonidentifiability).

F I G U R E  3  Directed	acyclic	graphs	(DAGs)	for	determining	whether	to	include	the	correlated	covariates	age	and	estimated	glomerular	
filtration	rate	(EGFR)	in	a	population	pharmacokinetic	model.	If	prior	knowledge	suggests	that	the	effects	of	age	will	be	partially	but	not	
entirely	mediated	by	EGFR,	then	failure	to	adjust	for	age	leaves	open	a	backdoor	path	(depicted	in	red),	signaling	a	potentially	biased	
estimate	for	the	effect	of	EGFR	on	plasma	concentration	(a).	This	backdoor	path	would	be	closed	by	adjusting	for	age,	that	is,	including	age	
as	an	additional	covariate.	If	it	were	not	possible	to	adjust	for	age,	one	could	simply	state	as	a	caveat	to	interpretation	that	the	estimated	
effect	of	EGFR	will	only	be	unbiased	if	the	effects	of	age	are	entirely	mediated	through	EGFR;	in	this	case,	a	DAG	could	be	helpful	for	
communicating	the	assumption	underlying	the	caveat	(b).	When	multiple	studies	are	represented	in	the	dataset,	age	and	EGFR	may	be	
causal	determinants	of	dose	(because	of	inclusion/exclusion	differences	in	the	various	studies).	In	such	a	case,	failure	to	adjust	for	either	
age	or	EGFR	will	result	in	biased	estimates	for	the	effect	of	dose	(represented	in	yellow	to	indicate	that	this	is	now	the	explantory	variable	
of	interest)	on	plasma	concentration,	signaled	in	this	case	by	the	red	pathway	passing	through	age	when	this	variable	is	not	in	the	outcome	
model	(c).	When	both	age	and	EGFR	are	included	in	the	model,	the	direct	(not	EGFR-	mediated)	effect	of	age	(now	represented	as	the	
explanatory	variable	of	interest)	can	still	be	estimated	(depicted	with	thick	black	arrow),	but	adjustment	for	EGFR	prevents	estimation	of	the	
total	effect	of	age	(d).
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Our	 previous	 discussion	 has	 neglected	 questions	
related	 to	 the	 causal	 effect	 of	 age.	 Given	 the	 DAG	 in	
Figure 3d,	 the	 inclusion	of	EGFR	as	a	covariate	permits	
the	unbiased	estimation	of	the	direct	causal	effect	of	age,	
but	 prevents	 the	 unbiased	 estimation	 of	 the	 total	 causal	
effect	of	age.	Given	space	constraints	 for	 this	article,	we	
simply	invite	the	reader	to	consider	which	(if	any)	of	these	
two	estimands	is	likely	to	be	of	interest.

CONCLUDING REMARKS

As	 suggested	 by	 the	 citations	 in	 our	 introductory	 sec-
tion,	causal	concepts	are	being	leveraged	with	increas-
ing	frequency	in	a	number	of	disciplines	that	intersect	
with	 pharmacometrics,	 including	 epidemiology	 and	
AI/ML.	 This	 observation	 gave	 rise	 to	 one	 of	 our	 goals	
in	writing	this	tutorial:	to	foster	cross-	disciplinary	dia-
logue	by	way	of	helping	pharmacometricians	to	become	
more	conversant	in	the	language	and	notation	of	causal	
inference.

Although	 we	 are	 indeed	 very	 hopeful	 that	 causal	
inference	 may	 provide	 a	 basis	 for	 new	 interdisciplin-
ary	directions	in	pharmacometric	research,	we	wish	to	
emphasize	that	causal	 inference	is	not	merely	periph-
eral	to	our	field	of	study	but,	rather,	is	central	and	even	
foundational	to	it.	In	his	highly	influential	1989	article,	
Sheiner	called	attention	to	the	importance	of	address-
ing	 “what	 if”	 questions4	 (notably,	 What If	 is	 now	 the	
title	 of	 one	 of	 the	 definitive	 references	 on	 causal	 in-
ference	 that	 has	 been	 cited	 throughout	 this	 article37).	
Soon	 thereafter,	 Sheiner	 came	 to	 articulate	 his	 advo-
cacy	for	“theory”	(as	distinct	from	mere	“empiricism”)	
and	 his	 related	 critique	 of	 the	 excessive	 emphasis	 on	
intention-	to-	treat	 estimands49	 using	 Rubin's	 potential	
outcomes	 framework.5	 Current	 beneficiaries	 of	 these	
efforts	 within	 pharmacometrics	 have	 perhaps	 varying	
degrees	 of	 awareness	 as	 to	 the	 role	 played	 by	 formal	
causal	 inference	 in	 their	 own	 intellectual	 pedigree.	
Nonetheless,	 the	 enduring	 and	 far-	reaching	 nature	
of	 that	 work	 (extending	 beyond	 the	 pharmacometric	
community,	as	evidenced	by	its	recent	permeation	into	
statistical	regulatory	guidance,22,50	for	example)	seems	
at	 least	 partly	 attributable	 to	 the	 decision	 of	 Sheiner	
and	Rubin	to	phrase	their	arguments	in	the	formal	lan-
guage	of	causal	inference.	Our	hope	is	that	by	fostering	
a	 greater	 awareness	 of	 this	 formal	 language,	 we	 will	
enable	 pharmacometricians	 to	 more	 comfortably	 nav-
igate	both	the	periphery	and	the	deepest	roots	of	their	
discipline.
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