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Abstract
Introduction Type 1 diabetes (T1D) is caused by the destruction of pancreatic islet beta cells resulting in total loss of insulin 
production. Recent studies have suggested that the destruction may be interrelated to plasma lipids.
Objectives Specific lipids have previously been shown to be decreased in children who develop T1D before four years of 
age. Disturbances of plasma lipids prior to clinical diagnosis of diabetes, if true, may provide a novel way to improve predic-
tion, and monitor disease progression.
Methods A lipidomic approach was utilized to analyze plasma from 67 healthy adolescent subjects (10–15 years of age) 
with or without islet autoantibodies but all with increased genetic risk for T1D. The study subjects were enrolled at birth in 
the Diabetes Prediction in Skåne (DiPiS) study and after 10–15 years of follow-up we performed the present cross-sectional 
analysis. HLA-DRB345, -DRB1, -DQA1, -DQB1, -DPA1 and -DPB1 genotypes were determined using next generation 
sequencing. Lipidomic profiles were determined using ultra-high-performance liquid chromatography quadrupole time-of-
flight mass spectrometry. Lipidomics data were analyzed according to genotype.
Results Variation in levels of several specific phospholipid species were related to level of autoimmunity but not development 
of T1D. Five glycosylated ceramides were increased in insulin autoantibody (IAA) positive adolescent subjects compared 
to adolescent subjects without this autoantibody. Additionally, HLA genotypes seemed to influence levels of long chain 
triacylglycerol (TG).
Conclusion Lipidomic profiling of adolescent subjects in high risk of T1D may improve sub-phenotyping in this high risk 
population.
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PE(P)  Phosphatidylethanolamine plasmalogen
PI  Phosphatidylinositol
PG  Phosphatidylglycerol
PS  Phosphatidylserine
SM  Sphingomyelin
T1D  Type 1 diabetes
TG  Triacylglycerol
ZnT8A  Zinc Transporter 8 autoantibody

1 Introduction

Type 1 diabetes (T1D) is an autoimmune disorder caused 
by destruction of the pancreatic islet beta cells resulting in 
total loss of insulin production (Insel et al. 2015; Katsarou 
et al. 2017). Lifelong treatment with daily injections of insu-
lin is needed to sustain life. T1D is strongly associated with 
HLA-DR-DQ. Circulating islet autoantibodies are robust 
biomarkers for beta-cell autoimmunity and increased risk for 
progression to clinical onset of T1D (Krischer et al. 2015, 
2017a, b; Verge et al. 1996; Ziegler et al. 2013). Presence 
of islet autoantibodies may precede clinical onset months to 
years (Ilonen et al. 2013; Ziegler and Nepom 2010; Ziegler 
et al. 2013).

Studies have shown that a faster progression to clinical 
T1D is related to the number of islet autoantibodies (Knip 
et al. 2010; Verge et al. 1996; Ziegler et al. 2013). As in the 
previously described staging of T1D (Insel et al. 2015), pro-
gression from multiple autoantibodies (Stage 1) to clinical 
onset T1D (Stage 3) may also be affected by genetic, primar-
ily non-HLA genetic factors, in addition to environmental 
factors (Söderström et al. 2012; Stene et al. 2010). It is still 

unknown how islet autoimmunity is triggered and why some 
children progress to T1D and others do not.

Children who develop T1D before the age of 4 years have 
previously been found to have significantly less phospho-
lipids at birth than healthy controls (La Torre et al. 2013). 
Another study investigated differences in serum from chil-
dren followed from birth until clinical T1D and healthy 
controls and found that a distinct cord blood lipidomic 
profile characterized T1D progressors, a molecular signa-
ture of seven lipids predicted high risk for progression to 
T1D (Oresic et al. 2013). If altered blood lipid composi-
tion reflects increased risk for T1D, lipidomics may provide 
a new mean for identifying biomarkers for progression to 
islet autoimmunity and T1D. Here we investigate lipidomic 
profiles in adolescent subjects with a high-risk HLA geno-
type who have not progressed to T1D and if lipid patterns 
could be tied to the HLA genotypes. We further investigate 
if there are any differences in plasma lipidomic composition 
in relation to number of islet autoantibodies known to be 
associated with an increased risk for T1D.

2  Materials and methods

2.1  Study participants

Blood samples were collected from adolescent subjects 
(n = 67), aged 10–15 years, at increased risk of T1D enrolled 
in the Diabetes Prediction in Skåne (DiPiS) study (Larsson 
et al. 2005; Lundgren et al. 2014) as previously described 
(Andersson Svärd et al. 2020) (Table 1). DiPiS is a pro-
spective population-based study, following children from 

Table 1  Children (n = 67) at an increased risk of T1D, stratified by the number of islet autoantibodies detected at cross-sectional sampling, that 
have been followed in the Diabetes Prediction Study in Skåne (DiPiS)

Autoimmunity burden is measured as area under the curve of islet autoantibodies during DiPiS follow-up. Variances between groups were 
assessed for age at sampling (One-Way ANOVA), gender distribution (Chi-square test), autoimmunity burden (Kruskal–Wallis test) and high 
HLA risk (HLA-DQ2/8). P values were corrected for multiple comparisons using the Benjamini–Hochberg method. P values were considered 
significant < 0.05 and all statistical analysis were performed in SPSS from IBM. Age at sampling and gender were not significant. Autoimmunity 
burden and HLA-DQ2/8 genotype were presumed to vary between groups

Study subjects (n = 67) No autoantibodies (n = 26) One autoantibody (n = 23) Multiple autoantibodies (n = 18) p value

Females, n (%) 14 (53.8) 11 (47.8) 10. (55.6) 0.867
Age (years), mean (sd) 13.18 (1.38) 12.98 (1.07) 12.72 (1.11) 0.459
Autoimmunity burden, mean (sd) 2.34 (3.63) 5.73 (3.01) 15.08 (7.09) 4.54E−9
HLA-DQ2/8, n (%) 25 (96.2) 12 (52.2) 4 (22.2) 3E−6
Medium levels (interquartile ranges) of autoantibody titers (U/mL) at sampling
 GADA 12.31 (7.60–14.69) 278.75 (38.81–259.91) 436.07 (50.35–736.36)
 IA-2A 1.39 (0.77–1.73) 1.71 (1.09–1.81) 1260.81 (18.21–951.00)
 IAA 0.14 (0.00–0.17) 12.18 (0.00–0.32) 20.97 (0.34–3.56)
 ZnT8RA 13.83 (8.85–16.42) 15.30 (10.15–16.81) 243.63 (17.37–117.23)
 ZnT8WA 15.46 (8.39–21.75) 14.91 (7.61–19.87) 102.25 (3.92–78.23)
 ZnT8QA 14.61 (7.06–21.55) 19.55 (10.61–19.55) 169.78 (16.16–115.93)
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birth with the aim to investigate genetic and environmen-
tal factors that may contribute to the development of T1D 
(Elding Larsson 2016). Briefly, individuals with either T1D 
high-risk HLA defined by HLA-DR-DQ genotypes, a first 
degree relative with T1D, islet autoantibodies detected in 
cord blood, or a mother with gestational diabetes (Larsson 
et al. 2004, 2005) were identified by screening newborn chil-
dren (n = 35,000). Children (n = 03,889) with increased risk 
of T1D were followed either annually (none or 1 autoanti-
body) or every third month (2 or more autoantibodies) from 
2 years of age until 15 years of age or diagnosis of diabetes, 
whichever occurred first. The eligibility criteria for enrol-
ment in the present study was high-risk HLA-DQ. Out of 
98 DiPiS participants who were asked to participate, 67 
(68%) subjects agreed to participate (Table 1). A schematic 
representation of the DiPiS timeline and cross-sectional 
study sampling is presented in Fig. 1. The participants were 
not instructed to fast before blood draw. The participants 
donated blood to the present study during their annual DiPiS 
visit. Originally this study cohort was obtained primarily to 
test the hypothesis that the number of islet autoantibodies 
affect cell surface HLA-DQ expression on blood leukocytes 
(Andersson Svärd et al. 2020).

The current cohort represent subjects at various stages 
of the pathogenesis (Andersson Svärd et al. 2020; Insel 
et al. 2015). Blood glucose and HbA1c were available for 
all participants with intense follow-up. The measurements 
were normal (p-glucose < 11.1 mmol/L and HbA1c ranged 
between 27 and 40 mmol/mol American Diabetes 2018) 
and the children with two or more islet autoantibodies 
would belong to Stage 1 in the current nomenclature (Insel 
et al. 2015).

2.2  Islet autoantibodies

Autoantibodies against insulin (IAA), glutamate decarbox-
ylase (GADA), insulinoma-associated protein-2 (IA-2A) 
and three variants of Zinc Transporter 8 (ZnT8A) against 
arginine, tryptophan or glutamine at position 325 (R/W/Q, 
respectively) were analyzed in plasma using in-house meth-
ods. The autoantibodies have been measured annually or 
quarterly in sera or plasma throughout the DiPiS study as 
well as our cross-sectional sample (Fig. 1b) as previously 
described (Andersson Svärd et al. 2020). Autoantibodies in 
the cross-sectional samples were analyzed in plasma from 
blood diluted 1:2 in RPMI1640 for n = 24 subjects as well as 
both in plasma from undiluted blood and plasma from blood 
diluted 1:2 in RPMI1640 for n = 43 subjects.

Intra-assay and inter-assay coefficients of variation, 
respectively, in the cross-sectional samples were 6.9% and 
8.5% for GADA, 9.8% and 6.4% for IA-2A, 10.0% and 
11.6% for screening of IAA, 7.4% and 6.8% for IAA COMP, 

9.8% and 1.2% for ZnT8RA, 9.8% and 4.4% for ZnT8WA, 
and 9.6% and 5.0% for ZnT8QA.

Islet Autoantibody Standardization Program (IASP) help 
evaluate and harmonize laboratory autoantibody assays. Our 
laboratory is part of IASP and at the 2018 serum exchange, 
sensitivity and specificity was set at 64.0% and 94.5%, 
respectively, for GADA; 62.0% and 100.0%, respectively, 
for IA-2A; 18.0% and 96.7%, respectively, for IAA; 40.0% 
and 100.0%, respectively, for ZnT8RA; 54.0% and 100.0%, 
respectively, for ZnT8WA; as well as 52.0% and 100.0%, 
respectively, for ZnT8QA.

2.3  HLA next generation sequencing

Dried blood spot punch-outs (6 mm) were sent blinded to 
Cisco Systems, Inc. (Seattle, USA) to perform Next Genera-
tion Sequencing (NGS) of HLA Class II -DRB345, -DRB1, 
-DQA1, -DQB1, -DPA1 and -DPB1. Briefly, PCR-based 
HLA amplification and sequencing with Illumina MiSeq 
technology is used in HLA NGS as previously described 
(Zhao et al. 2016). Extended HLA haplotypes were assem-
bled with help from allelic information and an online data-
base (Allele Frequencies in Worldwide Population, http://
www.allel efreq uenci es.net) (Kempson et al. 2014).

2.4  Lipidomics

Lipidomic profiling was performed on plasma samples origi-
nating from whole blood samples diluted 1:2 in RPMI1640 
media before isolation of plasma. The dilution of whole 
blood with media did not influence the lipid extraction prod-
uct as evaluated by pilot studies (data not shown).

Extraction of lipids were performed by the following pro-
cedure: 10 µL of plasma sample, technical quality control 
sample and pools of plasma, and standards were added 10 µL 
of 0.9% NaCl, 28 µL of a standard mix containing 14 differ-
ent synthetic lipids [lipid standard mix contained: 1.000 µg/
mL PE (17:0/17:0), 0.850 µg/mL SM (d18:1/17:0), 0.995 µg/
mL Cer (d18:1/17:0), 1.215 µg/mL PC (17:0/17:0), 1.022 µg/
mL LPC (17:0), 1.000 µg/mL PC (14:0/d13), 1.000 µg/mL 
TG (16:0/16:0/16:0)-13C3, 1.000 µg/mL TG (8:0/8:0/8:0)-
13C3, 1.000 µg/mL PC (16:0/d31/18:1), 1.006 µg/mL PG 
(17:0/17:0), 1.003 µg/mL PS (17:0/17:0), 1.091 µg/mL PA 
(17:0/17:0), 1.067 µg/mL TG (15:0/15:0/15:0), 1.281 µg/
mL TG (19:0/19:0/19:0)] and 92 µL of chloroform:methanol 
(2:1, v/v) and were vortexed and left incubating on ice for 
30 min. Phases were separated by centrifuging the samples 
for 3 min at 10,000 rpm at 4 °C and subsequently 60 µL of 
the lower phase were transferred by first pipetting 60 µL of 
chloroform:methanol (2:1, v/v) into HPLC glass vials with 
glass inserts, and using the same tip, transferring the lower 
phase from the samples to the glass vials. The order of the 
samples was randomized before the LC–MS analysis.

http://www.allelefrequencies.net
http://www.allelefrequencies.net
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Lipid extracts were analyzed using an ultra-high-perfor-
mance liquid chromatography quadrupole time-of-flight 
mass spectrometer (UHPLC-Q-TOF-MS) operated in the 
positive ion mode. The column was an Acquity UPLC™ 

BEH  C18 2.1 × 100 mm with 1.7 µm particles from Waters 
(Milford, CT, USA). Column temperature was kept at 
50 °C and the temperature of the autosampler was set at 
10 °C. The binary solvent system consisted of A: water 

Fig. 1  Schematic of the Diabetes Prediction in Skåne (DiPiS) study 
timeline and time of sampling. a Schematic of the Diabetes Predic-
tion in Skåne (DiPiS) study timeline and cross-sectional study sam-
pling that outline key events of enrolment and follow-up in DiPiS 
and sampling in the present study. Children with increased risk of 
T1D were followed from 2 years of age either annually (none or one 
autoantibody) or every 3 months (if two or more islet autoantibod-
ies were detected at any earlier visit) until the age of 15 or diagno-
sis of T1D. The sampling into our study was divided in two parts, 
part 1 where n = 21 subjects were sampled and part 2 where n = 46 

subjects were sampled. b The timeline plot shows the visits (circles 
for visits as part of DiPiS follow-up, stars for time of sampling into 
our study)  and autoantibody count (0 = green, 1 = yellow, 2+ = red). 
During follow-up, 13 children have never tested positive for an 
autoantibody, 33 tested positive for 1 autoantibody at least once dur-
ing follow-up, and 21 tested positive for multiple autoantibodies at 
least once. Autoimmunity burden, measured as area under the curve 
of autoantibodies during DiPiS follow-up, is presented to the right 
(Color figure online)
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(1% 1 M  NH4Ac, 0.1% HCOOH) and B: LC–MS grade 
isopropanol∶acetonitrile (1∶1, 1% 1 M  NH4Ac, 0.1% 
HCOOH). The gradient started from 65% A/35% B and 
reached 80% B in 2 min, 100% B in 7 min and remained 
at this level for next 7 min. The total run time, including a 
7 min re-equilibration step, was 20 min. The flow rate was 
400 µL/min and the injection volume of each sample 1 µL. 
The mass spectrometer was a 6550 iFunnel quadrupole time 
of flight from Agilent technologies (Agilent) interfaced with 
a dual jet stream electrospray ion source.

The acquisition mass range was m/z 100–1700 and the 
instrument was run using the extended dynamic range with 
an approximate resolution of 30,000 FWHM measured at 
m/z 1521.9715 (which is included in the tune mixture) dur-
ing calibration of the instrument. Data were acquired using 
the MassHunters B.06.01 (Agilent) (Lankinen et al. 2011).

2.5  Data analysis

2.5.1  Lipidomics

The open source software processing tool MZmine 2.21 
was used to process the data obtained from the lipidomic 
analysis. Features in the spectra were annotated based on 
the internal spectral library and the LipidMaps online data-
base. Features originating from the internal standards were 
detected in a targeted way based on the standard runs. Other 
features in the samples were processed by the following pro-
cedure: first the raw data was imported and next reduced 
using a crop filter resulting in a copy of the raw data file only 
including scans in the m/z range of 200–1000 and retention 
time range of 2.4–13.6 min. Mass detection was performed 
with the noise minimum intensity level limit set to 2.3E3. 
Chromatogram building was achieved using a minimum time 
span of 0.06 min between ions, minimum intensity of the 
highest data point of 6E3, and maximum difference between 
data points of m/z 0.005 (or 5 ppm).

The Local minimum search method was used for chroma-
togram deconvolution with, chromatogram threshold = 70%, 
minimum retention time range = 0.05  min, minimum 
relative height = 5%, minimum absolute height = 7.5E3, 
minimum ratio of peak top/edge = 1, and peak duration 
range = 0.06–1.0 min. Chromatograms deisotoping was 
performed using the isotopic peak grouper algorithm with 
the settings of m/z tolerance of 0.001 (or 10 ppm), and RT 
tolerance of 0.05 min, with most intense ion kept. The peak 
list was filtered to exclude false signals by using the set-
tings for peak detection requiring 8–200 data points, 0–2 
FWHM, a tailing factor between 0.36 and 2 and an asym-
metry factor between 0.33 and 3. Subsequently, the peak 
list was row filtered for removing all rows which did not 
meet the requirement of minimum peaks in a row = 1. Peak 
alignment was achieved using join aligner method [m/z 

tolerance 0.006 (or 10.0 ppm), weight for m/z = 2, absolute 
RT tolerance = 0.2 min], absolute RT tolerance of 1 min, 
and a threshold value of 1. The peak list was row filtered 
again with minimum peaks in a row to 50% of total sample 
number. The peak list was afterwards gap-filled with the 
same RT and m/z range gap filler (m/z tolerance at 0.005 
or 5 ppm) and was again row filtered. Finally, the peak list 
was annotated using internal library and the online data-
base LipidMaps (https ://www.lipid maps.org/ ) with an m/z 
tolerance of 0.002 m/z or 10.0 ppm and a RT tolerance of 
0.1 min. The annotation of features was based on equiva-
lent injected standards (level 1) and structure information 
obtained previously with MS2 (level 2) (Sumner et al. 2007). 
The quality of all peaks that were successfully annotated 
based on the internal library were manually inspected. Poor 
quality features and features without annotation were dis-
carded for further analysis.

2.5.2  Normalization of lipid data

The final peak list with annotations was imported into 
the free statistical environment R (R Development Core 
Team 2010) and the peak areas of the features were normal-
ized to the internal standard with the highest correlation with 
the feature in question. The matched internal standard was 
used for normalizing the feature with the aim of removing 
technical variation from the measurements. Percentage rela-
tive standard deviation (%RSDs) in pooled study samples 
was calculated for peak areas for each identified lipid and a 
threshold of 20% was used.

2.5.3  Nomenclature and annotation of lipids

In this study we used the lipid convention outlined by the 
Lipid Maps Consortium. Lipids containing two fatty acid 
chains without further characterization are expressed as the 
sum composition of carbon atoms and double bonds [e.g. 
PC (38:6)]. Where acyl chains have been determined and 
the position is known, a forward-slash between acyl-chains 
is used [i.e. PC (16:0/22:6)]. The same nomenclature is used 
for other lipid classes and subclasses. Lipid species that were 
separated chromatographically were labelled with an ‘a’ or 
‘b’ and describes the elution order. The use of ‘d’ in the 
notation of the sphingomyelins refers to 1,3 dihydroxy, and 
the E/Z designation in the triglycerides is used to define 
double-bond geometry.

The lipids detected in this study was annotated accord-
ing to MSI level 2 (Members et al. 2007) by using internal 
standards added to the samples and based on mass according 
to the LipidMaps database.

https://www.lipidmaps.org/
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2.6  Statistical analyses

Variation in clinical characteristics were assessed between 
groups (Table 1) using One-Way ANOVA, Kruskal–Wal-
lis or Chi-square test in SPSS from IBM. Variation in 
lipid levels according to number of positivity for different 
numbers of autoantibodies or specificity of autoantibody 
were evaluated using Students t-test or ANOVA in R. P 
values were corrected for multiple testing using the Ben-
jamini–Hochberg (BH) approach (1995). P values < 0.05 
were considered significant.

We performed hierarchical cluster analysis to group 
patients based on their HLA profiles and haplotypes. A 
dissimilarity matrix was created by computing all the 
pairwise dissimilarities (distances) between the individual 
data points based on “Gower’s distance” within R package 
“cluster”. The dissimilarity matrix was used as input for 
hierarchical cluster analysis using agglomeration complete 
linkage method in “hclust” function in R. Agglomerative 
clustering initially starts with n clusters, where n is the 
number of observations, assuming that each of them is 
its own separate cluster. Then the algorithm identifies the 
most similar clusters using the complete linkage method 
in hclust and groups them into larger clusters. This process 
was repeated until four clusters were identified. The cluster 
statistics were assessed using “cstats” function in R.

3  Results

3.1  Demographic characteristics of healthy subjects 
with and without islet autoantibodies

The research subjects included in this study all have an 
increased genetic risk for T1D. Variances between groups 
in numbers of islet autoantibodies were assessed for age at 
sampling (One-Way ANOVA), gender distribution (Chi-
square test), autoimmunity burden (Kruskal–Wallis test) 
and high risk HLA (HLA-DQ2/8) (Chi-square test). Age 
at sampling and gender did not differ between the groups 
of no, single and multiple autoantibodies (Table 1). Auto-
immunity burden, measured as area under the curve of 
autoantibodies during DiPiS follow-up, and HLA-DQ2/8 
genotype varied significantly between the three groups of 
subjects. At the time of sampling, 13 of the subjects had 
never had detectable autoantibodies at any of the times 
measured.

To date, only 5 subjects (participant 50, 58, 64, 65, 66 
in Fig. 1) have progressed to T1D after the cross-sectional 
sampling in the present investigation. These five subjects 
who were diagnosed with T1D 6–26 months after the 
cross-sectional sampling did not differ in lipid composition 

compared to the other subjects with multiple autoantibod-
ies at sampling.

3.2  Identification and quantification of lipids 
in plasma

The lipidomic analysis detected 128 different lipid features 
that were annotated based on the internal standard. The 
detected lipids were members of the following lipid classes: 
Sphingomyelin (SM), lysophosphatidylcholine (LPC), 
phosphatidylcholine (PC), phosphatidylethanolamine (PE), 
alkylphosphatidylcholine [PC(O)], alkenylphosphatidyl-
choline [PC(P)], alkylphosphatidylethanolamine [PE(O)] 
or phosphatidylethanolamine [PE(P)], phosphatidylinositol 
(PI), cholesterol ester (CE), ceramide (Cer) and triglycerides 
(TG).

3.3  Performance of the lipidomic assay

Reproducibility of the lipidomic analysis was assessed by 
the incorporation of reference pooled plasma samples in 
the analysis sequence. The median percentage coefficient 
of variation (%CV) for the individual lipid species within 
the reference samples were 15.9%.

3.4  Lipidomic phenotypes in relation to HLA 
haplotypes

In order to identify lipidomic specific phenotypes in rela-
tion to HLA haplotypes, we performed hierarchical cluster 
analysis to first group subjects based on their HLA profiles 
and haplotypes, followed by the generation of heat maps of 
lipid expression based on the observed clusters. To show 
how observations are distributed across categories; a colored 
dendrogram (Fig. 2a), a heatmap of observations count per 
variable within each cluster (Fig. 2b), a heat map lipid 
abundance within the clusters were created for visualiza-
tion (Fig. 2c) and mean of lipid quantities based on the four 
generated clusters (Fig. 2d) were generated. The hierarchi-
cal cluster analysis identified four major clusters according 
to the HLA haplotypes. The largest cluster (Fig. 2a, red) 
includes many of the different haplotypes in the partici-
pants whereas the other three clusters (Fig. 2a, blue, green 
and gold) were defined by more specific haplotypes. The 
heat map of the mean value of the lipids within the clusters 
identifies cluster 3 as the most distinct cluster. This clus-
ter was dominated by the presence of the DPB1*20:01:01, 
DRB4*01:03:01:02N, and DPB1*13:01:01 alleles in 50% 
of the participants and the DRB4*01:01:01 allele in 75% of 
the participants. Levels of PC (O-38:6) (a) were lower and 
PC (36:5) higher in this cluster compared to the other clus-
ters. (Fig. 2d). Overall, the levels of TG (18:2/18:2/18:2) or 
TG (18:3/18:2/18:1) were decreasing from cluster 1–4 and 
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Fig. 2  Hierarchical cluster 
analysis based on the HLA pro-
files and lipid variation between 
clusters. a Hierarchical cluster 
analysis based on the HLA 
profiles of the children. b The 
heatmap shows the absolute 
counts per variable across 
the four clusters based on the 
hierarchical cluster analysis of 
HLA profiles. The deeper green 
color corresponds to a higher 
number of observations within 
a cluster. The heatmap (c) and 
(d) shows the normalized lipid 
profiles adjusted for covariates 
(age, sex and autoimmunity 
burden measured as area under 
the curve of islet autoantibod-
ies during DiPiS follow-up), 
and means of lipids, for each 
of the four HLA based clusters. 
The color-coded clusters are 
displayed on the top of the col-
umns with individual id’s. Clus-
ter 1 (in b and d) corresponds 
to red (in a and c). Cluster 2 (in 
b and d) corresponds to gold 
(in a and c). Cluster 3 (in b and 
d) corresponds to green (in a 
and c). Cluster 4 (in b and d) 
corresponds to blue (in a and c) 
(Color figure online)
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Fig. 2  (continued)
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several long chain TG were lower detected in cluster 4 [e.g., 
TG (50:1), TG (50:4a), TG (53:3 and TG (56:3)].

3.5  Lipid differences according to autoantibody 
status

Variation in the lipidome due to autoimmunity was assessed 
by dividing the subjects in two groups: negative for any 
autoantibody or positive for one or more autoantibodies 
(Fig. 3, boxplot of lipidomic variation and autoantibody 
status where lipids are corrected for age, sex and autoim-
munity burden measured as area under the curve of autoan-
tibodies during DiPiS follow-up). Three LPCs and two 
PCs were detected in significant higher levels in children 
positive for autoantibodies: LPC (16:0e)  pcorr = 0.016 (95th 
CI 0.7–2.6), LPC (18:1)  pcorr = 0.033 (95th CI 0.8–3.9), 
LPC (20:3)  pcorr = 0.049 (95th CI 0.3–2), PC (33:0)  pcorr 
= 0.042, (95th CI 0.4–2.4), PC (33:1)  pcorr = 0.003 (95th 
CI 0.8–2.6). A single SM was detected in higher levels in 
autoantibody positive research subjects: SM (d18:2/14:0) 
 pcorr = 0.013 (95th CI 0.9–3.6). One PC and one TG were 
detected in lower amounts in subjects positive for autoanti-
bodies: PC (38:5)  pcorr = 0.046 (95th CI − 6.6 to − 1.2) and 
TG (18:0/18:1/20:4)  pcorr = 0.035, (95th CI − 1.8 to − 0.4). 
Supplementary Table 1 list intersects, CI, p-value and BH 
adjusted p-value for all lipids between groups.

3.6  Levels of glucosylated ceramides (GlcCer) 
in relation to specific autoantibodies

We further investigated five glucosylated ceramides GlcCer 
(18:0/16:0), GlcCer (18:0/22:0), GlcCer (18:0/23:0), GlcCer 
(18:0/24:0) and GlcCer (18:0/24:1), which differed between 
groups, positive or negative for IAA. GlcCer were identi-
fied in spectres based on the online LipidMaps database. 
Individuals who were positive for IAA, independent of other 
autoantibodies, had significantly higher levels of the five 
GlcCer (Fig. 4). P values and confidence intervals of the 
five GlcCer are: GlcCer (18:1/16:0) p = 0.004, CI (5–95%): 
(3.35E+04 to 1.64E+05), GlcCer (18:1/22:0) p = 0.0007, 
CI (5–95%): (2.71E+03 to 1.01E+04), GlcCer (18:1/23:0) 
p = 0.0009, CI (5–95%): (1.81E+03 to 6.64E+03), GlcCer 
(18:1/24:0) p = 0.002, CI (5–95%): (2.45E+03 to 1.12E+04) 
and GlcCer (18:1/24:1) p = 0.005, CI (5–95%): (2.17E+03 
to 1.21E+04). No correlations with any of the other autoan-
tibodies were observed.

4  Discussion

Variation in blood lipids in adolescent subjects, 10–15 years 
of age, with increased genetic risk for T1D and different 
stages of autoimmunity were investigated in this study. 

Previous analysis of the DiPiS cohort characterized lipid-
omic phenotypes in DiPiS subjects who developed diabetes 
before 8 years of age (La Torre et al. 2013). The DiPiS sub-
jects in the present study had developed no, one or multiple 
islet autoantibodies but had not yet been diagnosed with 
T1D at time of blood sampling. Five subjects positive for 
one or multiple autoantibodies were diagnosed with T1D 6 
to 26 months after blood sampling.

There is a lack in understanding the triggering and pro-
gression of the autoimmune destruction of the beta cells in 
T1D. An association between HLA and the risk of a first 
autoantibody have been suggested to be primary to an asso-
ciation between HLA and T1D (Elding Larsson et al. 2014; 
Honkanen et  al.  2017; Ilonen et  al.  2013; Krischer 
et al. 2015). Recent data support an association between 
HLA-DR-DQ and the first appearing autoantibody (Elding 
Larsson et al. 2014; Ilonen et al. 2013; Krischer et al. 2015), 
and that the first-appearing autoantibody may be associated 
with the age at onset of clinical T1D.

The variation in HLA haplotypes made it challenging to 
dissect if lipidomic profiles were associated with specific 
HLA types. However, hierarchical cluster analysis enabled 
comparison of lipids with clusters of HLA and detected 
lower and higher levels respectively of PC (O-38:6) (a) 
and PC (36:5) in cluster 3 defined by the presence of the 
DPB1*20:01:01, DRB4*01:03:01:02N, and DPB1*13:01:01 
alleles. In addition, hierarchical cluster analysis demon-
strated a tendency to lower levels of long-chain TGs in clus-
ter three and four compared to the other clusters, which were 
high risk HLA-DQ2/8 (cluster 1) and non-HLA-DQ2/8 with 
homozygous or heterozygous DQ8. In cluster three, all were 
non-HLA-DQ2/8 and in cluster four three of the subjects 
were heterozygous for DQ8. It is well known that certain 
HLA haplotypes confer a high risk for developing T1D and 
also that increasing number of autoantibodies increase the 
risk for progression to clinical onset (Krischer et al. 2019; 
Ziegler et al. 2013). If, in the future HLA and autoantibod-
ies can be matched with variations in lipid levels, lipidomic 
profiling could potentially be a novel way to improve predic-
tion, and monitor disease progression.

In the present study we investigated variation in the lipi-
dome due to autoimmunity (positive or negative for autoan-
tibodies) and not number of autoantibodies, due to the cohort 
size and the size of our groups (Table 1). By analyzing lipid 
variation according to autoantibody status, three LPCs, two 
PCs, and a single SM were detected in significantly higher 
levels in subjects positive for autoantibodies. One PC and 
a TG were detected in lower amounts in subjects positive 
for autoantibodies. LPC, TGs and SMs have previously 
been associated to development of T1D in the DiPiS cohort 
(Oresic et al. 2013) in early childhood (< 3.6 years). Our 
results indicate that variation in phospholipids are related 
to autoimmunity and not necessarily progression to T1D, 
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Fig. 3  Boxplot of means of significantly expressed lipids and autoantibody status. The lipid data were corrected for age, sex and autoimmunity 
burden, measured as area under the curve of islet autoantibodies during DiPiS follow-up
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since we did not see any differences in the five subjects that 
developed T1D after end of follow-up.

Lamichhane et al. (2019) identified minor differences in 
levels of PCs and PEs in 3 months old children progressing 
to autoantibody positivity, but not T1D, in the follow up 
period until the age of 3 years. Our results shows that these 
differences in phospholipids also can be seen in healthy 
individuals, coming into adolescence, that are autoantibody 
positive. Our results support that some variation in phos-
pholipids are a reflection of autoimmunity rather than rapid 
progression to T1D.

Early immune developmental processes in T1D progres-
sors have in previous studies been suggested to be disturbed 
by distinct cord blood phospholipids and TGs. Also, a char-
acteristic lipidomic profile has been found to be present 
already at birth in T1D progressors (La Torre et al. 2013; 
Oresic et al. 2013). We detected variation in only one TG 
species supporting the hypothesis raised by Oresic and col-
leagues regarding low TG levels, perhaps combined with 
short gestational age, as a risk factor limited to T1D diagno-
sis in very early childhood (< 2 years) (La Torre et al. 2013).

In previous studies it has also been suggested that SMs, as 
well as TGs, are potent regulators of immunogenic processes 
and play a potent role in inflammatory disease (Iannello 

et al. 2003; Olivera and Rivera 2005). However, we did not 
find any differences in lipid levels when comparing the five 
subjects who developed T1D after sampling to those who 
did not.

Significantly higher levels of GlcCer were found in the 
group of IAA positive subjects. As IAA are often observed 
in children developing T1D in early childhood, we speculate 
that this is an aggressive form of T1D pathogenesis that 
may be reflected in these lipids. It has been shown that cera-
mide plays a significant role in diabetes by inducing β-cell 
apoptosis, modulate insulin signaling and causing insulin 
resistance (Galadari et al. 2013). Our analysis disregard by 
which autoantibody autoimmunity was first initiated how-
ever, our analysis identify an interesting association between 
GlcCer levels and IAA positivity. GlcCer is a group of lipids 
previously shown to associate to ER stress, cardiovascular 
disease and diabetes (Boslem et al. 2011; Chavez et al. 2014; 
Messner and Cabot 2010) and has been proposed to have 
pro-apoptotic effects (Pettus et al. 2002). Recent studies have 
shown that children representing autoimmunity with positiv-
ity for IAA first, have a faster, more severe, progression to 
T1D (Krischer et al. 2019). Future studies should include 
investigation of GlcCer levels in individuals exclusively 
positive for IAA.

Fig. 4  Boxplot of means for levels of ceramides and IAA status. 
ANOVA analysis of IAA status and five ceramides (LipidMaps ID) 
were significant (p < 0.05) in the DiPiS cohort (positive for IAA and 

other autoantibodies, n = 3 singly positive for IAA). Associations are 
corrected for age and gender. Boxplot of mean
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The main strengths of the present study are the long term 
follow up of subjects randomly selected from the DiPiS 
study, deep HLA sequencing that enabled determination of 
exact HLA genotypes as well as the detailed lipidomic pro-
filing. None of the subjects had diabetes at the time of sam-
pling. All of the subjects have an elevated risk for T1D and 
have been followed in the DiPiS study since 2 years of age. 
The follow-up in DiPiS was not critical for the lipidomics 
analysis but enabled detailed interrogation of the develop-
ment of autoantibodies prior to cross-sectional sampling, in 
relation to HLA haplotypes.

At the time of sampling, 13 subjects had never had 
autoantibodies at any times during DiPiS follow-up. We 
expected to have autoantibody negative subjects but did 
not expect that all would have the highest HLA risk (HLA-
DQ2/8). At the same time, the HLA-DQ2/8 genotype is 
underrepresented in the groups of one and multiple autoan-
tibodies, perhaps because these subjects would already have 
progressed to clinical T1D. We speculate that the autoanti-
body negative subjects may not develop T1D, maybe due to 
lack of trigger event. A close look at the lipidomic profiles of 
the five subjects that progressed to T1D after cross-sectional 
sampling did not reveal any significant difference in compar-
ison to the autoantibody-positive subjects that to date have 
not developed T1D indicating that the variation we detect in 
phospholipids could be related primarily to autoimmunity. 
However caution should be made when concluding on these 
results, because of the low numbers of progressors to T1D.

A weakness of the study would be the limited number of 
participants that makes it difficult to generalize since many 
different HLA haplotypes are represented and cellular analy-
ses were not available during follow up. The present study 
cohort size and distribution between groups would have 
made it difficult to interpret and generalize any results from 
comparing the groups presented in Table 1, instead of auto-
immunity as in the present study. Therefore, it would be of 
interest for future studies to analyze autoantibodies between 
groups of research subjects without and with one or multiple 
autoantibodies. We speculate that this type of analysis would 
increase the knowledge of lipids levels and if they tend to 
vary with increasing number of autoantibodies.

Another limitation is that the subjects were not fasting 
before blood draw. It was not possible to have the subjects 
fasting before showing up for blood draw, since many of the 
subjects had to travel far to get to the study center. Previous 
published data show little direct effect on test meal fatty acid 
composition and post prandial lipid composition of the blood 
(Jackson et al. 1999) and furthermore, a long-term twin 
study showing high heritability of particularly phospholip-
ids, irrespective of a 5-week dietary intervention (Frahnow 
et al. 2017) and so we felt confident in using these samples 
regardless. However, in future clinical association studies, 
we aim to standardize diet in our subjects.

5  Conclusion

Variation in blood lipids in adolescent subjects with an 
increased genetic risk for T1D and different stages of auto-
immunity were investigated. The lipidomic profiling in 
this study provides insight into the lipid composition in 
adolescents who had developed islet autoimmunity and 
are at an increased risk for T1D. Our findings support the 
hypothesis and previous findings that lipids may vary with 
islet autoimmunity. Future investigations of the observed 
tendencies that lipidomic profiles may be associated with 
HLA will be necessary. Future studies will have to confirm 
the value of these profiles and if the findings can be used 
as early markers for T1D. Further studies of lipidomics 
to clarify the potential role of lipids in the risk for type 1 
diabetes are warranted.
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