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Dramatic advances in the molecular analysis of diffuse intrinsic pontine glioma have 
occurred over the last decade and resulted in the identification of potential therapeutic 
targets. In spite of these advances, no significant improvement in the outcome has been 
achieved and median survival remains approximately 10 months. An understanding of 
the approaches that have been taken to date, why they failed, and how that information 
can lead the field forward is critical if we are to change the status quo. In this review, we 
will discuss the clinical trial landscape in North America with an overview of historical 
approaches that failed and what might account for this failure. We will then provide 
a discussion of how our understanding of the genotype of this disease has led to the 
development of a number of trials targeting the mutations and epigenome of diffuse 
intrinsic pontine gliomas and the issues related to these trials. Similarly, the introduction of 
methodologies to address penetration across the blood–brain barrier will be considered 
in the context of both targeted approaches, epigenetic modification, and immune sur-
veillance of these tumors. The comprehensive analysis of these data, generated through 
cooperative groups, collaborative clinical trials, and pilot studies in North America will 
be the focus of the IVth Memorial Alicia Pueyo international symposium in Barcelona on 
March 12th, 2018 and will be compared and contrasted with a similar comprehensive 
analysis of the European data with the goal of bringing all of these data together to 
develop a uniform platform on which new rational trials can be based.

Keywords: diffuse intrinsic pontine gliomas, brainstem glioma, targeted therapy, convection-enhanced delivery, 
immunotherapy, clinical trials

inTRODUCTiOn

Diffuse-intrinsic pontine gliomas (DIPG) are the most common brainstem tumors in children and 
remain the deadliest cancer diagnosis in this population. It occurs in all age groups but is most 
commonly seen in children between the ages of 5–10  years with an equal distribution between 
the sexes (M:F = 1:1). DIPG remains one of the most challenging of all pediatric cancers and its 
outcomes remain abysmal. Median progression-free survival continues to range from 5 to 9 months 
with overall survival at 6–16 months despite hundreds of clinical trials.
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CLiniCAL PReSenTATiOn  
AnD DiAGnOSiS

Historically, DIPG has been a clinical-radiographic diagnosis 
as biopsy and thus histopathologic confirmation was deemed 
unsafe and did not influence either treatment or outcome. 
Patients with DIPG often have a short latency (<3  months) 
between symptom onset and diagnosis. At time of diagnosis, 
acute symptoms include cranial neuropathies, long tract signs, 
and ataxia with a minority (<10%) of patients presenting with 
symptoms of raised intracranial pressure. Classic radiographic 
features on MRI include a T1 hypointense T2 hyperintense mass 
occupying more than 50% of the pons, causing expansion of the 
pons, and often encircling the basilar artery. It appears to obey 
the pontomedullary boundary. Post gadolidium enhancement 
can be variable from rim enhancement to patchy enhancement 
to complete absence of enhancement. When present, contrast 
enhancement is a poor prognostic indicator (1). The presence of 
these imaging characteristics coupled with acute symptoms has 
long been sufficient for the diagnosis and treatment of children 
with DIPG. However, with a growing utilization of biopsies at 
diagnosis, a new WHO classification applicable to some DIPG 
tumors has emerged—diffuse midline glioma, H3K27M mutant 
(discussion to follow).

STAnDARD TReATMenT OF DiPG

The backbone of treatment for children with newly diagnosed 
DIPG continues to be focal, wide field radiation therapy to the 
pons. Most centers utilize 3D conformational photon-based 
radiotherapy to 54–59.4 Gy given in 30–33 fractions of 1.8 Gy 
daily. Radiation therapy may allow for relief of neurologic symp-
toms in most patients and a reduction or cessation of systemic 
steroids for many. However, radiation therapy overall is seen 
as a means of palliation, taking the overall survival from weeks 
to months. Increasing the dose of RT using hyper-fractionated  
protocols (66–78  Gy) does not appear to provide a survival  
benefit when compared to standard dose and fractionation  
protocols (2–7). Some international groups have sought to dem-
onstrate the feasibility of hypo-fractionated radiation therapy in 
an effort to improve palliation (8–10), and thus the ideal frac-
tionation strategy continues to cause some debate.

RADiATiOn SenSiTiZeR CLiniCAL 
TRAiLS

The only improvement to date in the outcome of DIPG has been 
the addition of radiation therapy. A rational approach meant to 
build on this impact has been to add agents that can sensitize or 
synergize the effects of radiation therapy. The majority of these 
have focused on improving areas of hypoxia so that the concen-
tration of oxygen radicals needed for the radiation effect can be 
achieved. While multiple approaches have been tried and some 
drugs entered pediatric clinical trials (11), none have improved 
the median or overall survival and most have been associated 
with a significant increase in toxicity (12).

CHeMOTHeRAPY CLiniCAL TRiALS

Various chemotherapeutic strategies have been used to treat 
patients with DIPG including neo-adjuvant chemotherapy, con-
current chemotherapy with RT, adjuvant chemotherapy, and high 
dose myeloablative chemotherapy with stem cell rescue (13–16). 
Unfortunately, none have demonstrated improved survival when 
compared to radiation therapy alone. In particular, the standard 
of care for adult glioblastoma, which includes radiation therapy 
with concurrent and adjuvant temozolomide has not been shown 
to benefit newly diagnosed DIPG patients (17–19). While small 
series have indicated some effect of antiangiogenic therapy 
with bevacizumab (20), by and large this therapy has failed to  
markedly improve survival in both the newly diagnosed and 
relapse setting (21, 22). While a multitude of experimental agents 
and chemotherapy regimens have been utilized in DIPG, many 
of these trials specifically accrued patients with recurrent disease. 
Given the often short latency from disease recurrence to death, 
testing agents in this setting may have decreased the likelihood 
of finding active agents.

BiOLOGiC ADvAnCeS

The lack of treatment progress despite decades of attempts high-
lighted a lack of understanding of the biologic underpinnings 
of this devastating disease. In years past, those pretreatment 
specimens that were available were often atypical cases that had 
required biopsy and, therefore, may not appropriately reflect 
typical DIPG biology. Across many centers, a concerted effort 
was made to obtain postmortem specimens from DIPG patients, 
which yielded many new insights. However, postmortem speci-
mens are inherently limited as there may be significantly different 
molecular characteristics between the primary untreated tumor 
and the posttreatment postmortem tumor due to the selective 
pressure of radiation and chemotherapy. Given the limitations 
of postmortem samples, renewed interest in obtaining pretreat-
ment specimens of DIPG bloomed. Large centers were able to 
demonstrate that surgical biopsy of DIPG at the time of diagnosis 
was safe and feasible and yielded sufficient sample for meaningful 
analysis with low morbidity (23–26).

The advent of diagnostic biopsies in DIPG has provided  
adequate tumor tissue for genome and epigenome sequencing. This 
revealed recurrent somatic mutations of H3F3A and HIST1H3B 
resulting in lysine 27 to methionine (K27M) substitution in 
the encoded histone H3.3 or H3.1. These mutations have been 
shown to be gain-of-function mutations that alter the polycomb 
repressive complex 2 leading to aberrant gene expression and thus 
drives cell transformation (27). Mutations in these histones, the 
proteins which package DNA into chromatin, have been found in 
approximately 80% of DIPG (28, 29). This consistent finding led 
to a revision in the WHO classification of CNS tumors—diffuse 
midline glioma, H3K27M-mutant (30)—for tumors once referred 
to as DIPG. This change has important implications as new 
clinical trials increasingly focus on the 80% of DIPG with histone 
mutations (and often include thalamic H3K27M mutated tumors, 
the biology of which may not be identical to classical DIPG). 
Similarly, the 20% of classic DIPG that lack histone mutations 
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TABLe 1 | Active North American clinical trials for children with diffuse intrinsic pontine gliomas (DIPG) as found on www.Clinicaltrials.gov as of March 1, 2018.

Current north American Trials in DiPG

nCT number Title intervention Site

newly diagnosed DiPG trials

NCT00879437 Valproic Acid and Radiation followed by maintenance 
valproic acid and bevacizumab in children with high  
grade gliomas or diffuse intrinsic pontine glioma

Drug: Valproic acid
Drug: Bevacizumab

Texas Children’s Hospital + 4 others

NCT00890786 A study of bevacizumab therapy in patients with newly 
diagnosed high-grade gliomas and DIPG

Drug: Temozolomide
Drug: Bevacizumab
Drug: Irinotecan

Cincinnati Children’s Hospital Medical Center 
and Ann and Robert H. Lurie Children’s 
Hospital of Chicago

NCT01182350 Molecularly determinized treatment of DIPG Drug: Bevacizumab
Drug: Erlotinib
Drug: Temozolomide

Dana Farber Cancer Institute + 22 others

NCT01189266 Vorinostat and radiation therapy followed by maintenance 
therapy with vorinostat in treating younger patients with 
newly diagnosed diffuse intrinsic pontine glioma

Drug: Vorinostat Children’s Oncology Group (181 centers)

NCT01222754 Lenalidomide and radiation therapy in high grade gliomas 
or DIPG

Drug: Lenalidomide National Institutes of Health Clinical Center

NCT01514201 Veliparib, radiation therapy, and temozolomide in treating 
younger patients with newly diagnosed diffuse pontine 
glioma

Drug: Veliparib
Drug: Temozolomide

Texas Children’s Hospital + 10 others

NCT01922076 WEE1 inhibitor AZD1775 and local radiation therapy in 
treating children with newly diagnosed DIPG

Drug: WEE1 inhibitor AZD1775 Children’s Oncology Group Phase I Consortium 
(24 centers)

NCT02274987 Molecular profiling for individualized treatment plan for  
DIPG

Other: specialized tumor board 
recommendation

UCSF Benioff Children’s Hospital + 4 others

NCT02420613 Study of suberoylanilide hydroxamic acid (SAHA) with 
temsirolimus in children with DIPG

Drug: Vorinostat
Drug: Temsirolimus

University of Texas MD Anderson Cancer 
Center

NCT02644460 Abemaciclib in children with DIPG or recurrent/refractory 
solid tumors

Drug: Abemaciclib Children’s Hospital of Atlanta and Children’s 
Hospital of Colorado

NCT02992015 Gemcitabine in newly diagnosed diffuse intrinsic pontine 
glioma

Drug: Gemcitabine Children’s Hospital of Colorado

NCT03396575 Brain stem gliomas treated with adoptive cellular therapy 
during focal radiotherapy recovery alone or with  
dose-intensified temozolomide (Phase I)

Biological: TTRNA-DC vaccines with 
GM-CSF + TTRNA-xALT with Td  
vaccine
Drug: Cyclophosphamide + Fludarabine 
Lymphodepletive Conditioning
Drug: Dose-Intensified TMZ

University of Florida

NCT03416530 ONC201 in pediatric H3K27M gliomas Drug: ONC201 New York University and University of Texas 
MD Anderson Cancer Center

Post-radiation therapy DiPG trials

NCT01130077 A pilot study of glioma associated antigen vaccines in 
conjunction with poly-ICLC in pediatric gliomas

Biological: HLA-A2 restricted glioma 
antigen peptides vaccine
Biological: poly-ICLC

Children’s Hospital of Pittsburgh of UPMC

NCT01502917 Convection-enhanced delivery (CED) of 124I-8H9 for 
patients with non-progressive diffuse pontine gliomas 
previously treated with external beam radiation therapy

Radiation: Radioactive iodine-labeled 
monoclonal antibody 8H9

Memorial Sloan Kettering Cancer 
Center + Weill Cornell Medical College/New 
York Presbyterian Hospital

NCT01644773 Study of the combination of crizotinib and dasatinib in 
pediatric research participants with DIPG and high-grade 
glioma (HGG)

Drug: Crizotinib
Drug: Dasatinib

St. Jude Children’s Research Hospital

NCT01837862 A phase I study of mebendazole for the treatment  
of pediatric gliomas

Drug: Mebendazole
Drug: Temozolomide
Drug: Bevacizumab
Drug: Irinotecan

Cohen Children’s Medical Center of New York

NCT02343406 Evaluation of ABT-414 in children with high-grade  
gliomas (INTELLANCE 2)

Drug: ABT-414; Drug: Temozolomide Children’s Hospital of Colorado, Dana Farber 
Cancer Institute, Stanford University Lucile 
Packard Children’s Hospital, UCSF Benioff 
Children’s Hospital

(Continued)
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Current north American Trials in DiPG

nCT number Title intervention Site

Post-radiation therapy DiPG trials

NCT02607124 A phase I/II study of ribociclib, a CDK4/6 inhibitor  
following radiation therapy

Drug: Ribociclib Cincinnati Children’s Hospital Medical Center

NCT02717455 Trial of panobinostat in children with diffuse intrinsic  
pontine glioma

Drug: Panobinostat Stanford University and Lucile Packard 
Children’s Hospital + 9 others

NCT02742883 A study of atengenal and astugenal in diffuse intrinsic 
pontine glioma

Drug: Antineoplaston therapy 
(Atengenal + Astugenal)

Burzynski Clinic

NCT02960230 H3.3K27M peptide vaccine for children with newly 
diagnosed DIPG and other gliomas

Biological: K27M vaccine UCSF Benioff Children’s Hospital + 10 others

NCT03086616 CED with irinotecan liposome injection using real-time 
imaging in children

Drug: Convection Enhanced Delivery  
of Nanoliposomal irinotecan (nal-IRI)

UCSF Benioff Children’s Hospital

NCT03330197 A study of Ad-RTS-hIL-12 + Veledimex in pediatric  
subjects with brain tumors or DIPG

Biological: Ad-RTS-hIL-12
Drug: Veledimex

Dana Farber Cancer Institute and Ann and 
Robert H Lurie Children’s Hospital of Chicago

NCT03355794 A study of ribociclib and everolimus following radiation 
therapy in children with newly diagnosed non-biopsied 
DIPG and RB + Biopsied DIPG and HGG

Drug: Ribociclib
Drug: Everolimus

Cincinnati Children’s Hospital Medical Center

NCT03389802 Phase I study of APX005M in pediatric CNS tumors Biological: APX005M Memorial Sloan Kettering Cancer Center + 11 
others

NCT03416530 ONC201 in pediatric H3K27M gliomas Drug: ONC201 New York University and University of Texas 
MD Anderson Cancer Center

Refractory or progressive DiPG trials

NCT01469247 DIPG reirradiation (reRT) Radiation: Radiation therapy University of Texas MD Anderson Cancer 
Center and Orlando Health

NCT01644773 Study of the combination of crizotinib and dasatinib in 
pediatric research participants with DIPG and HGG

Drug: Crizotinib
Drug: Dasatinib

St. Jude Children’s Research Hospital

NCT01884740 Intraarterial infusion of erbitux and bevacizumab for 
relapsed/refractory intracranial glioma in patients  
under 22

Drug: SIACI of Erbitux and  
Bevacizumab

Weill Cornell Medical College/New York 
Presbyterian Hospital

NCT02323880 Selinexor in treating younger patients with recurrent or 
refractory solid tumors or HGG

Drug: Selinexor Children’s Oncology Group Phase I Consortium 
(22 centers)

NCT02343406 Evaluation of ABT-414 in children with HGG  
(INTELLANCE 2)

Drug: ABT-414
Drug: Temozolomide

Children’s Hospital of Colorado, Dana-Farber 
Cancer Institute, Stanford University Lucile 
Packard Children’s Hospital, UCSF Benioff 
Children’s Hospital

NCT02359565 Pembrolizumab in treating younger patients with  
recurrent, progressive, or refractory HGG, DIPG, or 
hypermutated brain tumors

Biological: Pembrolizumab Children’s National Medical Center + 8 others

NCT02420613 Study of suberoylanilide hydroxamic acid (SAHA) with 
temsirolimus in children with DIPG

Drug: Vorinostat
Drug: Temsirolimus

University of Texas MD Anderson Cancer 
Center

NCT02502708 Study of the IDO pathway inhibitor, indoximod, and 
temozolomide for pediatric patients with progressive 
primary malignant brain tumors

Drug: Indoximod
Drug: Temozolomide

Children’s Hospital of Atlanta and Augusta 
University

NCT02644291 Phase I study of mebendazole therapy for recurrent/
progressive pediatric brain tumors

Drug: Mebendazole Johns Hopkins University School of Medicine 
and Johns Hopkins All Children’s Hospital

NCT02644460 Abemaciclib in children with DIPG or recurrent/refractory 
solid tumors

Drug: Abemaciclib Children’s Hospital of Atlanta and Children’s 
Hospital of Colorado

NCT02684058 Phase II pediatric study with dabrafenib in combination  
with trametinib in patients with HGG

Drug: Dabrafenib
Drug: Trametinib

Children’s National Medical Center, Dana-
Farber Cancer Institute + other institutions

NCT02717455 Trial of panobinostat in children with diffuse intrinsic  
pontine glioma

Drug: Panobinostat Stanford University and Lucile Packard 
Children’s Hospital + 9 others

NCT02742883 A study of atengenal and astugenal in diffuse intrinsic 
pontine glioma

Drug: Antineoplaston therapy 
(Atengenal + Astugenal)

Burzynski Clinic

TABLe 1 | Continued
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Current north American Trials in DiPG

nCT number Title intervention Site

Refractory or progressive DiPG trials

NCT02885324 Pilot study of cobazantinib for recurrent or progressive  
high-grade glioma in children

Drug: Cobazantinib Riley Hospital for Children at Indiana 
University Health

NCT03126266 Re-irradiation of progressive or recurrent DIPG Radiation: re-irradiation Alberta Children’s Hospital

NCT03155620 Pediatric MATCH: targeted therapy directed by genetic 
testing in treating pediatric patients with relapsed or 
refractory advanced solid tumors, non-Hodgkin  
lymphomas, or histiocytic disorders

Drug: Larotrectinib
Drug: Erdafitinib
Drug: Tazemetostat
Drug: PI3K/mTOR Inhibitor LY3023414
Drug: Selumetinib
Drug: Ensartinib
Drug: Vemurafenib
Drug: Olaparib

Children’s Oncology Group (80 centers)

NCT03250520 Application of palliative treatment in children with brain  
stem glioma and recurrent high-grade tumors in the  
central nervous system with the nanomaterial NPt-Ca

Drug: platinum acetylacetonate  
(1% wt) supported by sol-gel  
technology functionalized titania

Hospital Infantil de Mexico Federico Gomez

NCT03257631 A study of pomalidomide (CC-4047) monotherapy for 
children and young adults with recurrent or progressive 
primary brain tumors

Drug: Pomalidomide Ann and Robert H. Lurie Children’s Hospital 
of Chicago, Baylor College of Medicine, 
Dana-Farber Cancer Institute, National Cancer 
Institute, Stanford University Cancer Center, 
University of Florida

NCT03387020 Ribociclib and everolimus in treating children with  
recurrent or refractory malignant brain tumors

Drug: Everolimus
Drug: Ribociclib

Cincinnati Children’s Hospital Medical 
Center + 11 others

NCT03416530 ONC201 in pediatric H3K27M gliomas Drug: ONC201 New York University and University of Texas 
MD Anderson Cancer Center

NCT03434262 Molecularly driven doublet therapy for recurrent CNS 
malignant neoplasms

Drug: Gemcitabine
Drug: Ribociclib
Drug: Sonidegib
Drug: Trametinib
Biological: Filgrastim
Biological: Pegfilgrastim

St. Jude Children’s Research Hospital

Terms of search “DIPG,” “High grade glioma,” and limited to North American pediatric trials.

TABLe 1 | Continued

are still DIPG. When reviewing clinical trial data between studies,  
it will be important to recognize the different population in 
molecularly classified from radiographically classified DIPG. 
Equally important is the growing recognition of the heterogeneity  
in median survival between the different genomic variants of 
DIPG (31, 32) something that will have to be taken into account 
as new treatments are compared to historical controls.

SURGiCAL THeRAPeUTiC APPROACHeS

An important component of DIPG resistance to traditional chemo-
therapy is thought related to the blood–brain barrier, which is 
more impermeable at the pons. Thus, strategies to bypass the 
blood–brain barrier have been developed (33). One such method 
is convection-enhanced delivery (CED) whereby catheters are 
placed stereotactically into the tumor and drugs administered 
through these small catheters directly into the tumor. The fea-
sibility of this technique was first demonstrated in the 1990s on 
small animals (34), followed by animal studies to demonstrate 
the feasibility of this delivery method into the brainstem (35). 
More recently, brainstem CED has been used safely on a limited 
clinical basis both outside and within the context of clinical  
trials (36–39). CED approaches now include both multi-catheter 

devices, which allow for the coverage of different areas within 
the tumor, as well as single catheter approaches that can be re-
implanted for repeated infusion.

In addition to CED, others have proposed that intra-arterial 
chemotherapy administration may be advantageous when com-
pared to systemic chemotherapy for intracranial neoplasms (40). 
There has been significant effort to disrupt the blood–brain barrier 
in conjunction with intra-arterial chemotherapy administration 
(41, 42). These techniques have been used in combination in 
two cases of brainstem lesions via basilar artery administration  
(43, 44). While there have been multiple attempts to use blood–
brain barrier agents in combination with traditional chemo-
therapy, these have not generated improved outcomes although 
significant worsening of toxicity was often observed (45).

CURRenT STRATeGieS

Building upon previous decades’ advances in understanding of 
DIPG as an entity distinct from adult GBM, new clinical trials seek 
to further understand and exploit recently discovered molecular 
underpinnings of this challenging diagnosis. Table 1 provides a 
current list of North American trials for newly diagnosed DIPG 
(upper part of table), newly diagnosed DIPG after radiation 
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therapy (middle part of table), and recurrent/progressive DIPG 
(bottom part of table). Clinical trials from Europe will be detailed 
in a different manuscript in this edition.

The common DIPG mutation in Histone 3.3 or 3.1 alters 
the distribution of the repressive trimethylation at position 27,  
which leads to transcriptional de-repression. Preclinically, 
researchers utilized histone deactelyase inhibitors to overcome this 
epigenetic mutation with good effect. This has led to the initiation 
of a number of phase I clinical trials with agents such as valproic 
acid, entinostat, and panobinostat (LHB589) for the treatment of 
children with recurrent or progressive DIPG. While the preclini-
cal data for histone modifications has been very exciting (46–48), 
the concentrations achieved in humans for these inhibitors  
before excessive toxicity have limited their clinical activity (47).

The rapid improvements in our understanding of immune 
regulation have led to a number of new approaches in the treat-
ment of DIPG under the label of immunotherapy. These include 
vaccines, checkpoint inhibitors, and cellular therapies (NK, 
T cells, macrophages). Our understanding of immune regulation 
in the brain may be different from that outside the central nerv-
ous system. Thus, approaches that have demonstrated dramatic 
responses in certain leukemias, lymphoma, and melanoma 
(49–52) remain to be proven in DIPG and other CNS tumors (53).

Given the demonstrated safety of biopsy in newly diagnosed 
DIPG as detailed above (23–26), there has been a push for use of 
biopsy and the molecular information gained from these proce-
dures to improve up front therapy in these devastating tumors. 
The first North American clinical trial (NCT01172350) tested 
the feasibility of biopsy followed by molecular stratification based 
on MGMT promoter methylation, EGFR overexpression, and 
subsequent treatment stratification (25). Given the success of this 
pilot study, multiple upfront biopsy protocols are now underway 
and at least one active clinical trial utilizes a precision medicine 
approach whereby a specialized treatment recommendation 
is made based upon RNA expression analysis, whole exome 
sequencing, and predictive modeling following biopsy in newly 
diagnosed DIPG (NCT02264987).

Additional trials presently seek to expand the role of 
convection enhanced delivery in DIPG. One trial involves 
the direct infusion of the traditional chemotherapy agent, 

irinotecan (NCT03086616). Another study involves direct deliv-
ery via CED of the 124I-8H9 radioactive antibody into the tumor 
(NCT01502917). Both of these trials employ these interventions 
after standard radiation therapy but prior to progression.

Still other current clinical trials seek to explore the feasibility  
and role of intra-arterial treatment in DIPG. One group is 
evaluating the safety of intra-arterial melphalan in progressive 
DIPG (NCT01688401). Another group is investigating the safety 
of intra-arterial erbitux, an EGFR inhibitor, and bevacizumab 
in relapsed/refractory intracranial glioma including DIPG 
(NCT01884740).

Thus, as biologic understanding of DIPG and technology 
advance, a new wave of clinical trials has emerged (Table 1).

COnCLUSiOn

For decades, DIPG has stubbornly remained a disease with 
abysmal outcomes. However, safe biopsy has lead to improved 
biologic understanding of these challenging tumors as distinct 
from adult high-grade gliomas. With this understanding, our 
treatment paradigms have evolved. No longer are we treating 
DIPG with the same interventions as adult high-grade gliomas 
and wondering why these approaches are not effective. Instead, 
we seek to exploit the biologic characteristics of DIPG and 
employ strategies, which circumvent the unique challenges of 
the blood–brain barrier in this location. While exciting, we have 
not yet seen this new molecular understanding translate into 
more effective therapy. In the future, using these strategies in 
combination as well as a move toward precision medicine tar-
geting individual mutational profiles of each tumor may finally  
alter the outcomes in DIPG.
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