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Many breast cancer (BC) patients suffer from complications of metastatic disease. To form 

metastases, cancer cells must become migratory and coordinate both invasive and proliferative 

programs at distant organs. Here, we identify srGAP1 as a regulator of a proliferative-to-invasive 

switch in BC cells. High-resolution light-sheet microscopy demonstrates that BC cells can 

form actin-rich protrusions during extravasation. srGA-P1low cells display a motile and invasive 

phenotype that facilitates their extravasation from blood vessels, as shown in zebrafish and mouse 

models, while attenuating tumor growth. Interestingly, a population of srGAP1low cells remain as 

solitary disseminated tumor cells in the lungs of mice bearing BC tumors. Overall, srGAP1low 

cells have increased Smad2 activation and TGF-β2 secretion, resulting in increased invasion and 

p27 levels to sustain quiescence. These findings identify srGAP1 as a mediator of a proliferative to 

invasive phenotypic switch in BC cells in vivo through a TGF-β2-mediated signaling axis.

In brief

Disseminated tumor cells can remain quiescent or actively proliferate in distant organs, 

contributing to aggressive disease. Mondal et al. identify srGAP1 as a regulator of a proliferative-

to-invasive decision by breast cancer (BC) cells through a TGF-β2-mediated signaling axis.

Graphical Abstract:
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INTRODUCTION

Metastasis is a complex process during which cancer cells have to overcome several physical 

barriers (the extracellular matrix, vasculature) to arrive and proliferate at a distant site (Jiang 

et al., 2015; Lambert et al., 2017). From early tumor cell dissemination from the primary site 

to metastatic outgrowth, there is a potential time interval or latency period that can last years 

or decades (Aguirre-Ghiso and Sosa, 2018; Sosa et al., 2014).

Previous work has described mechanisms that regulate tumor cell migration and invasion 

in tumors (Condeelis and Segall, 2003; Friedl and Alexander, 2011; Friedl and Wolf, 

2003; Mondal et al., 2020). A subset of cancer cells form invasive protrusions, termed 

invadopodia, that degrade the extracellular matrix (ECM) and facilitate invasion and 

intravasation into the blood vessels (Beaty and Condeelis, 2014; Eddy et al., 2017). Live-cell 

imaging studies have revealed that several actin cytoskeletal proteins localize at invadopodia 

structures and regulate their formation and matrix degradation function (Bravo-Cordero et 

al., 2011; Oser et al., 2009; Sharma et al., 2013; Stylli et al., 2009). Master regulators of 

invadopodia formation include RhoGTPases, as well as upstream GEFs and GAPs (Beaty 

and Condeelis, 2014; Spuul et al., 2014); however, the role of RhoGAPs during tumor cell 

dissemination is not well understood (Haga and Ridley, 2016). One subfamily of RhoGAPs, 

the srGAP (slit-robo GTPase-activating protein) family that consists of srGAP1, srGAP2, 

and srGAP3, and a related member ARHGAP4, is a key regulator of neuronal function. 

Despite the function of these proteins in controlling neuronal migration (Jordan et al., 

2009; Wong et al., 2001), their role in invadopodia formation, tumor cell dissemination, and 

metastatic progression in breast cancer (BC) is vastly unknown.

Characterization of tumors deficient in invadopodia formation demonstrated that 

invadopodia are required for tumor cell intravasation in mouse models (Gil-Henn et al., 

2013; Gligorijevic et al., 2012); however, tumor cell extravasation is not well characterized. 

Studies using a chicken chorioallantoic membrane model showed that invadopodia are 

necessary for cancer cell extravasation (Leong et al., 2014; Williams et al., 2019). 

In zebrafish, recent work using light-sheet microscopy revealed that cancer cells may 

extravasate by forming active protrusions that facilitate invasion through the endothelium 

(Liu et al., 2018) and has also been utilized to demonstrate how blood flow affects 

circulating tumor cell arrest and extravasation (Follain et al., 2018).

After tumor cells extravasate out of the vasculature, several molecular changes may occur 

for disseminated tumor cells (DTCs) to colonize and proliferate in distant organs (Obenauf 

and Massagué, 2015; Strilic and Offermanns, 2017). In certain cancers, a phenotypic 

switch between an invasive and proliferative state has been characterized; melanoma cells 

are capable of undergoing a proliferative-to-invasive phenotypic switch regulated by the 

transcription factor MITF and the tyrosine kinase receptor Axl (Arozarena and Wellbrock, 

2019). When implanted in vivo, melanoma cell lines display heterogeneity of MITF levels, 

suggesting that these plastic states may be regulated by microenvironmental factors (Hoek 

et al., 2008). Thus, within a tumor, some cells may be more capable of switching between 

proliferative and migratory states to colonize organs efficiently. In the context of BC, the 

mechanisms regulating a proliferative-to-invasive switch have not been well explored.
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Interestingly, intravital imaging studies in BC mouse models identified a subpopulation of 

cancer cells that display an invasive phenotype capable of intravasating into the blood stream 

(Condeelis and Segall, 2003; Harney et al., 2015; Patsialou et al., 2013; Roh-Johnson et al., 

2014). Gene expression analysis of the invasive cell population revealed that, as cell motility 

genes are upregulated, several other cell-cycle genes are downregulated (Patsialou et al., 

2012), suggesting that a phenotypic switch favoring invasiveness is governing the behavior 

of this BC cell population.

Once cancer cells seed at a distant site, they may enter into a period of dormancy that 

prolongs their latency before actively proliferating (Aguirre-Ghiso, 2007). Dormant cells 

are characterized by a reversible cell-cycle arrest in which they remain in a G0-G1 state 

until they restore proliferation (Aguirre-Ghiso, 2007). Several tumor microenvironment 

factors, such as TGF-β2, Bmp4, and others (Prunier et al., 2019), contribute to establishing 

dormancy at distant sites.

In this study, we investigate mechanisms that mediate a proliferative-to-invasive switch in 

BC cells. We identified srGAP1 as a negative regulator of tumor invasion and extravasation. 

srGAP1low cells display a highly motile phenotype and become arrested in G0/G1 at distant 

organs, potentially prolonging their latency through the activation of a TGF-β2/Smad2 

pathway.

RESULTS

srGAP1low cells have increased extravasation from blood vessels

Using a matrix degradation assay as a readout for the invasive capability of BC cells, our 

data demonstrate that the silencing of neuronal GAPs, including the srGAP members, results 

in increased degradation of gelatin matrix in MDA-MB-231 BC cells (Figure S1A). Recent 

work has shown that several neuronal genes are mutated in different cancers (Logotheti et 

al., 2020), and some may regulate cancer progression (Ding et al., 2020; Mehlen et al., 

2011); however, little is known regarding regulators of Rho GTPases in the context of tumor 

cell dissemination and metastasis. While recent literature points to the role of srGAP2 and 

srGAP3 in tumor and metastasis suppression (Lahoz and Hall, 2012; Marko et al., 2016), 

the role of srGAP1 in cancer is mostly unknown and not characterized in BC. In addition, 

srGAP3 has been shown to have low levels of protein expression in triple-negative BC 

(TNBC) cells (Lahoz and Hall, 2012). Thus, we decided to focus our studies on the role 

of srGAP1 in BC invasion and metastasis. Interestingly, we found that srGAP1 is highly 

enriched in TNBC cells, but has low expression in epithelial-like BC cells (Figure S1B), 

suggesting that srGAP1 may have BC subtype-specific functions.

BC cells can promote tumor cell invasion through the formation of invadopodia, which 

are F-actin-rich protrusive structures that focalize matrix metalloproteinases to degrade the 

extracellular matrix (Eddy et al., 2017). Seeding at distant organs requires cancer cells to 

extravasate from blood vessels, and evidence from past studies suggests that the formation of 

invadopodialike structures may facilitate extravasation (Leong et al., 2014; Williams et al., 

2019).
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To better understand the dynamics of invadopodia-like protrusions during extravasation, we 

utilized zebrafish embryos, which are optically transparent and amenable to xenografts of 

human tumor cells. Transgenic Tg(kdrl:RFP) embryos were injected with LifeAct-labeled 

MDA-MB-231 cells. Lattice light-sheet microscopy with adaptive optics was applied in vivo 
to study BC cell extravasation and actin dynamics. Our imaging approach revealed that 

BC cells in close proximity to blood vessels (white arrows) can form dynamic actin-rich 

finger-like protrusions that resemble invadopodia toward blood vessels (Figures 1A and 1B; 

Videos S1, S2, S3, and S4), while some other BC cells circulating in the blood remain 

non-protrusive and round in structure (yellow arrows). Once in close contact with the 

endothelial cells, cancer cells may form actin-rich invadopodia-like protrusions (Figure 1C; 

Videos S5 and S6) and extravasate out of the blood vessels (Figure 1D; Videos S7 and 

S8). Our data also demonstrate heterogeneity in tumor cells in the vasculature, including 

non-protrusive cells that are arrested in the vasculature (Figure S1C) and moving cells 

within the vasculature that are protrusive (Figure S1D).

Because srGAP1 loss promoted tumor cell invasion, we aimed to determine whether 

srGAP1 had a direct effect on tumor cell extravasation from blood vessels. Transgenic 

Tg(kdrl:RFP) embryos injected with GFP-labeled control or srGAP1-depleted tumor cells, 

herein, srGAP1low tumor cells (Figures 1E, 1I, S1E, and S1F), demonstrate that srGAP1low 

tumor cells have a greater propensity of exiting the vasculature than control cells (Figures 

1E and 1F). When analyzing the percent extravasation we find that a higher percentage 

of srGAP1low tumor cells are capable of extravasating out of the vasculature relative 

to control cells (Figure 1F), suggesting that srGAP1-depleted tumor cells can cross the 

endothelial barrier more efficiently. Time-lapse confocal microscopy visualizes srGAP1low 

tumor cells within and outside the vasculature that are more elongated (Figure S1G) with 

long protrusions (Figures S1H and 1H) and protrusive activity (Figure 1G; Videos S9 and 

S10).

srGAP1 regulates matrix degradation and invadopodia dynamics

At the subcellular level, single-molecule imaging of cortactin, F-actin, and srGAP1 staining 

reveals that srGAP1 localizes in small clusters within invadopodia in MDA-MB-231 cells 

(Figure 2A). Time-lapse confocal imaging of MDA-MB-231 cells expressing LifeAct-Ruby 

and plated on gelatin matrices demonstrates that srGAP1low cells with transient reduction 

of srGAP1 levels using siRNAs (Figure S2A) continuously degrade the extracellular matrix 

over time to a greater extent than control cells (Figures 2B, 2C, and S2B; Video S11). 

Interestingly, a similar effect was observed when cells were plated on a mixed fibrillar 

collagen I matrix (Figures 2D and 2E), suggesting that srGAP1low cells are overall more 

effective at degrading the ECM relative to Ctrl cells. Similar results were obtained in BT549 

TNBC cells (Figures S2C–S2E).

Because srGAP1 localizes to invadopodia and affects matrix degradation, we hypothesized 

that srGAP1 may affect the formation of invadopodia (Murphy and Courtneidge, 2011; 

Sharma et al., 2013). Invadopodia formation is spatiotemporally regulated; invadopodia 

precursors are assembled through the recruitment of several actin regulatory proteins, 

stabilize upon Tks5 arrival, and transition into maturation allowing for rapid F-actin 
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polymerization cycles and the recruitment of metalloproteinases (Beaty and Condeelis, 

2014; Eddy et al., 2017). Loss of srGAP1 increases the number of cells capable of forming 

invadopodia as stained with cortactin and Tks5 (Figure 2F).

Mature invadopodia, which are capable of degrading the ECM, were measured through 

immunofluorescence of MDA-MB-231 cells plated on gelatin. Tks5- and cortactin-positive 

invadopodia on top of an area of matrix degradation (Figure 2G) were considered mature. 

srGAP1low cells form more mature invadopodia than control cells (Figure 2H). When 

measuring the lifetime of mature invadopodia, srGAP1low cells have a much shorter lifetime 

and a greater frequency of turnover than control cells (Figures 2I and 2J). Taken together, the 

combination of srGAP1low cells forming more mature invadopodia with a high turnover rate 

may account for the overall increase in matrix degradation.

srGAP1low cells show increased deformability, enhancing migration and invasion in vivo

We next asked whether the increase in matrix degradation by srGAP1low BC cells accounts 

for greater cellular invasion. Using a transwell collagen I plug assay (Di Martino et al., 

2017), we find that srGAP1low cells can invade farther distances into the collagen I plug 

(Figures 3A–3C). The effects of srGAP1low cells in vitro demonstrate that the loss of 

srGAP1 enhances matrix degradation and allows tumor cells to invade deep into collagen I 

plugs.

In vivo, tumor invasion requires matrix degradation along with cellular movement. To 

visualize whether srGAP1low cells show increased invasion in an in vivo context, we injected 

GFP-labeled Ctrl and srGAP1low cells (Figure S1E) orthotopically into the 4th mammary 

fat pad of immunodeficient mice (Figure 3D). Interestingly, when we performed intravital 

imaging on the primary tumors from control and srGAP1low cells (Figures 3D and 3E; 

Videos S12 and S13), GFP-labeled srGAP1low tumor cells migrated from the primary tumor 

at a higher speed than control cells (Figure 3F). srGAP1low tumor cells migrate farther 

distances than control cells, but maintain the same persistence ratio (Figures 3G and 3H), 

suggesting that GFP-srGAP1low tumor cells are not migrating randomly, but in a directed 

and rapid manner. Similar results were obtained in 2D assays in vitro (Figure S3A–S3E). 

These results demonstrate that srGAP1low cells have increased matrix degradation and 

migration to facilitate tumor invasion in vivo.

Analysis of the biomechanical properties of cancer cells have shown that invasive cancer 

cells are softer and more deformable than non-invasive cancer cells (Lekka et al., 2012). 

Recent studies have also shown that a decrease in stiffness contributes to higher migration 

speeds (Han et al., 2020). To characterize cell mechanics in control and srGAP1low cells, 

we used atomic force microscopy and measured the elastic properties of individual BC cells. 

We measured the Young’s elastic modulus as a measure of cellular deformability by taking 

a series of individual measurements per cell (Figure 3I). Our data show that srGAP1low cells 

were softer than the controls (Figure 3J), suggesting that the increase in cellular softness of 

srGAP1low cells contribute to the increased migration observed in vivo.

To gain more insight into the signaling pathways that are regulating srGAP1low motility 

and invasive phenotypes, we performed an RNA sequencing (RNA-seq) analysis (Figure 
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S4A; Table S1) on control and knockdown primary tumors from the MDA-MB-231 

xenografts. GO analysis shows that srGAP1low tumors have a significant number of genes 

that are differentially expressed involving RhoGTPase signaling (Figure S4B). Interestingly, 

FLIM-FRET experiments using RhoA, Cdc42, and Rac1 biosensors revealed that loss of 

srGAP1 results in decreased RhoA activation (Figure S4C), and does not affect Cdc42 

or Rac1 activation at the leading edge when compared with control cells (Figures S4D 

and S4E), suggesting that other GAPs may be controlling the cycling of these GTPases, 

besides srGAP1. Several studies analyzing the biomechanical properties of cells upon RhoA 

inhibition show a decrease in stiffness (Sharma et al., 2014; Wagh et al., 2008), similar to 

our atomic force microscopy measurements. Moreover, our transcriptomics analysis revealed 

a significant upregulation of other GAPs in srGAP1low cells (Figure S4F), which may 

contribute to their reduced RhoA activity and increased softness.

srGAP1low cells show increased DTC seeding at distant organs, but reduced metastatic 
outgrowth

Surprisingly, while performing intravital imaging of srGAP1low tumors, we found that 

mice bearing srGAP1low BC cells had a reduction in tumor growth compared with control 

tumors, as demonstrated by measuring tumor volume (Figures S5A and S5B) and mass 

(Figures S5C and S5D). In addition, tumor latency, measured as the elapsed time between 

the injection of BC cells and the moment a tumor is palpable was longer in srGAP1low 

tumors (Figures S5E). No increase in apoptosis was observed (Figure S5F), and there is an 

increase in the percent of srGAP1low cells in G0/G1 and a decrease in G2 (Figures S5G and 

S5H). These results, along with the significant increase in invasive capacities of srGAP1low 

cells described previously (Figures 1, 2, and 3) led us to hypothesize that srGAP1 could 

be a regulator of a proliferative-to-invasive switch and may control DTC proliferation at 

metastatic organs.

When examining the lungs (Figures 4A–4C and S4G) of mice bearing control or srGAP1low 

tumors, we found that more srGAP1low tumor cells were able to seed distant organs than 

control cells (this same increase in seeding was observed when lungs from Ctrl tumors 

were analyzed at the time the tumor size was similar to the srGAP1low tumors, suggesting 

that dissemination is an early event in srGAP1low tumors due to their increase in motility 

Figures S4G and 3F). However, when examining overt metastases, which indicates tumor 

cell outgrowth, srGAP1low mice show a significant growth defect in metastatic lesions, with 

reduced overall metastatic burden in the lung (Figure 4D). In addition, of the seeding events 

in the lung, srGAP1low mice have a greater proportion of single cells in both the lung 

(Figures 4E and 4F) and the liver (Figure S5I).

Solitary DTCs are srGAP1low and remain in G0/G1 arrest

To directly determine whether srGAP1 levels may identify a population of DTCs in 

the lungs of mice bearing BC tumors that may remain in a non-proliferative state, 

we immunostained lung sections from control MDA-MB-231 human xenografts with an 

srGAP1-specific antibody (Figure S5J). Our results show that single, solitary cells have 

lower srGAP1 expression than micrometastasis (Figures 5A and 5B), suggesting that low 

levels of srGAP1 maintain DTCs in a non-proliferative state.
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To assess how srGAP1 restricts both primary tumor growth and metastatic outgrowth, we 

utilized a DHB:Venus sensor that measures Cdk2 activity and marks the progression of the 

cell cycle (Spencer et al., 2013). When cells are in a G0/G1 state, the DHB:Venus sensor 

remains in the nucleus; as the cell progresses through the cell cycle, Cdk2 activity increases 

and the sensor is exported out of the nucleus into the cytoplasm (Figure 5C, bottom). Live-

cell imaging experiments with a DHB:Venus sensor shows srGAP1low cells have prolonged 

accumulation of the sensor in the nucleus (with an overall lower cytoplasmic/nuclear ratio), 

suggesting that the cells remain in a G0/G1 arrest (Figures 5D and 5E; Video S14). In 

addition, analysis of control and srGAP1low cells in the lungs reveals an increase in the 

number of srGAP1low cancer cells in the G0/G1 phase of the cell cycle (Figures 5F and 5G). 

Overall, these data reveal that srGAP1low DTC cells remain as solitary and G0/G1-arrested 

cells in the lungs.

Increased TGF-β2 levels activate Smad2 in srGAP1low cells and increase matrix 
degradation

KEGG pathway enrichment analysis and Reactome pathway analysis demonstrate that TGF-

β signaling is altered in srGAP1low tumors compared with control tumors (Figure 6A). 

Immunofluorescence staining and western blot analysis show an increase of Smad2 total 

levels as well as increased nuclear Smad2 in srGAP1low cells, and no change in Smad3 

levels (Figures 6B, 6C, 6D, and S6A). Previous studies have shown that activation of 

Smad2, upon TGF-β stimulation, triggers Smad2 phosphorylation and nuclear translocation 

(Derynck and Budi, 2019). We performed immunofluorescence analysis of pSmad2 and 

found increased levels of nuclear pSmad2 upon srGAP1 knockdown (Figure 6E). To 

determine whether an increase in TGF-β levels may be contributing to Smad2 activation 

in a cell-autonomous manner, we performed a secretome analysis of the conditioned medium 

(CM) from control and srGAP1low cells (Figures 6F and S6I;, Table S2). Analysis of the 

secretome of srGAP1low BC cells reveals that secreted proteins are enriched in categories 

related to cell cycle, metabolism, and G-protein signaling compared with the secretome of 

control cells (Figure 6G).

Interestingly, srGAP1low cells secrete an increased amount of TGF-β2 when compared with 

Ctrl cells (Figure 6H). We validated these results by performing a TGF-β1–3 Luminex 

assay, and found that, while srGAP1low cells secrete increased TGF-β2, they secrete less 

TGF-β1 and have no change in TGF-β3 secretion when compared with Ctrl cells (Figures 

S6B–S6G). Previous studies have shown that TGF-β2 signaling has been shown to induce 

dormancy of cancer cells (Bragado et al., 2013), suggesting that activation of this pathway in 

srGAP1-depleted cells contributes to their prolonged latency observed in vivo (Figures 4 and 

5).

We wanted to determine if the secretome of srGAP1 cells contributes to the invasive 

properties observed in srGAP1low BC cells. Culture of MDA-MB-231 cells with CM from 

srGAP1low cells show an increase in matrix degradation when compared with treatment with 

conditioned medium from control cells (Figure S6H). Previous work has shown that TGF-β 
stimulation can activate the invasion of MCF10A cells (Pignatelli et al., 2012). Given the 

observed increase in TGF-β2 in the CM of srGAP1low cells, we hypothesize that TGF-β2 
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may contribute to the increase in invasion of cancer cells. Upon TGF-β2 treatment, BC cells 

show a significant increase in matrix degradation (Figures 6I and 6J). Moreover, in vivo, 

primary tumors with low srGAP1 levels have an increase in nuclear p27 staining (Figures 

6K and 6L), which has been shown to be upregulated downstream of TGF-β2 signaling to 

maintain tumor cell quiescence (Bragado et al., 2013). To determine whether the increase 

in secreted TGF-β2 from srGAP1low cells was due to growth arrest, we serum starved 

MDA-MB-231 cells and examined TGF-β2 expression by immunoblotting and found a 

reduction in starved cells (Figures S6J and S6K), suggesting that changes in TGF-β2 levels 

are due to a srGAP1low- specific program. Interestingly, analysis of RNAseq data show that 

srGAP1low cells have high levels of the TGF-βRIII (log2fold change = 1.06, padj = 6.19 × 

10−6), previously linked to dormancy in head and neck models (Bragado et al., 2013).

We then investigated the role of TGF-β2-mediated signaling on srGAP1low-dependent 

phenotypes. Using an siRNA to deplete TGF-β2 from srGAP1low cells, there is a significant 

reduction in matrix degradation (Figures 7A and 7B). In addition, treating srGAP1low 

cells with a small-molecule inhibitor of TGF-βRI results in less matrix degradation, 

suggesting that the TGF-β2-TGF-βRI signaling axis may regulate invadopodia function. As 

srGAP1low cells are more efficient at extravasation, we depleted TGF-β2 from srGAP1low 

cells and injected them into the tail vein of immunodeficient mice and found a reduction 

of extravasation (Figures 7D and 7E), demonstrating the necessity of TGF-β2-mediated 

signaling for invasive events. We also examined the contribution of TGF-β2 to srGAP1low 

cell-cycle arrest with the DHB:Venus sensor for Cdk2 activity, and found that, upon 

depletion of TGF-β2, srGAP1low cells escape the G0/G1 state (Figures S7A and S7B), 

suggesting that TGF-β2 may contribute to the slow cycling nature of srGAP1low cells.

All together, these results demonstrate that srGAP1low cells have increased TGF-β2/Smad2 

signaling, leading to an increase in matrix degradation along with an increase in p27, 

suggesting prolonged quiescence/dormancy.

DISCUSSION

The first report linking srGAP1 to cancer was a study in papillary thyroid carcinoma (PTC) 

in which the authors described srGAP1 as a candidate susceptibility gene for PTC (He et 

al., 2013). Since that, several studies linked the downregulation of srGAP1 with increased 

invasion. A study in glioblastoma showed that downregulation of srGAP1 expression 

through overexpression of miR-145 increased invasion (KOO etal., 2015). In another study 

in colorectal cancer, downregulation of srGAP1 was associated with increased lymphatic 

invasion (Feng et al., 2016). On the other hand, in gastric cancers, srGAP1 is upregulated 

through miR-340 and miR-124 downregulation, promoting metastasis (Huang et al., 2018).

In the context of BC, the role of srGAP1 was completely unknown. Interestingly, in human 

ER−/PR− BC, analysis of expression levels for srGAP1 showed that relapse-free survival 

was significantly higher in the patient group of low srGAP1 expression, as shown by a 

Kaplan-Meier plot, and overall survival is reduced in all BC patients as well as in ER−/PR− 

patients (Figures S7C–S7E). Our data describing the long latency of srGAP1low tumors may 
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explain these clinical results and suggest that srGAP1 expression is prognostic of survival in 

ER−/PR− BC patients.

Several studies described an invadopodia-dependent function for extravasation (Gil-Henn et 

al., 2013; Gligorijevic et al., 2012; Leong et al., 2014; Williams et al., 2019). Our study 

reveals srGAP1 as a new regulator of invadopodia function and tumor cell extravasation. 

Moreover, in our zebrafish experiments we observed that extravasated srGAP1low cells 

display multiple cellular protrusions, suggesting that downregulation of srGAP1 may 

contribute to the establishment of connections with other niche components to efficiently 

seed at metastatic sites.

We demonstrate that srGAP1 regulates a proliferative-to-invasive switch, which is not a 

well-characterized phenomenon in BC. In certain tumors, invasion has been correlated with 

a decrease in cell proliferation (Hoek et al., 2008; Kohrman and Matus, 2017; O’Connell 

and Weeraratna, 2013; Widmer et al., 2013). For example, in BC cell lines, Arg/Abl2 

was shown to attenuate cell proliferation in primary tumors and promote invasion through 

invadopodia regulation (Gil-Henn et al., 2013). Recent studies in BC cells have also shown 

that matrix degradation by invadopodia is enhanced in the G1 phase of the cell cycle 

(Bayarmagnai et al., 2019).

During development, C. elegans anchor cell (AC) invasion (a specialized uterine cell) has 

been used as a model to understand the process of invasion through basement membranes 

(BMs) (Hagedorn and Sherwood, 2011; Sherwood and Sternberg, 2003). In many aspects, 

ACs resemble a cancer cell crossing a BM. ACs form invadopodia, with similar actin 

regulatory molecules as the ones found in tumor cells, that breach the BM (Lohmer et al., 

2014) while remaining arrested in the G1 phase of the cell cycle (Matus et al., 2015) similar 

to our data presented here. These studies highlight the potential of using model organisms to 

identify new molecules that could play a role in tumor dissemination, and suggest that tumor 

cells may co-opt developmental processes during invasion and have a more complex role in 

the proliferative-to-invasive decision (Kohrman and Matus, 2017).

In glioma, a study found mitochondria localized within invadopodia structures (Arismendi-

Morillo et al., 2012) and work on C. elegans ACs showed mitochondria localization at 

invasive protrusions to facilitate BM invasion (Kelley et al., 2019). We can hypothesize 

that invading cancer cells will polarize their energy resources at invadopodia to meet the 

energy demands required for invasion (i.e., actin polymerization) while decreasing the 

energy required to engage in other cellular processes, such as cell division.

Our data also suggest that highly motile cancer cells with low levels of srGAP1 may be 

more prone to enter into a state of dormancy. Tumor cell dormancy maintains DTCs in a 

non-proliferative state for years or decades before they restore growth (Aguirre-Ghiso and 

Sosa, 2018; Sosa et al., 2014). The dormant cancer state is characterized by a reversible 

growth arrest where cells remain in the G0 phase of the cell cycle through interactions with 

the tumor microenvironment (Prunier et al., 2019). TGF-β2 has been identified as one of the 

mediators of the dormancy program through TGF-βRIII (Bragado et al., 2013; Nobre et al., 

2021). Interestingly, RNA-seq analysis of dormant cells in a head and neck cancer model 
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also shows reduced levels of srGAP1 expression compared with proliferative cells (data not 

shown). Moreover, migratory, invasive tumor cells have been demonstrated to have nuclear 

expression of Smad2/3 by immunofluorescence when compared with “average primary 

tumor cells” (Patsialou et al., 2012), adding to the significance of TGF-β-mediated signaling 

in regulating invasion. Our study suggests that srGAP1 downregulation may contribute 

to tumor dormancy by establishing a TGF-β2-rich niche in a cell-autonomous manner. 

Interestingly, analysis of patient datasets demonstrates an anti-correlation between srGAP1 

gene expression and TGF-β2 gene expression in BC patient samples (Figure S7E).

In summary, we have identified a novel signaling axis involving srGAP1low/TGF-β2/Smad2 

acting on invadopodia formation and invasion while regulating tumor cell proliferative 

capacities. Our data emphasize the importance of considering phenotypic changes that could 

occur when treating cancer cells with therapeutic strategies that target proliferating cells, 

such as chemotherapy. While these treatment regimens target dividing cells, they may also 

be selecting for more invasive tumors. Our studies suggest that more selective therapeutic 

strategies combining treatments against both dividing cells and non-dividing invasive cells 

may be necessary to prevent metastatic disease.

Limitations of the study

In this study, we identified a population of disseminated BC cells that have low srGAP1 

expression. We investigated the consequences of srGAP1 loss in mammary tumors; however, 

we recognize that the mechanisms driving srGAP1 downregulation within tumors were not 

explored. In addition, while we described an upregulation of TGF-β2 secretion in srGAP1low 

cells and activation of the Smad2/3 pathway, the mechanistic details describing how srGAP1 

controls TGF-β2 secretion were not investigated. We anticipate that studies describing how 

srGAP1 regulates TGF-β2 secretion will be highly informative for the understanding of the 

role of srGAP1 during tumor dissemination.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by Jose Javier Bravo-Cordero (josejavier.bravo-

cordero@mssm.edu).

Materials availability—This study did not generate any new, unique reagents.

Data and code availability

• RNAseq data have been deposited at GEO and are publicly available as of the 

date of publication. Accession numbers are listed in the key resources table. 

Proteomics data have been deposited at PRIDE and are publicly available as of 

the date of publication. Accession numbers are listed in the key resources table.

• This paper does not report original code.
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• Any additional information required to reanalyze the data reported in this work 

paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines—MDA-MB-231 and MCF7 were purchased from ATCC and cultured in 1X 

DMEM with 4.5 g/L D-Glucose and Glutamax (Gibco), and 10% fetal bovine serum 

(Gemini Bio, Cat #: 900–108). BT549 and HS578 T were kindly provided by the Condeelis 

lab (Albert Einstein College of Medicine, USA) who purchased the cells from ATCC. 

BT549 and HS578 T were cultured as above with insulin supplementation (0.023 units/mL 

insulin for BT549, 0.288 units/mL insulin for HS578 T). T47D were cultured in RPMI 

and 10% fetal bovine serum in 0.2 Units/mL insulin. HEK293 cells were used to generate 

lentivirus and were cultured in DMEM with 4.5 g/L D-Glucose and Glutamax (Gibco) and 

10% fetal bovine serum (Gemini Bio, Cat #: 900–108). All cells were maintained at 37°C 

and 5% CO2.

Mouse xenograft models—All experiments were conducted in accordance with the 

National Institutes of Health guidelines and were approved by the Icahn School of Medicine 

at Mount Sinai IACUC committee. 6-to-8 week old female immunodeficient NCG mice 

(NOD-Prkdcem26Cd52Il2rgem26Cd22/NjuCrl, Charles River Labs, Wilmington MA) and 8-

to-10 week old female immunodeficient nu/nu mice (Crl:NU-Foxn1nu, Charles River Labs, 

Wilmington MA) were used for mouse tumor xenograft and tail vein studies, respectively.

Zebrafish xenograft model—Adult zebrafish (Danio rerio) were maintained and crossed 

under standard conditions. Embryos were obtained from the transgenic line tg(kdrl:RFP) and 

were kept at 28.5°C during 48 h postfertilization (hpf). To avoid melanocyte formation, 200 

μM N-Phenylthiourea (PTU) (Alfa Aesar) was added into the embryo media at 6 hpf and 

changed every 24hr. All zebrafish experiments and procedures were performed as approved 

by IACUC at Stony Brook University and Janelia Research Campus.

METHOD DETAILS

Plasmids/reagents—pHIV-H2B-mRFP was purchased from Addgene (#18982) for stable 

H2B-RFP expression, FG12-GFP was kindly provided by the Soengas lab (CNIO, Spain) 

(Olmeda et al., 2017) for stable GFP expression, CSII-EF-DHB-Venus (sensor for Cdk2 

activity) was kindly provided by the Spencer lab (University of Colorado, USA) for 

cell cycle analysis, and a pLifeact-mRuby lentiviral vector was kindly provided by the 

Moreau and Saltel laboratories (DR2 INSERM, France) as in (Juin et al., 2014) for 

imaging actin dynamics. CFP-YFP RhoA biosensor (Pertz et al., 2006), a CFP-YFP Cdc42 

biosensor (Hanna et al., 2014), and a CFP-YFP Rac1 biosensor (Miskolci et al., 2016) 

were kindly provided by the Hodgson lab (AECOM, USA). Recombinant Human TGF-

beta 2/TGFβ2 Protein was purchased from AbClonal (RP00452) and diluted according 

to manufacturer’s instructions. LY364947 (Selleck Chemical, S2805), an ATP-competitive 

inhibitor of TGFβR-I was diluted according to manufacturer’s instructions.

Antibodies—For immunoblotting, primary antibodies were diluted in 5% BSA in 1X 

TBST or Odyssey Buffer (LiCOR) and added overnight at 4°C: Rabbit anti-srGAP1 
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(Bethyl Labs, A301–286A, 1:1000), Rabbit anti-srGAP2 (Abcam, ab124958, 1:1000), 

Rabbit anti-Smad2/3 (CST, 8685 T 1:1000), Mouse anti-alpha-tubulin (Sigma, T6074, 

1:5000–1:10,000), Rabbit anti-Beta-actin (Abcam, ab8227, 1:5000–1:10,000), Rabbit anti-

TGFβ2 (Abclonal, A3640, 1:1000). For immunofluorescence on cells, primary antibodies 

were diluted in 1% BSA in 1X PBS and added overnight at 4°C: Rabbit anti-srGAP1 

(Proteintech, 13252–1-AP, 1:500), Rabbit anti-Cortactin (Abcam, ab81208, 1:50), Mouse 

anti-Tks5 (Millipore clone 13H6.3, MABT336, 1:50), Mouse anti-Cortactin (Millipore clone 

4F11, 05–180-I, 1:300), Rabbit anti-Smad2/3 (CST, 8685 T, 1:100), Rabbit anti-pSmad2 

(CST, 3108 S, 1:100), Mouse anti-Smad2 (1:100, LSBio, LS-C169392), and AlexaFluor 

labelled-secondary antibodies were diluted in 1% BSA in 1X PBS from 1:250–1:400. For 

immunofluorescence on tissues, primary antibodies were diluted in 1% donkey serum in 

0.5% Tween 20 in 1X PBS and added overnight at 4°C: Chicken anti-GFP (Aves Labs, 

GFP-1010, 1:300), Rabbit anti-srGAP1 (Proteintech, 13252–1-AP, 1:100), Goat anti-p27 

(LSBio, LS-B3943, 1:100), Rabbit anti-p27 (CST, 3686 S, 1:100).

Immunoblotting—Cells were lysed in modified RIPA buffer (0.1% SDS, 1% NP40, 

150 mM NaCl, 1% sodium deoxycholate, 25 mM Tris-HCl pH 7.4) containing 

protease inhibitors (Complete Mini EDTA-free tablets; Roche) and phosphatase inhibitors 

(PhosSTOP, Roche). Protein concentrations were measured with a Lowry Assay (Bio-Rad), 

and 20–60 μg of protein was run on 8–10% SDS-PAGE gels. Protein was transferred on to 

a 0.45 μm nitrocellulose membrane (Bio-Rad) using a wet transfer or with Trans-Blot Turbo 

system, blocked for 1 h at room temperature in 5% BSA in 1X TBST or Odyssey Blocking 

buffer, and probed with antibodies diluted in 5% BSA in 1X TBST or Odyssey buffer. 

Mouse and rabbit near-infrared fluorescent secondary antibodies (LI-COR Biosciences) 

were added for 1 h at room temperature. The membrane was subsequently washed in 1X 

TBST, and imaged with an Odyssey CLx imaging system. Analysis was done with FIJI 

(Schindelin et al., 2012) by calculating densitometry relative to the loading control.

Lentiviral packaging and infection—Lentiviral transfer plasmids and plasmids 

encoding VSV-G, Gag-Pol, Rev, and Tat genes were transiently transfected with 

Lipofectamine™ 2000 (Thermo Fisher Scientific) into HEK293 T cells to package 

lentivirus. Lentivirus was packaged at 37°C and supernatant was collected after 48 h. 

Cell lines were infected with virus for 24 h and cultured to 80% confluence. Cells stably 

expressing fluorescent protein or biosensors were trypsinized, filtered with 40 μm cell 

strainers, and sorted in 1X PBS +2% FBS with a CSM4L sorter (BD Biosciences).

siRNA and shRNA—siRNAs were synthesized by IDT and transfected into cells 

with Lipofectamine RNAimax (Invitrogen) using the manufacturer’s protocol. Cells 

were transfected for 96 h with 100 nm of siRNAs targeting human srGAP1 

and a non-targeting control. siRNAs for human srGAP1 are as follows: si #1, 5′-

GCAGAUAAGUGAGGAUUCU-3′, si #2, ‘5-CAUGAGGGCUUAGACAUUA-3′. The 

human TGFβ2 siRNA is a Silencer™ Select Pre-Designed siRNA, s14061. For the 

siRNA screen, a custom Qiagen siRNA FlexiPlate (0.25 nmol) was designed and used as 

described above. shRNAs for stable knockdown of human srGAP1 are as follows: KD #1, 

5′-CCGCTCAC AGTATAATACTAA-3′, KD #2, 5′GCCCTGTTTATGAGAAATGTA-3′ in 
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a pLKO.1 vector. Control and knockdown cells with stable expression were selected for with 

1.5 μg/mL puromycin for three days, and then expanded. Knockdown levels were checked 

with immunoblotting.

Zebrafish xenograft experiments

Injection of human cells: Zebrafish embryos were manually dechorionated and 

anesthetized with 0.003% tricaine (Pentair, TRS1) at 48 hpf. MDA-MB-231 cells were 

loaded in a glass capillary and injected with a CellTram® 4r Oil microinjector into the 

zebrafish blood stream via Duct of Cuvier (200–400 cells per fish). After the injection, the 

embryos were maintained in embryo media with 200 μM PTU at 33°C.

Image acquisition and processing: At 24 h post injection (hpi), embryos with tumor cells 

in the caudal hematopoietic tissue were selected for subsequent experiments. The engrafted 

embryos were anesthetized with tricaine 0.003% and mounted in a drop of 0.8% low 

melting agarose containing 0.003% tricaine in 35 mm glass bottom dish with uncoated #1.5 

coverslip and 20 mm glass diameter (MatTek) for confocal and widefield microscopy or on 

round coverslip for light sheet microscopy. The embryos were manipulated with an eyelash 

tool for proper positioning. The embryos were then covered with 0.006% tricaine in embryo 

media.

To obtain the stitched whole tail, data images were acquired on either a widefield or 

confocal microscope. For widefield images a Nikon Eclipse Ti inverted epifluorescence 

microscope was used equipped with an Andor Zyla camera, a Lumencor SPECTRA X LED 

light engine with a DIC 20×/0.75 NA objective. Z-stacks were acquired every 2 μm, binning 

was set to 1 3× 1 with an exposure of 50 ms for G/Y and 200 ms R. For confocal imaging 

a custom-assembled spinning disk system was used consisting of a Zeiss Axio Imager 

A2 inverted frame with a Yokogawa CSU10 spinning disk, an ASI filter wheel, a Prime 

95b sCMOS camera, a 6-line laser merge by Vortran and a 25×/0.8 NA multi-immersion 

objective (Carl Zeiss) with oil immersion. Z-stacks were acquired every 3 μm with 25 

mW and 200 ms exposure for 561 nm and 488 nm. The acquired tiled z-stacks were max 

projected in Fiji/ImageJ (Schindelin et al., 2012) and then either stitched in Fiji/ImageJ 

using the pairwise stitching plugin (Preibisch et al., 2009) or by hand.

Live imaging of each cell in the caudal hematopoietic tissue was carried out using a 

custom assembled spinning disk confocal microscope consisting of a Zeiss Axio Imager 

A2 frame, a Borealis modified Yokogawa CSU10 spinning disc, an ASI 150-micron piezo 

stage controlled by a MS2000, an ASI filter wheel, a 6-line laser merge system from Vortran 

and a Hamamatsu ImageEM X2 EM-CCD camera. The imaging objective used was either a 

Plan Apochromat 40×/1.0 NA or 63×/1.0 NA water dipping objective (Carl Zeiss). Z-stacks 

were acquired every 1 μm with 488 nm and 561 nm with 2–5 mW and 200–300 ms exposure 

with a gain set at 80–100. For long timelapse data Z-stacks were acquired every 5 min 

and to capture extravasation a single Z was imaged every 500msec- 3sec. Images were 

then de-identified to blind the image analyst to the data and scored for intravasation vs. 

extravasation using the orthogonal and 3D viewing in Fiji/ImageJ (Schindelin et al., 2012). 

Plots were generated using GraphPad Prism.
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Lattice light sheet microscopy with adaptive optics correction—Zebrafish 

samples were anesthetized (0.003% tricaine) and embedded in low melt agarose (0.8%) 

on a 25 mm coverslip. The excitation and detection objectives together with the coverslip 

were immersed in ~40 mL of fish water at 33°C. Prior to time series data acquisition, 

the image volume was corrected for optical aberrations using two-photon guide star based 

adaptive optics method. With aberration-corrected mirror patterns, simultaneous two-color 

(488 nm and 560 nm) time-lapse lattice light sheet imaging with an outer/inner numerical 

aperture of 0.4/0.3 was then performed. The emission light was separated by a long-pass 

filter (Di03-R561-t3, Semrock) and captured by two sCMOS cameras (ORCA-Flash 4.0 

sCMOS, Hamamatsu Photonics). Volumetric imaging was done by axially scan the samples 

with a step size of 250 nm. Each imaged volume was deconvolved with experimentally 

obtained point spread functions measured from 100 nm tetraspec beads (Thermo Fisher) in 

C++ on HHMI Janelia Research Campus’ computing cluster. Image analysis was performed 

using FIJI (Schindelin et al., 2012) and Imaris.

In vivo mouse experiments—Xenograft models: 1 × 10^6 cells MDA-MB-231-GFP 

cells were suspended in 100 μL of sterile 1X PBS and injected into the fourth mammary 

fat pad of 6-to-8 week-old NCG mice (Charles River Labs, Wilmington MA). Mice were 

assessed for body condition score and weighed twice a week. Tumor growth for the 

knockdown cell lines was measured as soon as tumors were palpable with a caliper. Formula 

for tumor volume: V=W2 × L/2 (W: width, L: length). Mass of tumors was measured at 

6 weeks. Tail-Vein Injections: 400,000 GFP-labelled MDA-MB-231 cells in 100 ul of 1X 

DPBS were injected into the tail-vein of immunodeficient mice with an insulin syringe. 

Images of the lungs were acquired 48–72 h post-injection with an Olympus FVMPE-RS 

Multiphoton microscope.

Immunofluorescence—Cells were fixed in 4% paraformaldehyde in 1X PBS, 

permeabilized with 0.2% Triton X- in 1X PBS for 5 min, and blocked with 10% BSA 

in PBS for 1 h. Primary antibodies were added overnight at 4°C in 1% BSA in PBS, and 

secondary antibodies and/or phalloidin for F-actin-labeling for 1 h at room temperature 

in 1% BSA in PBS. DAPI (1–10 μg/mL, Biotium) was added in the last wash to label 

nuclei. Coverslips were mounted with Fluoromount-G™ Mounting Medium (Thermo Fisher 

Scientific).

Matrix degradation assays—Glass coverslips were coated with 1 mg/mL Alexa Fluor 

488 or 546-labelled gelatin matrix as in (Di Martino et al., 2017). Cells were plated on 

coverslips, fixed with 4% PFA in PBS at 4 h or 16 h, and stained with DAPI, cortactin 

and/or phalloidin. For mixed matrices with fibrillar collagen on Alexa Fluor 546-labelled 

gelatin, 0.5 mg/mL collagen I (BD Biosciences) was polymerized in DPBS +/+ for 4 h on 

top of gelatin. Cells were plated immediately on the mixed matrix, and fixed 16 h later. 

Images were acquired with a widefield Leica DM300 upright microscope with a DFC345X 

camera and an HCX PL APO 100× NA 1.4 objective. Matrix degradation area per field was 

quantified with FIJI (Schindelin et al., 2012). Measurements were acquired by thresholding 

matrix degradation and dividing by the number of cells per field (as demarcated with DAPI 

staining) (Di Martino et al., 2017).
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Live-cell imaging—Cells were plated on either 1 mg/mL fluorescent gelatin matrix 

(Thermo Fisher) or fibrillar collagen I for 2–4 h and then imaged in L15 phenol-red 

free media (Gibco) with 10% FBS (Gemini Bio) using an inverted confocal Zeiss LSM 

880 microscope. Imaging was conducted in a 37°C humidified and temperature-controlled 

chamber. Z-stacks were acquired every 30 min for 24 cycles with a 63X 1.4 NA objective, 

with a z-step size of 0.8–1 μm. Analysis of cell motility parameters was done with Imaris 

(Bitplane, Switzerland).

Collagen I plug assay—Collagen I plugs were prepared as in (Di Martino et al., 2017). 

Briefly, Alexa Fluor 546 NHS-ester was added to rat-tail collagen I (Corning), and mixed 

with PBS and 1 M NaOH for a final concentration of 2 mg/mL. The collagen I solution 

was added to cell culture inserts and allowed to polymerize for 1 h at 37°C. Plugs were 

enriched in 50% serum/1X DMEM for 4 h at 37°C, and 2.5 × 10^4 cells were plated on top 

of the plugs in serum-free media. Inserts were placed in complete media (1X DMEM with 

10% FBS), and plugs were fixed with 4% PFA in PBS at 30 min and 3 days after seeding. 

Z-stacks of plugs were imaged with a Leica TCS SP5 DMI inverted microscope with a 40× 

NA 1.25 objective.

Multi-color dSTORM—Samples were fixed on #1.5H coverslips, stained, and immersed 

in ONI’s bCubed STORM buffer and placed on a cavity slide. The images were acquired 

using a 100X 1.4 NA Olympus objective on the Nanoimager S (Oxford NanoImaging, 

ONI, Oxford, UK) with lasers 405 nm/150 mW, 488 nm/1000 mW, 561 nm/500 mW, 640 

nm/1000 mW and dual emission channels split at 640 nm. The signals from Alexa 647, 

Alexa 555, and Alexa 488, or Alexa 647 and Alexa 488 only, were recorded sequentially 

for 10,000 frames each using 100% laser power onto the dual-color channel sCMOS 

camera (Hamamatsu Orca Flash 4.0 V3). For localization of the individual molecules, the 

Nanoimager software v.1.4 was used to localize the molecules by fitting detectable spots of 

high photon intensity to a Gaussian function. The final image reconstruction was displayed 

in precision mode.

Fluorescence lifetime imaging (FLIM) acquisition and FLIM-FRET analysis—
FLIM experiments were carried out on cells transiently transfected with either a CFP-

YFP RhoA biosensor (Pertz et al., 2006) or a CFP-YFP Cdc42 biosensor (Hanna et al., 

2014) and fixed on coated coverslips. Time-correlated single photon counting FLIM was 

performed with a Leica TCS SP8 two-photon FALCON (Fast Lifetime CONtrast) system. 

A SpectraPhysics Insight X3 tuned to 850 nm pulsed laser source was used at 1.5%, and 

an NDD Hybrid detector was used for detection. Images were acquired with a 40X, NA 

1.10 HC PL IRAPO objective, and were scanned at 600 Hz with a zoom of 3.75. The 

measured decay curve was fitted to a multiexponential curve using the FALCON software. 

The fluorescence lifetime was calculated per pixel for the donor molecule of the FRET 

pair. A custom FIJI macro (adapted from EdgeRatio, https://cail.cn/code/EdgeRatio.txt) was 

written to calculate the mean fluorescence lifetime of a particular ROI (10 μm × 10 μm) 

at the leading edge of the cell. Two 10 μm × 10 μm regions were selected at the edge 

of the cell; measurements are calculated from the edge of the cell up to 2 μm inwards 

from 1 z-slice. The Rac1 biosensor FLIM images were captured with LAS X software 
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(Leica Application Suite X 4.3.0.24308) on a Leica Stellaris 8 (Leica Microsystems GmbH, 

Wetzlar, Germany) confocal microscope equipped with 4 spectral PowerHyD and TauSense 

technology. Imaging was performed using 40×/1.3 HC PlanApo oil immersion lens (Leica 

Microsystems GmbH, Wetzlar, Germany) and an optical zoom of 4, the frame size was set 

to 512 × 512 pixels (X/Y) for the final lateral pixel size of 0.142 um/pixel, and images 

were acquired at 8bits. The acquisition was performed at frame scan mode, with a pixel 

dwell time of range 1.725 μs. Fluorophores were excited with a 440 nm laser derived from 

an 80 MHz pulsed White Light Laser (Leica Microsystems GmbH, Wetzlar, Germany). 

The fluorophore emission was collected with Hybrid Detectors (HyDS, Leica Microsystems 

GmbH, Wetzlar, Germany) with a spectral window of 445–650 nm. Two 1 μm × 3 μm 

regions were selected at the edge of the cell; measurements were calculated from 1 z-slice.

Atomic force microscopy—1 × 10^5 cells MDA-MB-231 cells were plated on rimmed 

petri dishes (Ted Pella, Inc) coated with 1 mg/mL unlabeled gelatin. The Young’s modulus 

of MDA-MB-231 cells in L15 phenol red free cell culture media (Gibco) with 10% FBS 

(Gemini Bio) was measured using a Flex-Bio AFM (Nanosurf AG, Switzerland) equipped 

with an 178 inverted microscope Axio Observer (Carl Zeiss) and an environmental control 

enclosure. The AFM is operated in static force mode, and with a cantilever with spring 

constant 0.22 N, and its silicon tip with radius <10 nm (Stat0.2LAuD, Nanosurf AG, 

Switzerland). Force curves were measured across cells within 30 μm windows with each 

data point collected every 2 μm. A custom Matlab (MathWorks, Natick, MA, USA) code 

was written to select and average the elasticity of 25 data points that have the highest contact 

points with the cell, which corresponds to the nucleus of the cell. The Sneddon model was 

used to approximate the Young’s modulus, with a cone with half angle 15°, fitting from 0 – 

500 pN.

Bulk RNAseq of tumors—Flash-frozen tumors (3 Ctrl mice, 3 KD #1 mice) were 

homogenized using the gentleMACS Octo Dissociator (Miltenyi Biotec), and total RNA 

was extracted with a RNeasy Mini Kit (Qiagen). RNA purity and concentration were 

calculated with a NanoDrop™ 2000 (Thermo Scientific), and RNA integrity was analyzed 

with the Agilent 2100 Bioanalyzer (Agilent). RNA Integrity Numbers (RIN) were calculated 

per sample: all samples had RIN between 9.0 and 10.0. Novogene conducted the library 

preparation, RNA sequencing, and analysis. Briefly, mRNA was purified with poly-T oligo-

attached magnetic beads, randomly fragmented, and was subjected to cDNA synthesis and 

library generation using an NEBNext® Ultra™ RNA Library Prep Kit. Library quality was 

assessed with q-PCR to quantify library effective concentration (>2 nM). The library was 

diluted to 1.5 ng/mL using Qubit2.0 (Invitrogen) results, and insert size was detected by an 

Agilent 2100 Bioanalyzer (Agilent). Sequencing was performed with an Illumina NovaSeq 

6000 system (Illumina). Raw reads were filtered and mapped with STAR software.

Differential expression analysis of Ctrl and KD #1 groups (three biological replicates per 

group) was performed using the DESeq2 R package (v2_1.6.3) (Anders and Huber, 2010).

P-values were adjusted using the Benjamini and Hochberg’s approach for controlling the 

False Discovery Rate (FDR), and the threshold of differential gene expression was padj < 
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0.05. For KEGG and Reactome pathway enrichment analysis, a clusterProfiler R package 

(v2.4.3) was used.

Intravital imaging of mice—Mice with tumors <1 cm^3 were anesthetized with 1.5–2% 

isoflurane with the oxygen flowmeter at 0.8 to 1.5 L/min. A skin-flap surgery was performed 

to expose the tumor, and a mammary imaging window was placed over the primary tumor. 

Intravital imaging of NCG mice (Strain Code: 572, Charles River Labs) with MDA-MB-231 

GFP tumors was conducted as in (Patsialou et al., 2013) using an Olympus FluoView 

FV1000MPE multiphoton laser scanning microscope with a 25× NA 1.05 dipping water. 

The light source is a Ti:Sapphire femtosecond-pulsed laser system (Coherent Chameleon 

Vision II laser) that is tunable from 680 nm to 1080 nm, as well as a 473 nm laser diode for 

single photon excitation. Second harmonic generation (SHG) and GFP signal was acquired 

from 880 nm excitation with a 5 μm z step-size; images were acquired every 2 min for 30 

min movies. x-y drift of movies was corrected with HyperStackReg plugin (FIJI (Schindelin 

et al., 2012), 10.5281/zenodo.2252521), and a TrackMate plugin (FIJI (Schindelin et al., 

2012; Tinevez et al., 2017)) was used to track cells.

Two-photon imaging of tissues—Tissues were isolated from NCG mice and 

imaged immediately with an Olympus FluoView FV1000MPE multiphoton laser scanning 

microscope using a 25× NA 1.05 dipping water objective. Tissues were excited at 880 nm 

with a Coherent Chameleon Vision II laser. For tissues expressing H2B-RFP in addition 

to SHG and GFP, sequential imaging at 880 nm followed by 1000 nm was acquired, and 

images were aligned with TrakEm2 (FIJI (Cardona et al., 2012; Preibisch et al., 2009)).

Tissue collection, immunofluorescence, and imaging of tissue sections—All 

tissues were obtained from NOD/SCID/gamma mice (NCG mice, Strain Code: 572, Charles 

River Labs), fixed overnight in 10% neutral-buffered formalin, and embedded in paraffin. 5 

μm serial sections of primary tumors and lungs were used for staining.

5 μm sections of paraffin-embedded tissues were deparaffinized in xylene, dehydrated with 

a graded series of alcohol, and rehydrated in 1X PBS. Heat-induced antigen retrieval was 

performed in 10 mM citrate buffer (pH 6.0) in a pressure cooker. After 2–3 h, sections 

were blocked with 10% donkey serum in 0.5% Tween 20 in 1X PBS for 2 h at room 

temperature, incubated with primary antibodies in 1% donkey serum in 0.5% Tween 

20 in 1X PBS overnight at 4°C, and washed 3 times in 0.5% Tween 20 in 1X PBS. 

Fluorescently-labeled secondary antibodies (AlexaFluor, Molecular Probes) were added for 

2 h at room temperature, and 10 μg/mL DAPI (Biotium) was added at the last wash to label 

DNA. Coverslips were mounted with Fluoromount-G Mounting Media (Southern Biotech). 

A Leica TCS SP5 DMI inverted microscope was used for fluorescent imaging of tissue 

sections (40× NA 1.25, 63X, NA 1.4).

Proteomics analysis of secretome

Secretome sample preparation: Conditioned media from 5 × 10^6 cells was collected 

after 48 h and concentrated with Amicon Ultra-15 3000 MWCO filters (Millipore). 

Amicon Ultra-4 3000 MWCO filters (Millipore) were used for buffer exchange to 1X 

Mondal et al. Page 18

Cell Rep. Author manuscript; available in PMC 2022 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PBS. Protein concentration was measured with a Pierce™ BCA protein assay (Thermo 

Fisher), and protein quality was assessed by running 5 μg of protein on a 12% SDS-PAGE 

gel and stained with Coomassie Brilliant Blue. Proteomics analysis was conducted at the 

Northwestern Proteomics Core facility. Briefly, 50 μg each protein was concentrated and 

purified by acetone/tca precipitation and resulting protein pellet was resuspended in 50 μL of 

8 M urea in 400 mM ammonium bicarbonate, pH 7.8, reduced with 4 mM dithiothreitol at 

50°C for 30 min, and cysteines were alkylated with 18 mM iodoacetamide in the dark for 30 

min. The solution was then diluted to <2 M urea (final concentration) and trypsin (Promega, 

Madison, WI) was added at final trypsin/protein ratio of 1:50 prior to overnight incubation 

at 37°C with shaking. The resulting peptides were desalted using solid phase extraction on a 

Pierce C18 Spin column and eluted in 80 μL of 80% acetonitrile in 0.1% formic acid. After 

lyophilization, peptides were reconstituted with 5% acetonitrile in 0.1% formic acid. Three 

biological replicates and two technical duplicates were run for each condition.

Liquid chromatography tandem mass spectrometry (LC-MS/MS) data 
acquisition and processing—Peptides were analyzed by LC-MS/MS using a Dionex 

UltiMate 3000 Rapid Separation nanoLC and a Q Exactive™ HF Hybrid Quadrupole-

Orbitrap™ Mass Spectrometer (Thermo Fisher Scientific Inc, San Jose, CA). Approximately 

2 μg of peptide samples was loaded onto the trap column, which was 150 μm × 3 cm 

in-house packed C18 beads. The analytical column was a 75 μm × 10.5 cm PicoChip column 

packed with 3 μm C18 beads (New Objective, Inc. Woburn, MA). The flow rate was kept 

at 300 nL/min. Solvent A was 0.1% FA in water and Solvent B was 0.1% FA in ACN. 

The peptide was separated on a 120-min analytical gradient from 5% ACN/0.1% FA to 

40% ACN/0.1% FA. The mass spectrometer was operated in data-dependent mode. The 

source voltage was 2.40 kV. MS1 scans were acquired from 300 to 2000 m/z at 60,000 

resolving power and automatic gain control (AGC) set to 3 × 106. The top 20 most abundant 

precursor ions in each MS1 scan were selected for fragmentation. Precursors were selected 

with an isolation width of 2 m/z and fragmented by Higher-energy collisional dissociation 

(HCD) at 30% normalized collision energy in the HCD cell. Previously selected ions were 

dynamically excluded from re-selection for 20 s. The MS2 minimum AGC was set to 1 × 

103. Data was acquired in technical duplicates.

Data analysis—Proteins were identified from the tandem mass spectra extracted by 

Xcalibur version 4.0. MS/MS spectra were searched against the SwissProt Homo sapiens 
database using Mascot search engine (Matrix Science, London, UK; version 2.7.0). All 

searches included carbamidomethyl cysteine as a fixed modification and oxidized Lys, Pro, 

and Met; deamidated Asn and Gln; and acetylated N-term as variable modifications. Three 

missed tryptic cleavages were allowed. The MS1 precursor mass tolerance was set to 10 ppm 

and the MS2 tolerance was set to 0.05 Da. The search result was visualized by Scaffold v 

5.0(Proteome Software, INC., Portland, OR). A 1% false discovery rate cutoff was applied 

at the peptide level. Only proteins with a minimum of two unique peptides above the cutoff 

were considered for further study. Raw mass spectrometry data will be made available upon 

publication and via request to the authors. The mass spectrometry proteomics data have been 

deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) 
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partner repository with the dataset identifier PXD026102 and 10.6019/PXD026102 and will 

be made publicly available upon acceptance of the manuscript.

Luminex assays—Conditioned media from cells and concentrated with Amicon Ultra-4 

3000 MWCO filters (Millipore). TGF-β Luminex assays were performed by Eve 

Technologies (Calgary, Alberta) using a TGF-β 3-Plex Cytokine Array. Samples were run in 

duplicate. Regression analysis is performed as a function of the software analyser. Bio-Plex 

Manager™ software regression equations use the Expected Concentration values of the 

standard, as defined in the manufacturer’s Instructions for Use (IFU), and Fluorescence 

Intensity (FI) to generate the Observed Concentration.

Apoptosis assays—An APC Annexin V detection kit with 7-AAD (BioLegend) was 

used to determine apoptosis and necrosis. Briefly, 5 × 10^6 cells were collected per sample, 

washed, and resuspended in 100 μL of binding buffer. 7-AAD viability solution and FITC-

annexin V were added to the samples, vortexed and incubated at room temperature for 15 

min, and an additional 400 μL of binding buffer was added to each sample. FACS was done 

on the BD LSRFortessa and analyzed using FlowJo v.10. At least 1 × 10^5 cells per sample 

was recorded; data is in triplicate and represented as mean +/SEM.

Cell cycle analysis and pyronin Y staining—500,000 cells were incubated with 

1 μg/mL of Hoechst 33342 solution (BD Biosciences) for 45 min at 37°C, and then 

incubated for an additional 15 min with 1 μg/mL Pyronin Y (Sigma Aldrich). Samples 

were analyzed by flow cytometry (BD LSRFortessa). At least 50,000–100,000 data were 

cells were recorded per sample and analyzed using FlowJo v.10.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed with GraphPad PRISM 9.0.1, or using R-packages as 

explained in the Methods. Statistical tests used to analyze data are listed in the figure 

legends, and exact values of n and p values are either listed in the figure legends or 

displayed in figures. All data, unless otherwise specified, was analyzed by non-parametric 

tests. Normality was assessed using GraphPad PRISM 9.0.1. Differences were considered 

significant if p < 0.05, or padj < 0.05, depending on the experiment. Sample size was 

determined empirically.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• BC cells can form actin-rich protrusions during extravasation

• srGAP1 loss promotes invasion and extravasation while reducing metastatic 

outgrowth

• srGAP1low cells can remain as solitary cells in the lungs of mice with BC 

tumors

• srGAP1 mediates a proliferative-to-invasive switch dependent on TGF-β2 

signaling
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Figure 1. Breast cancer cells form protrusive structures during extravasation
(A–D) Lattice light-sheet microscopy of MDA-MB-231 cells expressing LifeAct Ruby 

injected intravenously in zebrafish xenografts. Yellow arrows point toward rolling BC 

cells in the blood. White arrows point to: (A and B) protrusions toward endothelium; (C) 

protrusions into the endothelium; (D) protrusions formed by tumor cell after extravasation. 

Scale bar, 10 μm. Time in min.
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(E) Representative images of Ctrl, srGAP1 KD #1, and srGAP1 KD #2 MDA-MB-231-GFP 

cells injected into Tg(kdrl:RFP) zebrafish embryos and imaged 24 h post injection (hpi). 

Scale bar, 20 μm.

(F) Percent of extravasated MDA-MB-231 cells from zebrafish with extravasation events. n 

= 19 (Ctrl), 37 (srGAP KD #1), and 21 (srGAP1 KD #2) zebrafish. Mann Whitney U test, 

two-tailed. Data represented as a box and whisker plot, with median and interquartile range 

in the box and min and max as whiskers.

(G) Time-lapse images of MDA-MB-231 Ctrl and srGAP1 KD #1 cells in zebrafish 

vasculature. Yellow arrows point to protrusive structures. Scale bar, 20 μm.

(H) Tiled images showing extravasation events at the tailbud of fish. MDA-MB-231 cells. 

(Top) Ctrl cells imaged 24 h post injection (hpi). (Middle) srGAP KD #1 cells imaged 20 

hpi; (bottom) srGAP KD #1 cells imaged 24 hpi. Three representative fish tails shown. Scale 

bar, 100 μm (left and middle panels), 25 μm (right).

(I) Schematic of zebrafish xenograft setup.
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Figure 2. srGAP1 depletion increases matrix degradation by forming more mature invadopodia
(A) Immunofluorescence demonstrating srGAP1, cortactin, and F-actin localization at 

invadopodia structures using direct STORM of MDA-MB-231 cells. Individual invadopodia 

noted by numbers and white boxes; arrows point to srGAP1 staining. Scale bars, 5 μm (for 

cell), 100 nm (for invadopodia #1, 4), 200 nm (for invadopodia #2, 3). For invadopodia #1, 

respective curve fitting of a region through invadopodia (bottom right).
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(B) Time-lapse images of control (Ctrl) or srGAP1 knockdown Lifeact-Ruby MDA-MB-231 

cells using siRNAs (srGAP si #1, srGAP1 si #2) and respective matrix degradation on 

gelatin at 0, 4, and 8 h. Scale bar, 10 μm.

(C) Matrix degradation of Ctrl, srGAP1 si #1, and srGAP1 si #2 MDA-MB-231 cells. Cells 

plated on fluorescent gelatin for 4 h. n = 114 (Ctrl), 116 (srGAP1 si #1), and 109 (srGAP1 

si #2) fields quantified. Data from three independent experiments and represented as a violin 

plot, horizontal lines are median and interquartile range. Mann-Whitney U test, two-tailed.

(D) Representative images of Ctrl, srGAP1 si #1, and srGAP1 si #2 MDA-MB-231 cells 

plated on fibrillar collagen I overlaid on fluorescent gelatin for 16 h. Left: cortactin; middle: 

gelatin matrix; right: cortactin (red)-, F-actin (green)-, DAPI (blue)-labeled tumor cells on 

the matrix. Scale bar, 10 μm.

(E) Matrix degradation of Ctrl, srGAP1 si #1, and srGAP1 si #2 MDA-MB-231 cells 

plated on fibrillar collagen I overlaid on fluorescent gelatin for 16 h. n = 119 (Ctrl), 101 

(srGAP1 si #1), and 113 (srGAP1 si #2) fields quantified. Data are from three independent 

experiments and represented as a violin plot; horizontal lines are median and interquartile 

range. Mann-Whitney U test, two-tailed.

(F) Percent of Ctrl, srGAP1 si #1, and srGAP1 si #2 MDA-MB-231 cells with or without 

invadopodia at 4 h. n = 226 cells from 64 fields (Ctrl), 166 cells from 73 fields (srGAP1 

si #1), 147 cells from 72 fields (srGAP1 si #2) pooled over three independent experiments. 

Chi-squared test.

(G) Representative images of Ctrl and srGAP1 si #1 MDA-MB-231 cells on gelatin for 4 

h. Left: cortactin; right: Tks5 staining. Scale bar, 10 μm. Inset scale bar, 1 μm. Top left: 

cortactin; bottom left: Tks5; bottom right: gelatin, Top right: merge of cortactin and Tks5. 

Mature invadopodia are labeled with cortactin and Tks5; black spots on gelatin matrix 

represent matrix degradation (yellow arrows point to colocalization of invadopodia and 

matrix degradation).

(H) Number of mature invadopodia of Ctrl, srGAP1 si #1, and srGAP1 si #2 MDA-MB-231 

cells at 4 h, n = 25 (Ctrl), n = 33 (srGAP1 si #1), n = 28 (srGAP1 si #2) fields. Data are from 

three independent experiments and represented as a violin plot; horizontal lines are median 

and interquartile range. Mann-Whitney U test, two-tailed.

(I) Time-lapse images of invadopodia lifetime at 0 and 30 min. (Left) Lifeact-Ruby Ctrl and 

srGAP1 si #1 MDA-MB-231 cells on fluorescent gelatin at 0 min. Scale bar, 20 μm. Right 

panel: insets of mature invadopodia (red fluorescent puncta overlaid on black degradation 

spots) over time (0 and 30 min).

(J) Cumulative distribution of invadopodia lifetimes of Ctrl, srGAP1 si #1, and srGAP1 si 

#2 MDA-MB-231 cells. n = 122 invadopodia from 10 cells (Ctrl), 317 invadopodia from 11 

cells (srGAP1 si #1), and 169 invadopodia from 11 (srGAP1 si #2) cells. Data from three 

independent experiments. Kolmogorov-Smirnov test.
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Figure 3. In vitro and in vivo invasion are regulated by srGAP1 expression
(A) Representative images of Ctrl, srGAP1 si #1, and srGAP1 si #2 MDA-MB-231 cells 3 

days after being seeded on top of collagen I plugs. Images taken at 15, 30, and 45 μm in the 

z direction (deeper into collagen plug away from surface). Cells are labeled with phalloidin 

and DAPI, collagen I is fluorescently labeled. Scale bar, 50 μm.

(B) x-z images of representative collagen I plugs from (A). Scale bar, 10 μm.

(C) Maximum distance (>15 μm) Ctrl and srGAP1 si #1 cells (left) or Ctrl and srGAP1 si #2 

MDA-MB-231 cells (right) invade into the collagen I plug. Each value is a single cell/field. 
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Left: n = 37 (Ctrl), 34 (srGAP1 si #1) cells. Right: n = 38 (Ctrl), 35 (srGAP1 si #2) cells. 

Data pooled over five independent experiments and represented as a violin plot; horizontal 

lines are median and interquartile range. Mann-Whitney U test, two-tailed.

(D) Schematic of intravital imaging setup.

(E) Three individual time frames from intravital imaging movies of Ctrl and srGAP1 KD #1 

MDA-MB-231 primary tumors. Tumor cells in green, collagen fibers in red through second 

harmonic generation (SHG). Blue and yellow arrows indicate in vivo cell motility over time. 

One z slice shown at 0, 16, 28 min. Scale bar, 25 μm.

(F) Average mean speed of tumor cells moving in μm/min in vivo from (C). Data pooled 

from 3 Ctrl and 3 srGAP1 KD #1 mice, n = 94 (Ctrl) and 102 (srGAP1 KD #1) MDA-

MB-231 tumor cells. Mann-Whitney U test, two-tailed. Data represented as a box and 

whisker plot, with median and interquartile range in the box and min and max as whiskers.

(G) Average path length of tumor cells that appear in a minimum of 10 frames of intravital 

imaging movies (t = 20–28 min). Data pooled from 3 Ctrl and 3 srGAP1 KD #1 mice, 

n = 27 (Ctrl) and 33 (srGAP1 KD #1) MDA-MB-231 tumor cells. Mann-Whitney U test, 

two-tailed. Data represented as a box and whisker plot, with median and interquartile range 

in the box and min and max as whiskers.

(H) Directional persistence of tumor cells that appear in a minimum of 10 frames of 

intravital imaging movies (t = 20–28 min). Data pooled from 3 Ctrl and 3 srGAP1 KD #1 

mice, n = 27 (Ctrl) and 33 (srGAP1 KD #1) MDA-MB-231 tumor cells. Mann-Whitney U 

test, two-tailed. Data represented as a box and whisker plot, with median and interquartile 

range in the box and min and max as whiskers.

(I) Top: schematic of atomic force microscopy setup. Bottom: elasticity heatmaps of 

representative Ctrl, srGAP1 KD #1, and srGAP1 KD #2 MDA-MB-231 cells.

(J) Modulus of elasticity of Ctrl, srGAP1 KD #1, and srGAP1 KD #2 MDA-MB-231 cells 

using AFM. n = 100 (Ctrl), 200 (KD #1), and 200 (KD #2) measurements over 4, 8, and 8 

cells, respectively. Mann-Whitney U test, two-tailed. Data represented as a box and whisker 

plot, with median and interquartile range in the box and min and max as whiskers.
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Figure 4. srGAP1low cells are capable of seeding the lung but have reduced metastatic outgrowth
(A) Number of seeding events (single MDA-MB-231 tumor cells and clusters) relative to 

primary tumor mass (grams). Data pooled over two Ctrl and two srGAP1 KD #1 mice. Three 

450 × 450 μm sections quantified per mouse. Unpaired t test, two-tailed, mean ± SEM.

(B) Number of seeding events (single MDA-MB-231 tumor cells and clusters) relative to 

primary tumor mass (grams). Data pooled over two Ctrl and two srGAP1 KD #2 mice. Three 

450 × 450 μm sections quantified per mouse. Unpaired t test, two-tailed, mean ± SEM.

(C) Representative images of MDA-MB-231 lung metastasis in Ctrl, srGAP1 KD #1, and 

srGAP1 KD #2 mice. Maximum intensity z projection, tumor cells in green and collagen 

fibers in blue through second harmonic generation (SHG). Scale bar, 100 μm.

(D) Percent area of MDA-MB-231 metastasis per lung area measured (in mm2). One H&E 

section measured per mouse, n = 5 (Ctrl), 5 (srGAP1 KD #1), and 4 (srGAP1 KD #2) mice. 

Unpaired t test, two-tailed, mean ± SEM.

(E) Quantification of the proportion of MDA-MB-231 single cells relative to mass of 

primary tumor per lung section. Data pooled over two Ctrl and two srGAP1 KD #1 mice. 

Three 450 × 450 μm sections quantified per mouse. Unpaired t test, two-tailed, mean ± 

SEM.

(F) Quantification of the proportion of MDA-MB-231 single cells relative to mass of 

primary tumor per lung section. Data pooled over two Ctrl and two srGAP1 KD #2 mice. 

Three 450 × 450 μm sections quantified per mouse. Unpaired t test, two-tailed, mean ± 

SEM.
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Figure 5. Solitary disseminated tumor cells have low srGAP1 expression
(A) Tissue staining of MDA-MB-231 single tumor cells and clusters in Ctrl mice lungs. 

Yellow arrow points to single cell. Top: GFP-labeled tumor cell, DAPI for nuclei. Bottom: 

srGAP1 staining. Scale bar, 10 μm.

(B) srGAP1 intensity of MDA-MB-231 tumor cells and clusters in Ctrl mice lung (mean 

intensity in a defined area calculated for individual tumor cells and clusters). Data pooled 

over two Ctrl mice, three 450 × 450 μm sections quantified per mouse. Mann Whitney U 
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test, two-tailed. Scale bar, 10 μm. Data represented as a violin plot; horizontal lines are 

median and interquartile range.

(C) Top: time-lapse imaging of MDA-MB-231 Ctrl and srGAP1 KD #1 cells expressing 

H2B-RFP and a DHB:Venus sensor for Cdk2 activity. Frames from live-cell imaging of cells 

plated on fibrillar collagen, time in hours. Scale bar, 10 μm. Bottom: schematic representing 

cells expressing DHB:Venus sensor: nuclear expression is G0/G1, nuclear and cytoplasmic 

expression is S, and cytoplasmic expression is G2/M.

(D) Quantification of cytoplasmic to nuclear (C/N) ratio of DHB:Venus sensor for Cdk2 

activity over time for MDA-MB-231 Ctrl and srGAP1 KD #1 cells from (C). n = 24 (Ctrl), 

34 (srGAP1 KD #1) cells, two independent experiments. C/N ratio calculated for five frames 

(2 h). Data represented as mean ± SEM.

(E) Average cytoplasmic to nuclear ratio of MDA-MB-231 Ctrl and KD #1 cells expressing 

the DHB:Venus sensor for Cdk2 activity and H2B-RFP. C/N calculated from live-cell 

imaging (averaged over 2 h) of cells plated on fibrillar collagen. n = 24 (Ctrl), 34 (srGAP1 

KD #1) cells, two independent experiments. Unpaired t test, two-tailed.

(F) Images of lungs from Ctrl and srGAP1 KD #1 MDA-MB-231 xenografts expressing 

H2B-RFP and a DHB:Venus sensor for Cdk2 activity. Scale bars, 50 μm

(G) Number of MDA-MB-231 cells in the lung with nuclear DHB:Venus sensor expression 

relative to lesion area. Ten fields of view (255 × 255 μm) per mouse, data pooled over one 

Ctrl and one srGAP1 KD #1 mouse, each point is a field. Mann-Whitney U test, two-tailed. 

Data represented as a box and whisker plot, with median and interquartile range in the box 

and min and max as whiskers.
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Figure 6. srGAP1low cells have increased Smad2 activation and TGF-β2 secretion
(A) Left: KEGG pathway enrichment analysis; right: reactome pathway analysis of 

differentially expressed genes in srGAP1 KD #1 MDA-MB-231 tumors in relation to Ctrl 

tumors, *padj < 0.05.

(B) Top: immunoblot of Smad2 in Ctrl and srGAP1 KD #1 MDA-MB-231 cells using 

an anti-Smad2/3 antibody. Loading control, anti-β-actin. Bottom: densitometry analysis of 

Smad2 protein levels in Ctrl and KD #1 cells, three biological replicates.
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(C) Immunofluorescence of Smad2/3 in Ctrl and srGAP1 KD #1 MDA-MB-231 cells. Left: 

Smad2/3. Middle: phalloidin staining for F-actin. Right: DAPI for nuclear staining. Scale 

bar, 10 μm.

(D) Smad2/3 nuclear intensity per cell. Left: n = 170 (Ctrl), 171 (srGAP1 KD #1) MDA-

MB-231 cells. Right: n = 151 (Ctrl) cells, n = 169 (srGAP1 KD #2) MDA-MB-231 

cells. Data over three independent experiments, Mann-Whitney U test, two-tailed. Data 

represented as a violin plot; horizontal lines are median and interquartile range.

(E) pSmad2/total Smad2 nuclear intensity ratio. Left: n = 90 (Ctrl), 94 (srGAP1 KD #1) 

MDA-MB-231 cells. Right: n = 80 (Ctrl), 99 (srGAP1 KD #2) MDA-MB-231 cells. Data 

over three independent experiments, Mann-Whitney U test, two-tailed. Data represented as a 

violin plot; horizontal lines are median and interquartile range.

(F) Differential expression of proteins from secretome analysis of conditioned medium from 

srGAP1 KD #1 MDA-MB-231 cells in relation to conditioned medium from Ctrl cells. Data 

visualized as a Venn diagram, three biological replicates and two technical duplicates.

(G) Pathway enrichment analysis of secretome (proteomics of conditioned medium) from 

srGAP1 KD #1 MDA-MB-231 cells in relation to conditioned medium from Ctrl cells.

(H) Expression of TGF-β ligands from proteomics data comparing conditioned medium 

from Ctrl and srGAP1 KD #1 MDA-MB-231 cells. Each data point is a biological replicate 

(averaged technical duplicates).

(I) Matrix degradation of MDA-MB-231 Ctrl cells plated on gelatin and stimulated with 10 

ng/mL TGF-β2, 16 h. Left: cortactin. Middle: phalloidin stain for F-actin. Right: fluorescent 

gelatin matrix. Scale bar, 10 μm.

(J) Matrix degradation of MDA-MB-231 Ctrl cells stimulated with 10 ng/mL TGF-β2 plated 

on gelatin, 16 h. Data from three independent experiments and represented as a violin plot, 

horizontal lines are median and interquartile range. n = 41 (Ctrl), 42 (TGF-β2-stimulated) 

fields quantified. Mann-Whitney U test, two-tailed.

(K) Nuclear p27 staining intensity of MDA-MB-231 Ctrl and srGAP1 KD #2 primary 

tumors. Top: p27. Bottom: DAPI for nuclei. Scale bar, 10 μm.

(L) Nuclear p27 staining intensity of MDA-MB-231 primary tumors. Top: data pooled over 

two Ctrl and two srGAP1 KD #1 mice. n = 39 (Ctrl) cells, n = 48 (srGAP1 KD #1) 

cells. Two 246 × 246 μm sections quantified per mouse. Mann-Whitney U test, two-tailed. 

Bottom: data pooled over two Ctrl and two srGAP1 KD #2 mice. One 388 × 388 μm section 

quantified per mouse. n = 38 (Ctrl) cells, n = 46 (srGAP1 KD #2) cells. Mann-Whitney 

U test, two-tailed. Data represented as a violin plot; horizontal lines are median and 

interquartile range.
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Figure 7. TGF-β2-mediated signaling regulates srGAP1low phenotypes
(A) Matrix degradation of Ctrl and srGAP1 si #1 MDA-MB-231 cells with or without 

depletion of TGF-β2 by siRNA. Cells plated on fluorescent gelatin for 16 h. n = 51 (Ctrl), 

47 (Ctrl + TGF-β2 siRNA), 52 (srGAP1 si #1), and 58 (srGAP1 si #1 + TGF-β2 siRNA) 

fields quantified. Data are from three independent experiments and represented as a violin 

plot, horizontal lines are median and interquartile range. Kruskal-Wallis test, corrected with 

Dunn’s test.
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(B) Immunoblot of Ctrl and srGAP1 si #1 MDA-MB-231 cells with or without depletion 

of TGF-β2 by siRNA. Top blot: anti-srGAP1. Middle blot: anti-TGF-β2, * represents the 

TGF-β2 band. Bottom blot: loading control: anti-α-tubulin.

(C) Matrix degradation of Ctrl and srGAP1 si #1 MDA-MB-231 cells with DMSO or 5 

μM LY364947. Cells treated in serum-free medium with DMSO or 5 μM LY364947 for 

24 h, then plated on fluorescent gelatin for 16 h with DMSO or 5 μM LY364947. n = 45 

(Ctrl + DMSO), 38 (Ctrl +5 μM LY364947), 52 (srGAP1 si #1 + DMSO), and 61 (srGAP1 

si #1 + 5 μM LY364947) fields quantified. Data are from three independent experiments 

and represented as a violin plot, horizontal lines are median and interquartile range. Kruskal-

Wallis test, corrected with Dunn’s test.

(D) Representative images of cells seeding the lung after tail-vein injections. Left panel: 

GFP-labeled MDA-MB-231 tumor cells. Middle panel: fibrillar collagen (second harmonic 

generation). Right panel: merge, tumor cells in green and fibrillar collagen in red. Scale bar, 

20 μm.

(E) Area of tumor cells that have extravasated into the lung per field containing cells. 

GFP-labeled MDA-MB-231 Ctrl and srGAP1 si #1 MDA-MB-231 cells with or without 

depletion of TGF-β2 by siRNA. Cells injected into the tail-vein of mice. n = 31 (Ctrl), 

31 (Ctrl + TGF-β2 siRNA), 29 (srGAP1 si #1), and 25 (srGAP1 si #1 + TGF-β2 siRNA) 

fields quantified, pooled over 5, 5, 4, and 5 mice, respectively. Data are represented as a box 

and whisker plot; horizontal lines are median and interquartile range. Kruskal-Wallis test, 

corrected with Dunnett T3 test.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-srGAP1 Bethyl Labs A301-286A; RRID:AB_938002

Rabbit anti-srGAP2 Abcam ab124958; RRID:AB_10971187

Rabbit anti-Smad2/3 CST 8685T

Mouse anti-alpha-tubulin Sigma T6074; RRID:AB_477582

Rabbit anti-Beta-actin Abcam ab8227; RRID:AB_2305186

Rabbit anti-TGFβ2 Abclonal A3640; RRID:AB_2765199

Rabbit anti-srGAP1 Proteintech 13252-1-AP; RRID:AB_2270916

Rabbit anti-Cortactin Abcam ab81208; RRID:AB_1640383

Mouse anti-Tks5 Millipore MABT336

Mouse anti-Cortactin Millipore 05-180-I

Rabbit anti-pSmad2 CST 3108S

Mouse anti-Smad2 LSBio LS-C169392

Chicken anti-GFP Aves Labs GFP-1010; RRID:AB_2307313

Goat anti-p27 LSBio LS-B3943; RRID:AB_10700493

Rabbit anti-p27 CST 3686S; RRID:AB_2077850

Bacterial and virus strains

Subcloning Efficiency™ DH5α Competent Cells Thermo Fisher 18265017

Chemicals, peptides, and recombinant proteins

Recombinant Human TGF-beta 2/TGFP2 Protein AbClonal RP00452

LY364947 Selleck Chemical S2805

Rat-tail Collagen I Corning 354236

Hoechst 33342 BD Pharmingen 561908

Gelatin from Pig Skin, Oregon Green™ 488 Conjugate Fisher Scientific G13186

Gelatin solution Sigma-Aldrich G1393

Critical commercial assays

FITC Annexin V Apoptosis Detection Kit with 7-AAD BioLegend 640922

Deposited data

RNAseq Repository GEO (GSE210488)

Proteomics Repository PRIDE (PXD026102)

Experimental models: Cell lines

MDA-MB-231 ATCC HTB-26

BT549 ATCC HTB-122

HS578T ATCC HTB-126
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REAGENT or RESOURCE SOURCE IDENTIFIER

MCF7 ATCC HTB-22

T47D ATCC CRL-2865

HEK 293 T/17 ATCC CRL-11268

Experimental models: Organisms/strains

NCG mice (NOD-Prkdcem26Cd52Il2rgem26Cd22/NjuCrl) Charles River Lab Strain Code: 572

nu/nu mice (Crl:NU-Foxntnu) Charles River Lab Strain Code: 490

Zebrafish (Danio rerio, tg(kdrl:RFP)) Benjamin Martin

Oligonucleotides

Human srGAP1 siRNA #1 (5’-GCAGAUAAGUGAGGAUUCU-3’) IDT This paper

Human srGAP1 siRNA #2 (’5-CAUGAGGGCUUAGACAUUA 3’) IDT This paper

Human TGFβ2 siRNA Thermo Fisher s14061

Non-targeting Control siRNA against luciferase
(5'-CGTACGCGGAATACTTCGA-3')

IDT (Juin et al., 2014)

Recombinant DNA

pHIV-H2B-mRFP Addgene 18982

FG12-GFP Marisol Soengas (Olmeda et al., 2017)

CSII-EF-DHB-Venus Sabrina Spencer (Spencer et al., 2013)

pLifeact-mRuby Violaine Moreau (Juin et al., 2014)

CFP-YFP RhoA biosensor Louis Hodgson (Pertz et al., 2006)

CFP-YFP Cdc42 biosensor Louis Hodgson (Hanna et al., 2014)

CFP-YFP Rac1 biosensor Louis Hodgson (Miskolci et al., 2016)

plKO.1 shRNA human srGAP1 #1 AECOM RHS3979-9614755

pLKO.1 shRNA human srGAP1 #2 AECOM RHS3979-98492192

pLKO.1 Lentiviral Non-targeting Control shRNA Horizon RHS6848

Software and algorithms

Graphpad Prism 9 https://www.graphpad.com/ N/A

Scaffold 5 https://www.proteomesoftware.com N/A

FIJI https://imagej.net/software/fiji/ N/A

Imaris Oxford Instruments N/A
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