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The availability of increasing volumes of multi-omics profiles across many cancers promises to improve our un-
derstanding of the regulatory mechanisms underlying cancer. The main challenge is to integrate these multiple
levels of omics profiles and especially to analyze them across many cancers. Here we present AMARETTO, an al-
gorithm that addresses both challenges in three steps. First, AMARETTO identifies potential cancer driver genes
through integration of copy number, DNA methylation and gene expression data. Then AMARETTO connects
these driver genes with co-expressed target genes that they control, defined as regulatory modules. Thirdly,
we connect AMARETTOmodules identified from different cancer sites into a pancancer network to identify can-
cer driver genes. Herewe applied AMARETTO in a pancancer study comprising eleven cancer sites and confirmed
that AMARETTO captures hallmarks of cancer. We also demonstrated that AMARETTO enables the identification
of novel pancancer driver genes. In particular, our analysis led to the identification of pancancer driver genes of
smoking-induced cancers and ‘antiviral’ interferon-modulated innate immune response.
Software availability: AMARETTO is available as an R package at https://bitbucket.org/gevaertlab/
pancanceramaretto

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In the last two decades, advances in high-throughput experimental
technologies have produced an abundance of molecular data. An in-
creasing number of large multi-omics projects have launched and pro-
vide millions of data points for thousands of biological samples. For
example, The Cancer Genome Atlas (TCGA) project (Hoadley et al.,
2014; Cancer Genome Atlas Research Network, 2013; Yuan et al.,
2014) was launched to improve our ability to diagnose, treat and pre-
vent cancer and has produced an enormous amount of multi-omics
data. Interpreting these high dimensional datasets to identify novel can-
cer driver genes represents an outstanding challenge. True cancer driver
genes are those whose perturbation pushes a cell towards a malignant
phenotype. Within this study, we define cancer driver genes as genes
that fulfill all of the following criteria: (1) genes that are genetically
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and/or epigenetically deregulated in cancer, (2) genes whose genetic
and epigenetic aberrations have a direct impact on their own functional
gene expression levels, and (3) genes that are predicted to play regula-
tory roles high in the causal hierarchy of the origin of tumors. These in-
clude, for example, transcription factors, cell cycle genes or epigenetic
modifying enzymes, whose altered state in cancer results in deregula-
tion of downstream target genes; as well as upstream signaling mole-
cules. They typically hide amongst a large number of passenger genes
that are only by chance genetically or epigenetically altered (Eifert
and Powers, 2012).

Previously, several computational methods have been developed to
integrate multi-omics data. For example, Ciriello et al. used a method
based on mutual exclusivity of copy number and mutation events to
identify driver genes in glioblastoma (Ciriello et al., 2012). Similarly,
Vandin et al. developed a method to identify driver genes in cancer,
but focused on finding pathwayswith a significant enrichment ofmutu-
ally exclusive genes (Vandin et al., 2012). In addition, Akavia et al. built
further on this work and used copy number data to identify potential
cancer driver genes in a modified Bayesian module network analysis
called CONEXIC (Akavia et al., 2010).More recently, other groups are fo-
cusing on identifying driver genes through network analysis of copy
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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number data to identify potential drivers using a Bayesian module net-
work analysis (Ray et al., 2014).

We have previously developed AMARETTO, an algorithm that inte-
grates copy number, DNA methylation and gene expression data to
identify a set of driver genes altered by DNA methylation or DNA copy
number alterations, and constructs a gene expression network to con-
nect them to clusters of co-expressed genes, defined as modules
(Gevaert and Plevritis, 2013; Gevaert et al., 2013). These gene expres-
sion modules are subsequently ascribed biological pathways using
gene set enrichment analysis (GSEA), revealing the pathways affected
by cancer driver gene regulation. AMARETTO is thus a data driven path-
way approach, using genomic, epigenomics and transcriptomics data as
inputs, and produces modules and cancer driver genes associated with
these modules as output. Integration of epigenomics data is essential
to comprehensive analysis of cancer genomic analysis, as DNA methyl-
ation is a major mechanism of transcriptional deregulation in virtually
all cancers. For example, cancer driver genes such as BRCA1 and
MLH1,which are often altered bymutation in cancer, are also frequently
deregulated by DNA methylation in other patients, with similar down-
stream consequences (Simpkins et al., 1999; Das and Singal, 2004;
Catteau andMorris, 2002). Our data-driven pathwayapproach contrasts
with previouswork that relies upon use of known cancer pathways and
networks such as PARADIGM, an algorithm that uses human-curated
pathways and estimates their activity using DNA copy number and
mRNA expression data (Vaske et al., 2010).

Here, we present an extension of AMARETTO to a pancancer applica-
tion usingmulti-omics data of eleven cancer sites from TCGA. We show
that AMARETTO captures modules enriched in major pathways of can-
cers and modules that accurately predict molecular subtypes. Next, we
connect themodules of co-expressed genes in a pancancermodule net-
work. We show that this allows the identification of major oncogenic
pathways and cancer driver genes involved in multiple cancers. More
specifically, we identified a pancancer driver gene that is involved in
smoking induced cancers and a pancancer driver gene that is involved
in antiviral IFN modulated immune response. Overall, our results
show the potential of pancancermulti-omics data fusion to identify can-
cer drivers that are high within the causal hierarchy of cancer develop-
ment and associated with common pathways across different types of
tumors that eventually can lead to the identification of pancancer drug
targets. The AMARETTO algorithm and its pancancer application are
publicly available.

2. Materials and Methods

2.1. Data Preprocessing

We used gene expression, copy number and DNA methylation data
from TCGA for 11 cancer sites, namely bladder urothelial carcinoma
(BLCA), breast invasive carcinoma (BRCA), colon and rectal
Table 1
Number of samples and number of genes for each of the data modalities (gene expression, DN

TCGA cancer site TCGA cancer code Gene expre

Samples

Bladder urothelial carcinoma BLCA 181
Breast invasive carcinoma BRCA 985
Colon and rectum adenocarcinoma COADREAD 589
Glioblastoma multiforme GBM 501
Head and neck squamous cell carcinoma HNSC 371
Kidney renal clear cell carcinoma KIRC 509
Acute myeloid leukemia LAML 173
Lung adenocarcinoma LUAD 489
Lung squamous cell carcinoma LUSC 490
Ovarian serous cystadenocarcinoma OV 541
Uterine corpus endometrial carcinoma UCEC 508

a Number of significant genes found after running GISTIC (data available in the TCGA data p
b Number of genes with significant methylation patterns identified using MethylMix.
adenocarcinoma (COADREAD), glioblastoma (GBM), head and neck
squamous cell carcinoma (HNSC), clear cell renal carcinoma (KIRC),
acute myeloid leukemia (LAML), lung adenocarcinoma (LUAD), lung
squamous cell carcinoma (LUSC), ovarian serous cystadenocarcinoma
(OV) and uterine corpus endometrial carcinoma (UCEC) (Table 1). All
data sets are available at the TCGA data portals.

The gene expression data were produced using Agilent microarrays
for GBM and OV cancers, and RNA sequencing for all other cancer
sites. Preprocessing was done by log-transformation and quantile nor-
malization of the arrays. The DNA methylation data were generated
using the Illumina Infinium Human Methylation 27 Bead Chip. DNA
methylation was quantified using β-values ranging from 0 to 1 accord-
ing to the DNA methylation levels. We removed CpG sites with more
than 10% of missing values in all samples. We used the 15-K nearest
neighbor algorithm to estimate the remaining missing values in the
data set (Troyanskaya et al., 2001). Finally, the copy number data we
used are produced by the Agilent Sure Print G3 Human CGHMicroarray
Kit 1Mx1M platform. This platform has high redundancy at the gene
level, but we observed high correlation between probes matching the
same gene. Therefore, probes matching the same gene were merged
by taking the average. For all data sources, gene annotation was trans-
lated to official gene symbols based on the HUGO Gene Nomenclature
Committee (version August 2012). TCGA samples are analyzed in
batches and significant batch effects were observed based on a one-
way analysis of variance in most datamodes.We applied Combat to ad-
just for these effects (Johnson et al., 2007).

2.2. AMARETTO: Multi-omics Data Fusion

Our approach for analyzing TCGA cancer data is based on AMARET-
TO, a novel algorithm devoted to construct modules of co-expressed
genes through the integration of multi-omics data (Gevaert and
Plevritis, 2013; Gevaert et al., 2013). More precisely, AMARETTO is a
three-step algorithm that (i) identifies tumor specificDNA copy number
or DNA methylation changes, (ii) identifies a set of potential cancer
driver genes by integrating DNA copy number, DNA methylation and
gene expression data, (iii) connects these cancer driver genes to mod-
ules of co-expressed target genes that they control using a penalized
regulatory program. AMARETTO, consists of three steps (Fig. 1).

2.2.1. Step 1
Identification of candidate cancer driver genes with tumor-specific

DNA copy number or DNAmethylation alterations compared to normal
tissue: we first restrict the list of candidates to genes that have either
copy number or DNA methylation alterations. These alterations are de-
tected using the GISTIC (Taylor et al., 2008; Mermel et al., 2011) and
MethylMix (Gevaert, 2015; Gevaert et al., 2015) algorithms for copy
number and DNA methylation data respectively. GISTIC separately
models arm-level and focal alterations, identifying amplified and
A copy number and DNA methylation) and for the eleven studied cancer sites.

ssion GISTIC MethylMix

Genes Samples Genesa Samples Genesb

15.432 178 1.974 123 472
16.02 968 1.523 887 890
15.533 578 2.523 570 522
17.811 481 1.561 321 395
15.828 365 2.184 308 753
16.123 501 3.052 497 567
14.296 166 1.681 170 613
16.092 487 3.585 367 678
16.219 487 2.592 355 679
17.814 528 1.499 540 510
15.706 500 2.074 496 821

ortal).



Fig. 1. Workflow of pancancer AMARETTO analysis. AMARETTO generates a list of candidate cancer driver genes by investigating significant correlations between methylation, copy
number and gene expression data for each putative driver gene separately, and connects them with their downstream targets by constructing a module network. We then identify
modules that capture major hallmarks of cancers. We finally detect subnetworks of modules across all cancers.
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deleted genes. Modeling DNA methylation aberrations in cancer is less
well studied. We recently developed MethylMix, a method that iden-
tifies hypo and hypermethylated genes by (i) detecting methylation
states of each genewith univariate betamixturemodels, (ii) comparing
them with the DNA methylation levels of normal tissue samples. We
used GISTIC to identify significantly and recurrently deleted or ampli-
fied regions in the genome (Mermel et al., 2011). Similarly, we used
MethylMix to identify recurrently hyper-or hypomethylated genes
(Gevaert, 2015).

2.2.2. Step 2
Modeling effect of candidate driver genes on gene expression: a

given gene is considered as a candidate driver gene if its expression
can be explained by genomic events. Our rationale is that genes driven
bymultiple genomic events in a significant subset of samples are unlike-
ly to be randomly deregulated. To establish a list of cancer driver genes,
we thus investigate the linear effects of copy number and DNAmethyl-
ation on gene expression through a linear regression model performed
on each gene independently:

ExpressionGenei ¼ f β1MethylationGenei þ β2Copy NumberGenei
� �

We used the R2 statistic to evaluate whether copy number has a sig-
nificant positive effect (β2 N 0) and DNA methylation a significant neg-
ative effect (β1 b 0) on gene expression.
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2.2.3. Step 3
Associating candidate driver genes with their downstream targets:

given the cancer driver genes identified in Step 1, Step 2 aims at
connecting them to their regulated targets to construct the regulatory
module network. First, the filtered data are clustered in modules of
co-expressed genes using a k-means algorithm with 100 clusters.
Then,we learn the regulatory programs for each of themodules as a lin-
ear combination of cancer driver genes that together explain eachmod-
ule’s mean expression:

ExpressionModulei ¼ f α1Driver1 þ…þ αnDrivernð Þ

In order to induce sparseness,we use an L1-penalty on the regression
weights (Tibshirani et al., 2010). The modules are further optimized by
running iteratively over the two following steps: (i) reassigning genes
based on the closest match to the updated regulatory programs, (ii)
updating the regulatory programs based on the new gene assignments
(Lee et al., 2009). These two steps are repeated until less than 1% of
the cancer driver genes are assigned to new modules.

2.3. Pancancer Module Network

After running AMARETTO on each cancer site individually, the mod-
ules are connected in a pancancer network. Specifically, we evaluate
whether there is a significant association between all pairs of modules
through a hyper-geometric test. We correct for multiple hypothesis
testing using the false discovery rate (Benjamini and Hochberg, 1995).
We consider the association to be significant if both of the following
conditions are satisfied: (i) the adjusted p-value is smaller than 0.05
and (ii) the overlap between two modules is larger than 5 genes. This
defines a module network where each edge is scored based on the neg-
ative log-transformed adjusted p-value.

We cluster the weighted module network to identify significantly
connected subnetworks using the Girvan-Newman algorithm
(Newman and Girvan, 2004). This algorithm is a divisive method,
which aims at detecting subnetworks by progressively removing
edges from the module network according to a score. The original pro-
posed score is based on the betweenness of edges, where betweenness
is a measure that favors edges that are between subnetworks, and thus
responsible for connecting many pairs of others.

We used the igraph R package to visualize the network and the
edge.betweenness.community function (implementation of the
Girvan-Newman algorithm) to detect subnetworks. We only focus on
subnetworks that satisfy the following conditions: number of nodes
larger than the 1% of the total number of nodes in the network, number
of represented cancers larger than the 10% of the subnetwork size (and
at least, larger than 2) and finally, ratio between edges inside/outside
the subnetwork larger than ½.

2.4. Gene Set Enrichment Analysis

To assign biological meaning to these subnetworks of modules, we
perform gene set enrichment analysis based on the databases
GeneSetDB (Culhane et al., 2010) and MSigDB (Liberzon et al., 2015).
For the latter, we restrict the enrichment to hallmark (H), curated
(C2), GO (C5), oncogenic (C6) and immunologic signatures (C7) gene
sets, which include the gene sets most relevant to cancer gene expres-
sion profiles. The enrichment is evaluated by performing a hyper-geo-
metric test, corrected for multiple testing using the FDR (Benjamini
and Hochberg, 1995). We used averaged p-values to combine p-values
of the pathway enrichment for modules within a subnetwork. We
used the following cutoffs: p-value smaller than 0.05, overlap with
one module larger than 5 and gene set size smaller than 500. As a neg-
ative control we compared the enrichment of the actual modules for
each cancer with 100 random permutations of the gene to module as-
signments. We then counted for each permutation the average number
of significant gene sets permodule, over allmodules using the same cut-
offs as the actual enrichment results.
2.5. Prediction Performances

After running AMARETTO on the provided data sets, we computed
the prediction performances by comparing the observed module ex-
pression datamatrixwith its predicted value.We reported the averaged
mean squared error (MSE) and the R-square taken across all modules.
2.6. Smoking Signatures

To investigate the role played by GPX2 on smoking related pathways
of different cancer sites, we first used an oxidative gene signature from
theGeneOntology (Supplementary Table 6a).We defined an associated
score by taking the average expression of these genes. We then used a
Pearson test to measure the correlation with GPX2 expression. We did
the same for a secondGO signature associated to xenobioticmetabolism
(Supplementary Table 6a).
2.7. Correlation With Smoking Data

We investigated whether GPX2 expression is correlated with
smoking. We used clinical data from TCGA containing 743 characteris-
tics (e.g. ethnicity, gender, tumor size, etc.). We restrict our study to
clinical variables that are related to smoking (profile, started smoking
year, stopping smoking year and pack years). We obtained a significant
number of clinical data for only 4 of the 11 cancer sites, namely BLCA,
HNSC, LUAD and LUSC. For each of these cancer sites, correlation coeffi-
cients between the associated clinical variables and GPX2 expression
are calculated through the Spearman test for continuous variables, and
the Wilcoxon test, or Kendall test for discrete variables with two or
more than two groups respectively. In addition, we drew boxplots
representing the association between smoking profile and GPX2
expression.
2.8. Experimental Validation Using GPX2 Knockdown Experiments

We extracted GPX2 perturbation experiments from the LINCS data-
base (Lamb et al., 2006a; Keenan et al., 2017). GPX2 perturbation exper-
iments were available for the lung adenocarcinoma A549 cell line that
best resembles the LUAD cancer site, while no matching cell lines
were available for the 4 other cancer sites, i.e., LUSC, BLCA, HNSC and
UCEC. Four perturbation experiments measuring experimental targets
of GPX2 knockdown in the A549 cell line were available in LINCS, in-
cluding three shRNA experiments and a consensus signature derived
from these three experiments. In one of these four experiments, a posi-
tive differential expression z-score for GPX2 was measured, and we
therefore removed this experiment from the analysis since successful
GPX2 knockdown is expected to result in a negative z-score. We used
the “preranked” Gene Set Enrichment Analysis (GSEA) (GSEA)
(Subramanian et al., 2005) tool to test for enrichment of the target
genes of modules regulated by GPX2 in the genome-wide differential
expression z-score profiles of the three GPX2 knockdown experiments.
We restricted our analysis to the landmark genes (measured on the
L1000 platform) and bing genes (inferred with high confidence), and
we collapsed multiple probes to unique genes by selecting the probe
with the most reliable (landmark over bing) and the highest absolute
z-score value. GSEA enrichments were estimated using the normalized
enrichment score (NES) and significance of the enrichments was
assessed at the FDR b 0.25 level as well as p-value b 0.05 and FDR b

0.25 levels.
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2.9. Correlation With PDL1-PDL2 Expression

To investigate the role played by OAS2 on immune response path-
ways of different cancer sites, we correlated OAS2 expression with
CD274, more commonly known as PDL1, and PDCD1LG2 expressions,
more commonly known as PDL2, using a Pearson test.

2.10. Inference of Tumor Associated Leukocyte Levels Using CIBERSORT

CIBERSORT (Newman et al., 2015; Gentles et al., 2015) is a computa-
tional method that characterizes cell composition of complex tissues
from their expression profiles.We applied CIBERSORT to TCGA gene ex-
pression data to infer leukocyte representation in the 11 considered
cancer sites. More precisely, we used expression profiles for 22 distinct
leukocyte subsets (TALs). Only patients for whom estimated p-values
are less than 0.05 (indicating high confidence TAL estimation) were in-
cluded in downstream analyses.

3. Results

AMARETTO is an algorithm that allows the integration of multi-
omics data to identify cancer drivers and associate them to their down-
stream targets. Here, we present a pancancer application of AMARETTO
on eleven different cancer sites (Fig. 1, Table 1).

3.1. AMARETTO Captures Major Hallmarks of Cancer

AMARETTOmodules capture themajor oncogenic pathways where-
as randomly permuted modules do not result in significant gene sets in
all cancer sites (Fig. 2, Supplementary Table 1). We found 22 modules
enriched in cell cycle pathways. Four of these modules are regulated
by CHEK1, a well-known cell cycle gene required for checkpoint-medi-
ated cell cycle arrest in response to DNAdamage (Walworth et al., 1993;
Patil et al., 2013). Next, we found that 43 modules are highly enriched
with genes related to angiogenesis. The most common cancer driver
gene, FSTL1, regulates 8 of the 43 enriched modules, representing a po-
tential cancer driver gene that regulates angiogenesis. This gene has
been shown to be involved in proliferation, migration and invasion
(Zhou et al., 2016; Chan et al., 2009; Kudo-Saito et al., 2013) andwas re-
cently linkedwith angiogenesis in post-myocardial infarction rats (Xi et
al., 2016). Twelve modules are enriched in epithelial-to-mesenchymal
transition (EMT) pathways. The cancer driver genes of EMTmodules in-
clude TGFB3, amember of the TGF beta pathway known to regulate EMT
(Jalali et al., 2012; Papageorgis, 2015; Vendrell et al., 2012; Chen et al.,
2013a), and NUAK, which has been implicated in several cancers (Ye
et al., 2014; Cui et al., 2013; Chen et al., 2013b). In addition, NUAK1 is in-
volved in EMT in ovarian cancer (Zhang et al., 2015) and is part of two
ovarian cancer modules identified by AMARETTO that are enriched in
EMT-related genes (Jalali et al., 2012). Next, 100 modules are enriched
in immune response pathways, with the inflammatory chemokine
CCL5 regulating 14 of these modules (Aldinucci and Colombatti,
2014). Overall, AMARETTO enabled us to find modules enriched in
many major hallmarks of cancers, including hypoxia, apoptosis, metas-
tases, integrin and epidermal growth factor receptor (EGFR) signaling
demonstrating the validity of our approach (Fig. 2, Supplementary
Table 1).

3.2. Methylation Driven Genes are More Predictive of Downstream Expres-
sion Than DNA Copy Number Driver Genes

The module networks for each of the 11 cancer types contain on av-
erage 408 cancer driver genes and 7.67 cancer driver genes per module.
The top cancer driver genes across all histologies include 45 genes that
regulate more than 15modules across an average number of 4.9 cancer
sites per gene (Supplementary Table 2). Interestingly, for all cancers, a
higher proportion of selected drivers are DNA methylation driven
compared to DNA copy number driven genes (Supplementary Fig. 1).
Over 90% of cancer driver genes present aberrant DNAmethylation pat-
terns, highlighting the importance of DNA methylation-mediated de-
regulation. Moreover, using methylation data with or without copy
number data considerably increases the predictive performance of cog-
nate gene expression relative to copy number alone (Supplementary
Fig. 2 and Table 3). We found that adding methylation driver genes
led to an averaged R-squared increase of between 6% for LUSC up to
16% for BRCA when predicting cognate gene expression (Fig. 3, Supple-
mentary Fig. 2).

3.3. Connecting AMARETTO Modules Reveals Pancancer Driver Genes

To identify pancancer driver genes, we connected AMARETTOmod-
ules across 11 cancer sites in a network and identified significantly con-
nected subnetworks. Our results show a module network with 2,693
edges between 713 modules (Supplementary Fig. 3). Given this net-
work, we detected 20 subnetworks containing between 9 and 74 mod-
ules (Fig. 4, Supplementary Table 4). Among these subnetworks, seven
represent all 11 cancer sites. The most heterogeneous one is Subnet-
work 17, consisting of 11 modules each representing a different cancer.
The least represented cancer site is LAML, with only 26 modules. It is
also absent from 7 subnetworks reflectingmost likely the difference be-
tween hematological and epithelial cancers. On the contrary, HNSC,
LUSC, LUAD and BLCA, which are part of 19 subnetworks, are over-rep-
resentedwithmore than 60modules. Next, we focused on subnetworks
that showhigh degrees of overlapping cancer driver genes in an effort to
identify pancancer driver genes of important biological pathways. For
example we identified a pancancer subnetwork enriched in cell cycle
pathways (Fig. 4, dark blue subnetwork, Supplementary note). Next,
we describe two subnetworks that led to the identification of two
novel pancancer driver genes: a subnetwork involved in smoking in-
duced cancers and a subnetwork involved in ‘antiviral’ interferon-mod-
ulated innate immune response.

3.4. GPX2 is a Driver of Smoking Induced Cancers

We found a subnetwork containing 15 modules representing 8 dif-
ferent cancers that is significantly enriched in smoking induced path-
ways (Fig. 4, blue subnetwork). Two smoking associated cancer sites,
LUSC and HNSC, have three modules each in this subnetwork. This sub-
network contains one cancer driver gene GPX2, a glutathione peroxi-
dase from the GPx family of genes, that is part of 8 modules across
multiple cancer sites (Supplementary Table 5). GPX2 is hypo-methylat-
ed gene in all of the 11 cancers, except in HNSC where it is hyper or
hypo-methylated in different patient subgroups. We found that several
modules of the subnetwork are enriched in three smoking-related path-
ways (Supplementary Table 5). These particularly include genes in-
volved in protection against chronic inflammation and asthma in lung
cancers, as well as smoking-related gene expression signatures
(Malhotra et al., 2010; Harvey et al., 2007; Boelens et al., 2009).

To verify the smoking association of this subnetwork, we used two
gene signatures reflecting smoking damage, a xenobiotic metabolism
signature, and an oxidative stress gene signature (Supplementary
Table 6a). This analysis showed a significant correlation between
GPX2 expression and xenobiotic metabolism for all cancers (p-value b

0.001, Fig. 5a, Supplementary Fig. 4 and Table 6a) and a significant cor-
relation with oxidative stress for six cancer sites in this subnetwork (p-
value b 0.001, Supplementary Fig. 5 and Table 6a), suggesting a role of
GPX2 in meditating cellular response to carcinogens in tobacco smoke
(Boyle et al., 2010; Beane et al., 2011).

Next, we correlated GPX2 expression with smoking data, available for
BLCA, HNSC, LUAD and LUSC. Even in the presence of significant missing
clinical data (Supplementary Table 6b), we found significant correlations
with the number of smoked years (p-value = 0.011, corr = 0.26) and
pack years (p-value = 0.003, corr = 0.21) for HNSC (Supplementary
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Table 6b). We also found a significant association with GPX2 expression
and smoking profile for HNSC (p-value b 0.001, Supplementary Fig. 6),
themost represented cancerwithin the subnetwork, and a borderline sig-
nificant correlation for BLCA (p-value = 0.05, Supplementary Fig. 6).

To experimentally validate GPX2 as a driver of the smoking subnet-
work,we interrogated the target genes of the 8modules learned in the 5
cancer sites against publicly available genetic perturbation studies of
GPX2 in the Library of Integrated Network-Based Cellular Signatures
(LINCS) database (Keenan et al., 2017; Lamb et al., 2006b). We used
Gene Set Enrichment Analysis (GSEA) to test for enrichment of the tar-
get genes of these modules in GPX2 knockdown experiments per-
formed in the lung adenocarcinoma A549 cell line (Subramanian et al.,
2005; Mootha et al., 2003). We observed that the target genes of these
modules that are activated by inducedGPX2 expression are significantly
repressed upon knockdown of GPX2 in the A549 cell line. This expected
behavior was observed in LUAD, and also consistent in the four other
cancer sites, i.e., LUSC, BLCA, HNSC and UCEC (Fig. 5, Supplementary
Table 7), which confirmed our hypothesis that GPX2 is a causative driv-
er of these smoking-related modules.

3.5. OAS2 is a Driver of ‘Antiviral’ Interferon-Modulated Innate Immune
Response

We found a second intriguing pancancer subnetwork, Subnetwork
12, containing 15 modules representing 10 different cancers and
enriched in interferon-inducible antiviral response pathways (Fig. 4,
red subnetwork). After ranking the 65 cancer driver genes in this sub-
network based on overlap, we identified one gene, OAS2, regulating
10 modules, and TRIM22 regulating 6 modules, 6 genes regulating 4
modules and 8 genes overlapping 4 modules (Supplementary Table
8). OAS2 is an interferon (IFN)-inducible enzyme that senses of dou-
ble-stranded RNA (dsRNA) produced by viruses and subsequently acti-
vates RNAse L to destroy viruses (Gribaudo et al., 1991). Next, TRIM22 is
also an interferon-inducible motif family antiviral protein, though its
mechanism of viral repression is less clear (Eldin et al., 2009; Uchil et
al., 2013). Interestingly, almost all of the cancer driver genes of this sub-
network present aberrant methylation patterns.

Using enrichment analysis, we found that the subnetwork is
enriched by 21 different gene sets, most of which represented antiviral
response and/or interferon inducible pathways (Supplementary Table
8). These included genes up or down-regulated in T-cells (Hutcheson
et al., 2008), dendritic cells (Fulcher et al., 2006), and other blood cell
types (Querec et al., 2009). A strong enrichment was also found with
an IFN gamma response gene set from the hallmark gene collection
(Liberzon et al., 2015) and other IFN response gene sets were highly
enriched (Ulloa-Montoya et al., 2013). Using the IFNs database
Interferome as a reference (Rusinova et al., 2013), we confirmed that
pancancer driver genes of the immune subnetwork were related to re-
sponse to IFNs, including all three IFN classes (Supplementary Fig. 7).
Despite its role in antiviral response, OAS2 was not differentially
expressed between cancers harboring oncogenic viruses and those
without detectable viruses, based on data for detection of viral tran-
scripts in TCGA cancers provided (Tang et al., 2013) (data not shown).

Immune gene expression signatures in cancer can reflect the profile
of mixed infiltrating tumor associated leukocyte (TAL) cell types within
the tumor. To determine the TAL types associated with the IFN respon-
sive signature, we inferred the levels of 22 TAL types in all TCGA cases
using CIBERSORT (Newman et al., 2015), and tested the correlation of
pancancer driver genes OAS2 and TRIM22 with each TAL type. Both
OAS2 and TRIM22were strongly correlated withM1macrophage levels
across all cancer types. This is consistent with the fact that these pro-in-
flammatoryM1 tumor associatedmacrophages (TAMs) are activated by
IFNγ in response to pathogen infection or cancer, and that M1 macro-
phage activation or ‘polarization’ coincides with upregulation of IFN-re-
sponsive genes (Jiang et al., 2017). Interestingly, SP110, a pancancer
driver gene of the IFN response subnetwork, is known to regulate
macrophage gene expression and differentiation (Jones et al., 2014;
Wu et al., 2016).

We have recently reported that a molecular subtype of HNSC with
high levels of M1 TAMs overexpresses CD274, the gene encoding PD-
L1, a ligand for the CD8+T cell-expressed immune checkpoint receptor
PD-1 (Brennan et al., 2017). This suggests that M1 TAM expression of
PD-L1 may contribute to evasion of CD8+ T cell-mediated anti-cancer
immunity, as previously reported (Jiang et al., 2017). To investigate
this further, we tested the correlation of OAS2, as amarker of the IFN-re-
sponsive/M1 TAM signature, with both ligands for the immune check-
point receptor PD-1: CD274, the gene encoding PD-L1, and PDCD1LG2,
encoding PD-L2. We observed a significant correlation for both genes
and all cancer sites (p-values b 0.001, Supplementary Fig. 8 and Table 9).

4. Discussion

Here, we present a pancancer analysis using AMARETTO, an algo-
rithm that addresses the challenge of integrating and interpreting
multi-omics cancer data. AMARETTO first identifies cancer drivers, by
considering genes with either DNA copy number or DNA methylation
aberrations that have an effect on gene expression. AMARETTO then
connects these cancer driver genes with target genes in the form of
modules. Modules are subsequently associated with known biological
pathways. We have shown that AMARETTO captures major biological
pathways and reveals pancancer driver genes through network
analysis.

AMARETTO focuses on DNA copy number and DNA methylation al-
tered genes and their effect on gene expression, and does not model
DNA somatic mutations for several reasons. First, somatic mutations
do not necessarily affect gene expression, and additional data are re-
quired to be able to model the effect of a somatic mutation on expres-
sion, the key idea behind AMARETTO. Secondly, for each cancer site,
besides the most significant mutated genes, many sequencing projects
show that many genes are mutated in less than 5% of the cohort.
These long tails create very sparse mutation data that do not add any
predictive power in AMARETTO (data not shown). Future algorithmic
work is needed to investigate how sparse somatic mutations can be in-
tegrated in a multi-omics framework like AMARETTO. Overall, AMA-
RETTO is a complementary technique to identify cancer driver genes
alongside methods focusing on distinguishing driver mutations from
passenger mutations from DNA sequencing data such as MutSig
(Lawrence et al., 2013).

Other computational methods have focused on identifying cancer
driver genes using transcriptomics and multi-omics data. For example,
ARACNE is a method that uses gene expression and a mutual informa-
tion statistic to identify cancer driver genes through connecting tran-
scription factors to their targets (Margolin et al., 2006; Basso et al.,
2005). ARACNE is thus focused solely on gene expression data. CONEXIC
is the most similar method to AMARETTO and uses a Bayesian strategy
to connect cancer driver genes to their targets (Akavia et al., 2010).
We argue however that AMARETTO significantly improves upon
CONEXIC. First, CONEXIC only takes into account DNA copy number
changes, and does not model DNA methylation data. Our results show
that DNAmethylation driven genes aremore predictive of transcription.
Secondly, in a large benchmark, a previous comparison between AMA-
RETTO and CONEXIC showed that in terms of R-square AMARETTO out-
performs CONEXIC when predicting gene expression on unseen data
(Manolakos et al., 2014). Thirdly, CONEXIC involves a large number of
parameters and is more computationally demanding for large data
sets (Manolakos et al., 2014).

In our results, we focused particularly on the biological implications
of the two novel pancancer driver genes: GPX2 related to smoking and
OAS2 related to IFN response. Regarding the former subnetwork, previ-
ous work has shown the importance of GPX2 in lung cancer. The GPX
genes, glutathione peroxidases, are involved in protection of cells
against oxidative stress and have been shown to be regulated by the



Fig. 2.Heatmap representing the enrichment betweenmodules of all cancer sites (in rows) and gene sets associatedwithmajor hallmarks of cancers (in columns): angiogenesis, hypoxia,
epithelial mesenchymal transition (EMT), cell cycle, immune response, apoptosis, metastases, integrin and epidermal growth factor receptor (EGFR).
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Nrf2-pathway in lung. Activation of the Nrf2-pathway plays an impor-
tant role in resistance to oxidant stress and its deregulation is one of
the major causes of lung cancers (Rangasamy et al., 2004; Ma, 2013).
Among the 5 GPX genes, expression of GPX2 has been shown to be re-
lated to smoking response, induced by Nrf2 activation in the lungs
(Singh et al., 2006). GPX2 inhibits apoptosis in response to oxidative
stress (Yan and Chen, 2006), such as may be caused by smoking. This
subnetwork discovered by pancancer AMARETTO analysis indicates a
key role for GPX2 in regulating gene expression in smoking-related can-
cers (LUAD, LUSC, HNSC, BLCA), and surprisingly, in UCEC, for which
smoking is a protective factor. That GPX2may block oxidative stress-in-
duced apoptosis suggests that its inhibitionmay restore apoptosis,mak-
ing it a potential drug target.

Next, the interferon response subnetwork showed that all of its pre-
dicted cancer driver genes represent genes that are expressed in re-
sponse to IFNs. IFNs are cytokines that protect against cancer by
activating innate immune inflammatory response to pathogens or can-
cer, triggering cancer cell death (Munoz-Fontela et al., 2008). We found
that OAS2, overexpressed due to DNA hypo-methylation, was a major
driver of IFN/immune related modules. While OAS2 is primarily impli-
cated in mediating immune response to viruses (Crouse et al., 2015;
Sadler and Williams, 2008), most of the cancers overexpressing the
IFN module do not have detectable oncogenic viruses (Tang et al.,
2013). This is consistent with previous reports of an ‘antiviral’ gene ex-
pression profilemarked by expression of OAS2 and other IFN responsive
genes, in non-virus-related cancers (Liu et al., 2013). A similar ‘interfer-
on-inducible antiviral response’ gene expression signature (Featuring
OAS2, OAS1, IRF7, MX2 and ISG20, regulators of our IFN response sub-
network) was associated with response to expression of dsRNA derived
from human endogenous retroviruses (HERVs) in ovarian and colorec-
tal cancer cell lines, upon loss of DNAmethylation-mediated repression
of HERVs (Chiappinelli et al., 2015; Roulois et al., 2015). Given that OAS2
is a viral dsRNA sensor, and all of the IFN response subnetwork regula-
tors were abnormally methylated, it is plausible that expression of this
subnetwork reflects response to reactivation of HERVs, a frequent
event in, and potential cause of, many cancers (Kassiotis, 2014).

The IFN-response subnetwork was associated with levels of M1
TAMs across cancer types. TAMs include both pro-inflammatory M1
TAMs and anti-inflammatory M2 TAMs, both of which derive from M0
mature macrophages. M1 macrophage activation is stimulated by
IFNγ, and is associatedwith expression of IFN-responsive genes such in-
cluding OAS2 (Jiang et al., 2017; Martinez et al., 2006; Hu et al., 2008).
Therefore, expression of IFN-response subnetwork genesmay reflect in-
filtration of M1 TAMs, as part of innate response to cancer. Such inflam-
matory responses are generally considered to be anti-tumorigenic,
indeed, stimulation of inflammatory response by treatment with IFNα
is used therapeutically to stimulate anti-cancer immune response
(Jiang et al., 2017; Zitvogel et al., 2015). The current paradigm asserts
that M2 TAMs are immunosuppressive and their levels are generally as-
sociated with poor prognosis in cancer, as they promote invasion,



Fig. 3. Boxplots representing the prediction performances of cancer driver genes predicting their target genes measured in two ways: R-square and mean squared error (MSE) obtained
after running AMARETTO in three ways using only copy number data, only DNA methylation data and with both copy number and methylation data, shown for four cancer sites.
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metastasis and therapy resistance. Conversely M1 TAMs that kill tumor
cells are associated with prolonged survival (Mei et al., 2016; Costa et
al., 2013; Ostuni et al., 2015). On the other hand, tumors can modulate
a

Fig. 4. (a) Network representing all pancancer modules and 20 subnetworks. One node corre
significant association between the module genes. The identified subnetworks are highlighte
related to smoking, the red subnetwork captures immune response and the dark blue subnetw
TAMs to express pro-oncogenic factors.We observed that OAS2 expres-
sion is correlated with expression of CD274, the gene encoding PD-L1, a
ligand for the CD8+ T cell-expressed immune checkpoint receptor PD-
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Fig. 5. (a) Correlation between GPX2 expression and the averaged expression of a xenobiotic response gene signature showing significant correlation. (b) Heatmap showing the
enrichments of the target genes of the 8 modules regulated by GPX2 derived from the 5 cancer sites (columns organized by cancer sites in following order: LUAD, LUSC, BLCA, HNSC,
UCEC) in the three GPX2 knockdown experiments measured in the lung adenocarcinoma A549 cell line (rows: shRNA1, shRNA2, and consensus). Enrichments are represented by the
GSEA normalized enrichment scores (NES). Only significant enrichments (top panel: p-value b 0.05 and FDR b 0.25; bottom panel: FDR b 0.25) are shown (red: induced; blue:
repressed; grey: not significant). The bottom panel shows the modules that contain at least 10 target genes or at least 50% of the target genes in LINCS.
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1 that suppresses CD8+ T cell-mediated anti-cancer immunity. Indeed,
IFN induces expression of PD-L1 during chronic inflammation or viral
infections, dampening CD8+ T cell response (Akhmetzyanova et al.,
2015; Barber et al., 2006). PD-L1 is expressed by TAMs as well as
tumor cells, and emerging evidence indicates that tumors modulate
TAMs to express high levels of PD-L1 (Jiang et al., 2017; Schalper et al.,
2015). Our findings indicate that PD-L1 expression is particularly corre-
lated with M1 TAMs, as opposed to M0 or M2 TAMs, indicating a novel
immunosuppressive role of M1 TAMs.

Monoclonal antibodies targeting PD-L1 or PD-1 can restore CD8+ T
cell cytotoxic anti-cancer immunity, suggesting a potential therapeutic
opportunity for patients displaying the IFN signature. Indeed, an IFN



165M. Champion et al. / EBioMedicine 27 (2018) 156–166
signature has recently been shown to be favorably predictive of re-
sponse to PD-1 blockade (Ayers et al., 2015; Ribas et al., 2015) and re-
cent experimental evidence indicates that IFN signaling, particularly
IFN gamma signaling upregulates PD-L1 and PD-L2 expression in can-
cer, both in vitro and in vivo (Garcia-Diaz et al., 2017). A cancer driver
gene such as OAS2 or TRIM22may help to distinguish between patients
that will benefit for PD-1/PD-L1 immunotherapy, and those for whom
ineffective treatment may cause autoimmune side effects (Patel and
Kurzrock, 2015). AMARETTO has hereby enabled us to identify OAS2
and TRIM22 as epigenetically deregulated cancer driver genes within
a pan-cancer IFN responsive pathway that provides novel biological in-
sight into tumor-immune interactions that may have implications for
immunotherapy.

In summary, pancancer AMARETTO allows identifying cancer driver
genes for major hallmark cancer pathways, a pancancer driver gene in-
volved in smoking induced cancers and a pancancer driver gene of im-
mune response. AMARETTO thus provides a computational method
for cancer driver gene identification in a multi-omics setting and
might lead to novel drug targets.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2017.11.028.
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