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Abstract: Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease 
characterized by chronic airway obstruction and emphysema. Accumulating studies have 
shown that the onset and development of COPD are related to an aberrant immune response 
induced by the dysregulation of a number of genetic and environmental factors, while the 
exact pathogenesis of this disease is not well defined. Emerging studies based on tests on 
samples from COPD patients, animal models, pharmacological and genetic data suggest that 
the NLR family pyrin domain containing 3 (NLRP3) inflammasome activation is required in 
the lung inflammatory responses in the development of COPD. Although the available 
clinical studies targeting the inflammasome effector cytokine, IL-1β, or IL-1 signaling do 
not show positive outcomes for COPD treatment, many alternative strategies have been 
proposed by recent emerging studies. Here, we highlight the recent progress in our under
standing of the role of the NLRP3 inflammasome in COPD and propose possible future 
studies that may further elucidate the roles of the inflammasome in the pathogenesis or the 
intervention of this inflammatory lung disease. 
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Introduction
Chronic Obstructive Pulmonary Disease (COPD)
COPD is a type of obstructive lung disease equally affecting males and females, it 
is considered to be the fourth leading cause of death globally.1 Common COPD 
features include chronic airway obstruction, emphysema, chronic bronchitis, airway 
remodeling, and decreased lung function.1 COPD patients usually manifest long- 
term breathing problems, including shortness of breath and cough with sputum. 
With the progression of the disease, patients may display other symptoms such as 
physical activity limitations. According to a study in 2016,2 COPD affects nearly 
2.4% of the population globally and annually causes more than 3 million deaths. 
COPD is a substantial problem everywhere, China and India account for more than 
50% of all cases of COPD in the world (Figure 1). Although COPD-associated 
symptoms can be ameliorated by reducing smoking rates, improving the air quality, 
and usage of medicine such as inhaled corticosteroids, a treatment with enough 
efficacy to prevent disease progression or exacerbation is still lacking.3 Due to the 
higher smoking rates and aging of population, its prevalence and number of deaths 
are still increasing.4,5
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The most common cause of COPD is smoking,6 while 
other factors can also contribute to the onset of this dis
ease, mainly including secondhand smoke, pollution and 
fumes, age, infections, occupational dusts/chemicals, 
untreated asthma and genetic factors such as deficiency 
of alpha-1 antitrypsin.7 The possible pathogenesis of 
COPD is strongly linked to chronic inflammatory 
responses due to the activation of many cell types such 
as myeloid cells and epithelial cells in response to possible 
irritants (such as those released from tobacco or polluted 
air) in the lung of genetically susceptible individuals.

Recently, Hobbs et al8 identified 22 genetic loci asso
ciated with COPD in a large cohort. Among them, 13 
represented new associations with COPD, of which 9 
(HHIP, CHRNA5, HTR4, FAM13A, RIN3, TGFB2, 
GSTCD-NPNT, CYP2A6 and IL27-CCDC101) of these 
13 loci had previously been associated with measures of 
lung function in the general population and the remaining 
4 (EEFSEC, DSP, MTCL1 and SFTPD) represented new 
associations with both COPD and lung function, indicating 
that individual genetic variation explains a small fraction 
of COPD susceptibility.

The activated immune cells produce pro-inflammatory 
cytokines, ROS, and tissue degrading proteases, which 

further expand the inflammation and cause tissue damage. 
In this process, lung epithelial cells may produce TGF-β 
and thus participate in fibrotic tissue remodeling. Thus, the 
development of COPD is a complex process that involves 
inflammation, aberrant activation of proteases, and uncon
trolled oxidative stress.

Animal Models of COPD
Various animal models have been developed to recapitulate 
the hallmark features of COPD and study the molecular and 
cellular processes during the development of the disease. 
Despite the establishment of models in many species, such 
as rodents, dogs, guinea-pigs, monkeys and sheep, the 
mouse COPD model provides the greatest ability in investi
gating disease pathogenesis due to the advances in mouse 
study, such as the availability of genetically engineered/ 
inbred strains and abundant antibodies, and the shared 
basic physiological processes between mouse and human.

Elastase Induced COPD Model
Previous studies have provided evidence that administra
tion of particular proteases or chemicals can induce 
inflammatory responses and tissue damage in the lung, 
features that partially resemble COPD. Delivery of elas
tase (single dose oropharengeally or four times 

Figure 1 Prevalence of chronic obstructive pulmonary disease (COPD) in selected countries, 1990–2019. Data are from the Global Burden of Disease. Prevalence of chronic 
obstructive pulmonary disease (COPD). Available from: http://ghdx.healthdata.org/search/site/COPD.97
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intratracheally) to the lung induces inflammatory cell infil
tration and pulmonary emphysema in mice within four 
weeks.9,10

LPS Induced COPD Model
LPS is an endotoxin derived from gram-negative bacteria 
that induces production of pro-inflammatory mediators and 
infiltration of immune cells such as macrophages and neu
trophils. This model can be induced by intranasal adminis
tration of LPS of many species such as mice and rats, which 
causes tissue damage and lung dysfunction associated with 
accumulation of white blood cells such as neutrophils in 
BALF, increase in pro-inflammatory cytokines and 
chemokines.11,12 Moreover, LPS can be used together with 
elastase to induce more severe lung inflammatory disease, 
a condition similar to COPD exacerbation.13

Ozone Induced COPD Model
Ozone is a gaseous constituent of urban air pollution 
generated from interaction of air pollutants such as organic 
compounds and nitrogen oxide. Accumulating evidence 
has shown that ozone plays a detrimental role in respira
tory health. Ozone exerts its effects by coming into contact 
with cellular membranes of alveolar epithelial cells or 
airway macrophages, thus generating bioactive mediators, 
which cause oxidative stress and also affect innate immune 
responses.14 Ozone can also affect macrophage phagocy
tosis of apoptotic cells15 and cytokine production of alveo
lar epithelial cells,16 causing prolonged tissue damage in 
the lung. Long-term exposure to ozone may increase the 
risk of lung function reduction, emphysema development, 
and hospital admission in COPD patients.17,18

In animal models, acute exposure to ozone causes hyper
reactivity in the airway and neutrophilic inflammation, while 
chronic ozone exposure induces bronchial inflammation with 
emphysema, a symptom that is close to that seen in COPD. For 
instance, in a study by Russell et al,19 the researchers showed 
that exposure to 3ppm of ozone for 3 hours (twice a week for 6 
weeks) induced impaired lung function and airway hyperre
sponsiveness in male C57BL/6 mice. Moreover, ozone-treated 
mice manifested increased inflammatory cells such as neutro
phils, macrophages, and lymphocytes, as well as pro- 
inflammatory cytokines such as KC, GM-CSF, TNF-α, and 
MIF in BAL. These changes are sensitive to ISO-1 but not 
dexamethasone.

Cigarette Smoking (CS) Induced COPD Model
Cigarettes contain abundant free radicals, which increase 
oxidative stress and cause tissue damage in the lungs. Two 

systems are used in inducing COPD mouse model by CS: 
the nose-only exposure system and the whole-body expo
sure system, both have been widely used to study the 
pathogenesis of COPD. Both systems induce pathological 
features of COPD, while according to Wright et al’s 
study,20 the nose-only system may induce more pro
nounced pathological changes in the lung. Another critical 
factor that may affect the pathological features is the 
exposure duration of CS. Previous studies have shown 
that acute exposure to CS (1 hour to 4 weeks) induces 
inflammatory responses in the lung,21 while the mice do 
not display emphysema or decreased lung function. In 
contrast, chronic exposure to CS (over 6 months) leads 
to emphysema, airway remodeling, and mild reduction of 
lung function. However, the long exposure time of CS 
restricts the use of this model. Thus, a CS model with 
better pathological features of COPD and shorter duration 
will largely facilitate the mechanistic studies of COPD 
associated biological processes and drug screening for 
therapeutic applications.

The NLRP3 Inflammasome and Its 
Activating Mechanisms
The NLR family pyrin domain containing 3 (NLRP3) 
inflammasome is a concept that describes a large molecu
lar protein complex that acts as a platform for the matura
tion of pro-inflammatory cytokines, IL-1β and IL-18.22 

NLRP3 is an intracellular receptor that can assemble in 
response to a wide variety of stimuli, such as pathogen 
associated molecular patterns (PAMPs) derived from 
invading pathogens and danger associated molecular pat
terns (DAMPs) released from dying cells. NLRP3 belongs 
to the NOD like receptor family, it contains three domains: 
a C-terminal leucine-rich repeat domain (LRR), a central 
nucleotide binding domain (NACHT) and an N-terminal 
pyrin domain (PYD). By sensing a PAMP or a DAMP via 
its LRR domain, NLRP3 NACHT domain can undergo 
oligomerization, then its PYD domain can bind with 
PYD domain of the adaptor protein ASC. Subsequently, 
the CARD domain of ASC recruits and binds to CARD 
domain of pro-caspase-1 to allow its autoactivation and 
cleavage. The released active form of caspase-1 cleaves 
pro-IL-1β and pro-IL-18 to release the mature form of 
these cytokines, which mediate pro-inflammatory 
responses in the host. The activated caspase-1 can also 
cleave gasdermin D to release its N terminus, which med
iates a type of programmed cell death, pyroptosis.23
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Mounting evidence has shown that the NLRP3 inflam
masome is involved in the regulation of many physiologi
cal and pathological processes, such as infections, tissue 
repair, autoimmune diseases, and cancers.24 A line of 
recent studies has implicated the NLRP3 inflammasome 
in the onset and the development of COPD. Here, we will 
discuss the main findings reported in recent literature 
regarding the expression and activation of the NLRP3 
inflammasome related genes in the lung tissue of both 
patients and animal models of COPD, the impact of 
NLRP3 inflammasome regulation on activity of COPD, 
and will propose a model with which the NLRP3 inflam
masome regulates the development of COPD based on our 
understanding. On this basis, we provide our opinions of 
possible future studies that may improve our understand
ing about the role and impact of NLRP3 and associated 
cytokines in the pathogenesis of COPD.

The Expression or Activation of the 
NLRP3 Inflammasome Related 
Genes in COPD
An mRNA-based study across murine tissues showed that 
NLRP3 is highly expressed in the lung. The primary 
source of NLRP3 in the lung is the alveolar myeloid 
cells such as alveolar macrophages and dendritic cells,25 

while the lung epithelial cells also express NLRP3 and 
other inflammasome associated genes.26 In COPD 
patients, NLRP3 is over-expressed in the lung and its 
expression correlates with airflow obstruction.27 In an 
in vitro model, Nachmias et al28 showed that the expres
sion and activation of NLRP3 can be induced by CS 
extract in A549 alveolar epithelial cells. Wang et al29 

evaluated the possible correlation between NLRP3 inflam
masome activation and risk of acute exacerbation of 
COPD (AECOPD). They found that the expression levels 
of NLRP3 inflammasome components in peripheral blood 
mononuclear cells (PBMCs) and bronchial tissues from 
patients with AECOPD were significantly higher than 
those in smokers without lung diseases. Moreover, the 
expression of NLRP3 inflammasome associated molecules 
was correlated with disease activity and the common 
pathogen load in the lung. Thus, the systemic and local 
airway activity of the NLRP3 inflammasome is associated 
with acute exacerbation of COPD. However, these data do 
not distinguish whether the high activity of NLRP3 inflam
masome is the cause or the result of the disease.

As a hallmark cytokine of NLRP3 inflammasome acti
vation, IL-1β has been implicated in the pathogenesis of 
COPD by a number of studies. For instance, the level of 
IL-1β is increased in sputum and serum of COPD patients, 
the serum level of IL-1β correlates with disease symptoms 
and disease severity.30,31 Moreover, Kuschner et al32 

showed that tobacco smoking enhances concentration of 
IL-1β in the lung, while the study by Chung et al33 found 
that the level of IL-1β in the lung is increased in patients 
with COPD. These observations suggest the possible 
involvement of inflammasomes in development of 
COPD. To further prove the in vivo function of IL-1β in 
COPD, Lappalainen et al34 generated IL-1β transgenic 
mice, whose epithelial cells expressed human IL-1β 
under control of a doxycycline-inducible system. After 
induction of IL-1β, the mice manifested lung inflammation 
similar to that seen in COPD patients, IL-1β induced 
elevation of neutrophil attractant chemokines such as KC 
and MIP-2 and matrix metalloproteases such as MMP-9 
and MMP-12, which may be associated with the enhanced 
infiltration of neutrophils, macrophages and lymphocytes 
in the lung. These data demonstrate that overexpression of 
IL-1β induces pulmonary inflammation. In support to this 
study, Doz et al35 showed that tobacco smoke-induced 
lung inflammation is reduced in IL-1R deficient mice. 
Thus, IL-1β and IL-1R signaling are important for devel
opment of lung inflammation. However, it should be noted 
that the role of IL-1β in COPD is challenged by data from 
a study by Botelho et al36 showing that it is IL-1α, but not 
IL-1β, that plays a major role in the pathogenesis of 
COPD. While another study by Pauwels et al37 showed 
that neutralization of both IL-1α and IL-1β 
attenuated tobacco smoke-induced lung inflammation. 
Thus, the relative contribution of IL-1α and IL-1β 
needs to be further investigated in future.

IL-18 is also a hallmark cytokine that is regulated by 
the NLRP3 inflammasome. The level of IL-18 is elevated 
in blood and lungs of COPD patients,38,39 its level shows 
negative correlation with lung function of COPD patients, 
indicating a role of IL-18 in the pathogenesis of this 
disease. In support of these data, transgenic mice with 
overexpression of IL-18 manifested COPD-like 
symptoms,40 while in CS-induced COPD model, IL-18R 
deficiency ameliorated the disease severity.38 All these 
studies demonstrate that IL-18 contributes to the develop
ment of lung inflammation in COPD.

ASC participates in the assembly of the NLRP3 
inflammasome by connecting NLRP3 and pro-caspase-1, 
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thus the activation of the inflammasome allows ASC to 
form a disc-like structure, called “ASC speck”, which is 
considered to be a hallmark of NLRP3 inflammasome 
formation. Using CS-induced COPD model, Franklin et 
al41 found that “ASC speck” can be highly released in 
BALF of the lung and amplifies inflammatory response. 
The activation of caspase-1 has also been found to be 
elevated in the lungs of smokers;42 inhibition of caspase- 
1 prevents lung inflammation in CS-induced emphysema 
model.43 Thus, caspase-1 activation promotes lung 
inflammation.

Factors That May Affect COPD via 
Activating the NLRP3 Inflammasome
Studies have provided evidence that many factors increase 
the risk for developing COPD. As discussed previously, 
CS is the main cause of COPD, while other factors such as 
air pollution, occupational dusts and chemicals, age, infec
tion, and genetic deficiency may also contribute to the 
pathogenesis of COPD. Among these factors, some can 
activate the NLRP3 inflammasome and thus may affect the 
development or exacerbation of COPD via regulation of 
the activity of the inflammasome (Figure 2).

Figure 2 Risk factors of COPD may activate the NLRP3 inflammasome. The onset of progression of COPD can be affected by a number of factors. CS is the most common 
risk factor of COPD by multiple mechanisms such as generating free radicals and causing oxidative stress. Air pollutants induce production of ROS or release of cathepsins. 
These factors and genetic deficiency of AAT all contribute to the activation of the NLRP3 inflammasome in the lungs, which enhances the progression of COPD. Childhood 
lung infection and asthma may cause chronic inflammation in the lungs, which increases the risk of developing COPD.
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CS
As the most common risk factor for COPD, CS can affect 
the activation of the NLRP3 inflammasome in various ways, 
it affects both priming and activating signals of the NLRP3 
inflammasome. For instance, CS exposure induces release of 
HMGB1,44 a danger signal that activates TLR signaling and 
thus triggers the priming signal of inflammasome activation. 
CS also causes an increase of extracellular ATP (eATP), in 
the lungs of both COPD patients and mouse model, eATP 
and its receptor P2X7 have been implicated in the pathogen
esis of inflammatory lung disease,45 deficiency of P2X7 
attenuates CS induced neutrophilia in mice.42 Since eATP 
activates the NLRP3 inflammasome in many cell types, 
promoting eATP release might be a critical way of CS 
mediating the development of COPD.

Oxidative stress is a critical characteristic of COPD, it is 
also a key mechanism that induces lung pathology in 
COPD.46 Cigarettes contain abundant free radicals, includ
ing reactive oxygen species (ROS) and reactive nitrogen 
species (RNS), which cause tissue damage of the lung.47 

Meanwhile, it has been shown that ROS is an upstream 
activator of the NLRP3 inflammasome.48 Thus, CS- 
induced ROS production may activate the NLRP3 and con
tribute to lung inflammatory responses in COPD patients.

In addition, COPD patients display enhanced uric acid 
level in both plasma and the lungs.49 Thus, uric acid may 
work as a predictor of COPD risk in smokers. The high 
level of uric acid may lead to formation of uric acid 
crystals, an important activator of the NLRP3 
inflammasome.50,51 These findings suggest that the 
NLRP3 inflammasome activation induced by uric acid 
crystals may contribute to the development of lung 
pathogens in COPD patients.52

Air Pollution
Air pollution is a critical risk factor for COPD. Many 
different types of air pollutants such as gases, particulates, 
and biological molecules have been found to enhance the 
risk of COPD via regulating the NLRP3 inflammasome. 
For instance, diesel exhaust particles (DEP) are a critical 
component of air pollution. Uh et al’s study53 showed that 
DEP activate the NLRP3 inflammasome in lung tissues of 
mice in elastase-induced emphysema model, a process that 
can be inhibited by antioxidant, N-acetylcysteine. Thus, 
DEP may enhance the risk of COPD or other lung diseases 
via regulating the NLRP3 inflammasome.

Ambient fine particulate matter 2.5 (PM2.5) is another air 
pollution component, recent epidemiological studies 
provided evidence that PM2.5 enhances morbidity and mor
tality in COPD.54 Long-term exposure to PM2.5 exacerbates 
CS-induced pathology in COPD.54 Zheng et al55 performed 
a study to evaluate the role of PM2.5 in NLRP3 inflamma
some activation and lung fibrosis, they showed that PM2.5 

activates the NLRP3 inflammasome. Regarding the mechan
isms involved, they showed that cathepsin B release, ROS 
production, and potassium efflux are required processes. 
Therefore, the role of PM2.5 in elevating the risk of COPD 
requires the activation of the NLRP3 inflammasome.

Moreover, many other common air pollutants such as 
ground-level ozone56 and biomass fuel smoke57 also activate 
the NLRP3 inflammasome and enhance risk of COPD, while 
whether the inflammasome activation plays a major role in 
COPD-like symptoms associated with these factors, still 
awaits further investigation. In addition, it should be noted 
that the air pollutant sulfur dioxide can induce COPD-like 
symptoms in rats,58 while this effect is not achieved by 
activating the NLRP3 inflammasome, since in a study con
ducted by Yang et al,59 the researchers showed that sulfur 
dioxide inhibits the activity of the NLRP3 inflammasome. 
Although the effect of sulfur dioxide in development of 
COPD and the role of NLRP3 inflammasome in sulfur diox
ide induced lung pathology need to be further determined, 
these findings indicate a complex regulation of the NLRP3 
inflammasome in the pathogenesis of COPD.

Occupational Dusts and Chemicals
Occupational dusts are the fine particles mainly generated 
in agriculture, forestry, and mining. Exposure to some of 
those dusts can increase the risk of COPD. A good exam
ple is the silica dust (also known as quartz dust) released 
during the processing of materials containing crystalline 
silica particles. It is an important occupational respiratory 
toxin, exposure to silica dust increases the risk of COPD.60 

The inhalation of silica dust may lead to the release of 
crystalline silica in the lung, which is a critical activator of 
the NLRP3 inflammasome.61,62 Silica also enhances 
plasma levels of IL-18 and IL-1Ra,63 which may contri
bute to the lung pathology induced by silica dust. 
However, whether the NLRP3 inflammasome activation 
induced by crystalline silica plays a major role in devel
opment of COPD, needs to be determined.

Many other occupational dusts such as wood dust have 
been implicated in the pathogenesis of COPD. A number 
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of studies showed that exposure to wood dust is 
associated with decreased lung function.64,65 Whether 
these dusts affect the host’s susceptibility to COPD via 
regulating the NLRP3 inflammasome, needs to be 
investigated.

Bacterial and Viral Infection
The lungs of COPD patients are more likely to be infected 
by bacteria or viruses, which induce increased inflamma
tion and worse symptoms, clinically termed exacerbation 
of COPD.66 An example is the infection of Mycobacterium 
tuberculosis, a bacterium that causes tuberculosis. 
M. tuberculosis can affect the progression of COPD by 
inducing the production of matrix metalloproteinases 
(MMPs) via its cell wall component, 
lipoarabinomannan.67 MMPs then combine with other fac
tors such as the activation of neutrophils and induce struc
tural changes seen in COPD. Moreover, M. tuberculosis 
may activate the NLRP3 inflammasome and enhance the 
production of IL-1β and IL-18 in alveolar macrophages,68 

the latter then contribute to COPD progression or exacer
bation by amplifying the inflammatory responses in the 
lung.

In an in vitro COPD exacerbation model, 
Nachmias et al28 found that LPS stimulation enhances 
the production of pro-inflammatory cytokines, IL-8 and 
MCP-1, by the alveolar epithelial cell line A549 in 
response to the stimulation of CS extract. The combined 
stimulation with CS extract and LPS induces higher 
NLRP3 inflammasome activity and enhanced IL-1β pro
duction by A549 cells. These data demonstrate that bacter
ial infection derived LPS may exacerbate the inflammatory 
responses in COPD patients.

Viral infection may also contribute to the exacerbation 
of COPD. Viruses can be found in half of samples from 
patients with COPD exacerbations, their infection is asso
ciated with poorer clinical outcomes. Studies have shown 
that persistent infection with viruses such as human rhino
virus, respiratory syncytial virus, and influenza may con
tribute to COPD exacerbation by activating the NLRP3 
inflammasome,69–71 while the exact impact of virus- 
inflammasome interplay on lung inflammation has not 
been clearly defined.

Thus, the available evidence demonstrates that both 
bacterial and viral infection may play a significant role in 
both progression and acute exacerbations of COPD by 
regulating the activation of the NLRP3 inflammasome. 
Future studies investigating the role of NLRP3 in bacteria 

or virus infection during COPD progression and its exacer
bation may contribute to the disease therapy via regulating 
the activity of the NLRP3 inflammasome.

Genetic Factor
CS is the major risk factor for COPD, while this disease is 
only developed in a minority of smokers, this fact together 
with studies in families and twins suggest that genetic 
factors also contribute to COPD progression.72 The avail
able studies have shown that numerous genes, such as 
α1-antitrypsin and vitamin D-binding protein, are asso
ciated with development of COPD, their contributions to 
the development and progression of COPD have been 
described elsewhere.73 Of note, some of these genes may 
affect the progression of COPD via regulating the activa
tion of the NLRP3 inflammasome. For instance, in a study 
conducted by Ebrahimi et al,74 the researchers found that 
α1-antitrypsin inhibits NLRP3 inflammasome activation in 
murine astrocytes, while whether a similar regulation can 
be observed in the lung, such as alveolar macrophages, 
needs further studies. Investigating the possible role of 
other genetic factors affecting risk of COPD in NLRP3 
inflammasome activation may improve our understanding 
about the complex regulating network in the pathogenesis 
of COPD.

The NLRP3 Inflammasome in 
Animal Models of COPD
Couillin et al75 showed that elastase-treated mice dis
played tissue destruction with emphysema and fibrosis, 
which is associated with an increased production of pro- 
inflammatory mediators including IL-1β and neutrophil 
infiltration in the lung. Deficiency of NLRP3 inflamma
some adaptor protein, ASC, or IL-1R blockade 
ameliorated emphysema and inflammation in the mice. 
These findings suggest an involvement of NLRP3 inflam
masome and IL-1 signaling in pathogenesis of elastase- 
induced lung inflammation.

A study by Wang et al76 evaluated the role of NLRP3 
inflammasome in lung inflammation using an LPS-induced 
model, and they showed that MCC950, an NLRP3 inhibi
tor, efficiently reduced LPS-induced lung inflammation. 
Furthermore, LPS-induced lung inflammation can be ame
liorated by administration of corticosteroids, which inhi
bits the activation of NF-kB signaling pathway,77 

a priming signal for the activation of the NLRP3 
inflammasome.22
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This study suggests that the NLRP3 inflammasome 
may be involved in the pathogenesis of COPD, particu
larly those related to infection.

Ozone exposure may affect the activation of the 
NLRP3 inflammasome by regulating both the priming 
and activating steps. It has been shown that ozone mod
ulates HSP70 activity and thus regulates TLR4 
signaling,78 which acts as a priming signal to induce the 
transcription of NLRP3. The production of ROS induced 
by exposure to ozone in the lung can work as an upstream 
activating signal for the assembly of NLRP3 inflamma
some. Additionally, exposure to ozone induces an 
increased expression of hypoxia inducible factor-1α 
(HIF-1α) target genes such as histone deacetylase 2 
(HDAC2)79 and a decrease in expression and activity of 
the antioxidant gene nuclear erythroid-related factor 2 
(Nrf2),80 both genes have been implicated in the regulation 
of the NLRP3 inflammasome. Indeed, ozone-treated mice 
show enhanced NLRP3 inflammasome activation, 
increased caspase-1 activity, and increased pro- 
inflammatory cytokine production including IL-1β.81,82 

Inhibition of mitochondrial ROS or caspase-1 activity 
ameliorates ozone-induced lung inflammation,82 while 
whether deficiency of NLRP3 or related cytokines impair 
ozone-induced lung pathology is still not clear, genetic 
evidence is needed to figure out the exact role of NLRP3 
in ozone-induced model of lung inflammation.

A study by Beckett et al83 reported a short-term COPD 
model induced by delivering CS into the nares of BALB/c 
mice for 1–12 weeks. Eight weeks’ exposure to CS 
induced airway remodeling with increased numbers of 
mucus-secreting goblet cells, alveolar enlargement, thick
ening of the airway epithelium, and decreased lung func
tion in mice. Moreover, the pathology in mice showed 
glucocorticoid-resistant feature was macrophage depen
dent with an increased production of pro-inflammatory 
mediators such as TNF-α, IL-1β, and CXCL1. Enhanced 
level of IL-1β suggests a possible involvement of inflam
masomes in the pathology of this model.

Yang et al84 studied the role of NLRP3 inflammasome 
in pathogenesis of COPD, using a COPD mouse model 
induced by tobacco inhalation, the authors showed that 
NLRP3 deficient mice manifested reduced disease severity 
and deceased IL-1 and IL-18 production in bronchoalveo
lar lavage fluid (BALF). These data suggest that NLRP3 is 
essential in development of COPD. However, in a study 
reported by Pauwels et al, they showed that NLRP3 and 
caspase-1 are not important in developing lung 

inflammation in mice induced by CS.37 Further studies 
are needed to clarify the exact contribution of NLRP3 
and associated cytokines in the pathogenesis of COPD.

Polymorphisms in the NLRP3 
Inflammasome Related Genes 
Confer Risk of COPD
Single nucleotide polymorphism (SNP) is a term to 
describe a single nucleotide in genomic DNA sequence 
which differs between members of a species or different 
chromosomes in an individual. It has been shown that 
some SNPs affect gene expression or function and are 
responsible for many processes such as disease suscept
ibility, medicinal drug responses, and genome evolution. 
In studies of COPD, many SNPs that have an impact on 
disease susceptibility have been identified,85 these SNPs 
may affect COPD via altering the activity of genes in 
inflammatory pathways and protease-antiprotease path
ways. A number of recent studies identified SNPs in 
inflammasome-related genes, which may contribute to 
development of COPD. No SNP that can affect the sus
ceptibility to COPD has been reported in human NLRP3, 
PYCARD (encoding ASC), and CASP1 to date, while in 
genes encoding the hallmark cytokines, IL1B and IL18, 
a number of SNPs have been identified that increase or 
decrease the risk of developing COPD.

IL1B gene polymorphisms have been implicated in risk 
of COPD, while the results from different studies are con
troversial. For instance, Baykara et al’s study86 showed no 
association between COPD and IL1B −511 and +3954 gene 
polymorphisms in a Turkish population. In agreement with 
this study, Ishii et al87 also found that polymorphisms in 
IL1B and IL1RN do not have a significant link to suscept
ibility to COPD. A meta-analysis by Xie et al88 showed that 
the IL1B (+3954) polymorphism does not confer risk of 
COPD, while the polymorphisms of the IL1B (−511, −31) 
and IL1RN (VNTR) enhanced the risk of developing COPD 
in East Asians. In another study of meta-analysis, Wang 
et al89 reported that the polymorphism in IL1B promoter 
(−511C/T) protects the host from COPD in Asian popula
tion. Shukla et al90 found that IL1RN*2/IL1RN*2 is 
a protective genotype for COPD in males, while the geno
type seems to be a risk factor for COPD in females. They 
also showed that IL1B polymorphism T (−511) C does not 
affect host susceptibility to COPD. Lee et al’s study91 inves
tigated the impact of SNPs in IL1B and IL1RN on the risk of 
COPD in a Korean population, they found that IL1B 
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polymorphisms, −511C–>T and −31T–>C, enhanced the 
risk of COPD. Individuals carrying at least one IL1RN*2 
allele are at lower risk of COPD. A polymorphism in IL18 
was also found to have impact on susceptibility to COPD. 
Wang et al92 reported that an SNP in IL18 promoter (−607 
C/A) enhanced the risk to develop COPD, while the other 
SNP −137 G/C did not show different frequency between 
COPD patients and healthy controls.

Thus, the impact of polymorphisms on disease risk 
may be affected by genetic background in different ethnic 
groups. However, functional studies of the impact of SNPs 
in IL1B and IL18 on COPD are still lacking. How they 
affect gene expression or inflammasome activity needs to 
be further investigated in the future.

Preventing COPD by Modulating 
the NLRP3 Inflammasome or Its 
Regulators
A number of recent studies have investigated the impact of 
preventing NLRP3 inflammasome or its effectors on COPD 
(summarized in Table 1). As mentioned previously, based on 
studies in animal models, IL-1β transgenic mice show 
increased COPD-like symptoms.34 IL-18 or IL-1R defi
ciency leads to decreased lung inflammation in CS-induced 
COPD model.35,38 Treatment with anakinra (IL-1 receptor 
antagonist) reduces lung inflammation induced by LPS.93 

All these studies suggest a role of IL-1β, IL-18, and IL-1R 
signaling in the pathogenic progression of COPD. However, 
clinical trials employing an anti-human IL-1β monoclonal 

antibody (Canakinumab), a human IgG1 monoclonal anti
body targeting IL-18 or a human IgG2 monoclonal antibody 
against IL-1R194 do not show significant difference for the 
outcomes between antibodies-treated and placebo-treated 
COPD patients. These results at least demonstrate that 
blockade of single inflammasome associated cytokine or 
IL-1R signaling does not protect patients from COPD. 
A joint blockade of IL-1β and IL-18, or IL-1α may be 
a possible way to prevent COPD in future clinical trials.

Moreover, based on studies by Yang et al and Xu et al,82,84 

NLRP3 deficiency or caspase-1 inhibition causes a decrease of 
experimental COPD in mice, and the NLRP3 inhibitor, 
MCC950 has been demonstrated to prevent LPS-induced 
lung inflammation in mice.76 Therefore, it might be worth
while to consider trials directly targeting NLRP3 or caspase-1, 
or GSDMD mediated pyroptosis for possible treatment of 
COPD.

In addition, these clinical trial studies may also suggest 
that other mechanisms upstream of the NLRP3 inflamma
some may dominate the development of COPD. The activa
tion of the NLRP3 inflammasome may be a secondary effect 
of these mechanisms. Thus, a combination strategy to block 
multiple molecules or signals might be required in treating 
COPD. For example, in a virus-induced COPD exacerbation 
model, Bucher et al95 showed that combined neutralization of 
IL-1α and IL-1β can more efficiently inhibit airway inflam
mation compared to individual blockade of two cytokines. In 
another study reported by Sichelstiel et al,96 the researchers 
found that blocking of IL-1β or IL-17A abrogates influenza- 

Table 1 Potential Therapeutic Agents Targeting NLRP3 or Inflammasome Related Genes

Agent Target Function Effect Clinical Trial or Disease 
Model

Reference

Anakinra IL-1R Blocking IL-1 

signaling

Reduce lung 

inflammation

LPS-induced lung 

inflammation

[93]

Canakinumab IL-1β Blocking IL-1β 
signaling

No effect Clinical trial 

(NCT00581945)

https://clinicaltrials.gov/ct2/show/ 

NCT00581945

MEDI2338 IL-18 Blocking IL-18 

signaling

No effect Clinical trial 

(NCT01322594)

https://clinicaltrials.gov/ct2/show/ 

NCT01322594

MEDI8968 IL-1R1 Blocking IL-1R 

signaling

No effect Clinical trial 

(NCT01448850)

https://clinicaltrials.gov/ct2/show/ 

NCT01448850

MCC950 NLRP3 Blocking NLRP3 Reduce lung 

inflammation

LPS-induced lung 

inflammation

[76]

VX-765 Caspase- 

1

Blocking caspase-1 Reduce lung 

inflammation

Ozone-induced lung injury [82]
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induced COPD exacerbation. Because of the redundancy of 
the two inflammatory pathways, the researchers pointed out 
that a combined blocking of the two cytokines might more 
efficiently inhibit inflammation and improve lung function.

Last but not least, COPD is a condition caused by 
a combination of a variety of genetic and environmental 
factors, the responses of patients to therapy might vary in 
individuals. Taking this into consideration, in future, clin
ical studies might improve the efficacy of the evaluation of 
new therapies targeting COPD.

Conclusion
The available evidence has shown that the NLRP3 
inflammasome has increased expression and activation 
in tissues of both COPD patients and animal models of 
COPD. A number of SNPs in IL-1β and IL-18 increase 
the risk to develop COPD. Transgene of IL-1β or IL-18 
both increase lung inflammation in studies of animal 
models, while blocking these cytokines or IL-1R with 

monoclonal antibodies ameliorate lung pathologies. 
The exact contribution of NLRP3 inflammasome to 
the development of COPD is not well defined, 
although, based on current studies and our understand
ing, a possible model regarding the role of the NLRP3 
inflammasome in the onset and progression of COPD 
may be as follows (Figure 3): COPD risk factors, such 
as CS or silica particulates activate the NLRP3 inflam
masome in alveolar macrophages or dendritic cells, 
which drive the production of pro-inflammatory cyto
kines, IL-1β and IL-18, the latter then activate particu
lar T cell subsets and promote lung inflammation. CS 
may promote the production of chemokines by airway 
epithelial cells, which mediate the recruitment of 
inflammatory cells such as neutrophils and monocytes 
to expand the inflammation. The effectors from these 
infiltrating cells such as elastase further promote 
inflammation and cause COPD-associated chronic tis
sue injury in the lungs.

Figure 3 The role of the NLRP3 inflammasome in COPD. The exact contribution of NLRP3 inflammasome to the development of COPD is not well defined, while a variety 
of activators of the NLRP3 inflammasome enhance the susceptibility to the onset and progression of COPD. COPD risk factors, such as CS or silica particulates can activate 
the NLRP3 inflammasome in alveolar macrophages or dendritic cells, which mediates the release of pro-inflammatory cytokines, such as IL-1β and IL-18, the latter then 
activate particular T cell subsets and promote lung inflammation. CS may promote the production of chemokines by airway epithelial cells, which mediate the recruitment of 
neutrophils and monocytes. The effectors from these cells such as elastase promote lung inflammation and cause COPD-associated chronic lung injury.
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Although the clinical trials testing blockade of IL-1β, 
IL-18 or IL-1R failed to inhibit lung pathologies in COPD 
patients, a number of alternative strategies such as target
ing NLRP3, caspase-1 or GSDMD mediated pyroptosis, 
and combined blockade of multiple molecules associated 
with NLRP3 inflammasome or other pathways that con
tribute to the development of COPD are worthwhile for 
further investigation and trials for the control of COPD.
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