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Abstract: The enzymatic activity of CD26/DPP4 (dipeptidyl peptidase 4/DPP4) is highlighted
in multiple studies to play a vital role in glucose metabolism by cleaving and inactivating the
incretins glucagon-like peptide-1 (GLP) and gastric inhibitory protein (GIP). A large number of
studies demonstrate that CD26 also plays an integral role in the immune system, particularly in
T cell activation. CD26 is extensively expressed in immune cells, such as T cells, B cells, NK cells,
dendritic cells, and macrophages. The enzymatic activity of CD26 cleaves and regulates numerous
chomokines and cytokines. CD26 inhibitors have been widely used for the treatment of diabetes
mellitus, while it is still under investigation as a therapy for immune-mediated diseases. In addition,
CD26’s involvement in cancer immunology was also described. The review aims to summarize the
therapeutic effects of CD26 inhibitors on immune-mediated diseases, as well as the mechanisms that
underpin them.

Keywords: CD26/DPP4 inhibitor; immune-mediated diseases; diabetic cardiovascular disease;
autoimmune diabetes; inflammatory bowel disease (IBD); graft-versus-host disease (GVHD);
coronavirus-related immunological response; multiple sclerosis (MS); anti-tumor immune response

1. Introduction

The lymphocyte membrane-bound protein CD26 is the same as DPP4, a serine protease
expressed on the luminal and apical cell membranes. CD26 is a 105–110 kDa single-pass
type II integral membrane glycoprotein in the form of homodimer. Each monomer displays
a cytoplasmic tail at the N-terminus, with only 6 highly conserved amino acids (aa) and
22 aa in the transmembrane region. The extracellular segment is highly N-glycosylated
with 738 aa and can be categorized into three regions [1]: (1) The region of N terminal
is glycosylated where residues N85 and N219 provide a binding pocket for substrates;
(2) The intermediate region is highly enriched in cysteine and enables the interaction with
adenosine deaminase (ADA); (3) The c-terminal region (N509–N766) has catalytic activity.

CD26 belongs to the S9B family of serine proteases which also comprises fibroblast
activating proteins (FAP): DPP8, DPP9, DPP10, and DPP6. CD26 has been mostly studied
among those serine proteases due to its characteristic of ‘moonlight protein’. CD26 is
extensively expressed in immune cells, such as CD4+ and CD8+ T cells, B cells, NK cells,
Dendritic Cells, and Macrophages, and is capable of influencing a wide range of cytokines,
chemokines, and peptide hormones mediating signal transduction and cascade amplifica-
tion, as well as performing the enzymatic reaction towards a substrate. It has been found
in a variety of organs, such as intestine, liver, pancreas, placenta, and thymus, and the
dissolved form of CD26 was detected in plasma and body fluids [2,3].

2. CD26 Functions as a Cell Surface Protein and Soluble Enzyme Molecule

Only the homodimeric form of CD26 has enzymatic activity. CD26 participates in
many important processes, such as immunomodulation, psycho/neuronal modulation, and
physiological activity. CD26 plays a critical role in the development of immune-mediated
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disorders [3]. CD26 is able to directly activate and stimulate T cells to proliferate in a
TCR/CD3-dependent manner through binding with Caveolin-1 [2]. After antigen uptake
via caveolae by antigen presenting cells (APCs), caveolin-1 is exposed on the cell surface
and aggregates the immunological synaps in lipid rafts. Consequently, caveolin-1 binds
to CD26 and is phosphorylated, leading to the dissociation of interleukin IL-1 receptor
associated kinase 1 (IRAK-1) and Tollip [4]. NF-κB was then subsequently activated, as
well as leading CD86 to be up-regulated, thereby supporting the immunological synapse
and T cell co-stimulation [3,4]. CD26 also functions as a receptor for adenosine deaminase
(ADA) on lymphocytes [5,6]. CD26 has three functions: ADA binding, peptidase activity,
and extracellular matrix binding, all of which can interrupt T-cell proliferation and chemo-
taxis. The natural substrates of CD26 include several chemokines, thus contributing to
the regulation of leucocyte migration. The cleaved proteins have a significant impact on
receptor binding, and then induce a downstream cascade amplification reaction [5]. CD26
can separate amino terminal dipeptides from polypeptides containing either L-proline or
L-alanine in the penultimate position, removing NH2-terminal dipeptides from proteins.
CD26 controls glucose metabolism by rapidly degrading circulating glucagon-like peptide-
1 (GLP-1) and glucose dependent insulin otropic peptide (GIP), which are negative for
maintaining glucose homeostasis.

To summarize, CD26 is characterized as ‘moonlight protein’ with multiple functions as
a serine protease, receptor, and costimulatory protein [7]. The alteration of CD26 expression
is highly correlated with immune-mediated disorders, such as Diabetic Cardiovascular
Disease, Autoimmune Diabetes, Inflammatory Bowel Disease (IBD), acute Graft-versus-
Host Disease (GVHD), Coronavirus-related immunological response, Multiple Sclerosis
(MS), and Tumor Immune Response. Therefore, CD26 has been identified as a therapeutic
target [7] (Figure 1). Currently, there are seven CD26 inhibitors commercially available
on the market (e.g., sitagliptin, linagliptin, vildagliptin. and others) [8] (Figure 2). These
inhibitors are widely used for the treatment of type 2 diabetes mellitus (T2DM), and their
immunological effects have been investigated in immune-mediated disorders (Table 1).
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Table 1. The immunoregulation effects of CD26 inhibitors.

Immune-Mediated Disease CD26 Inhibitor Mechanism of the Effects Ref.

Diabetic Cardiovascular Disease

Alogliptin Inhibits IL-1 and TLR4-mediated IL-6 expression, as well as reducing cholesterol and triglycerides,
decelerating atherosclerosis [9]

Linagliptin Inhibited effects on xanthine oxidase. [10]

Saxagliptin Reduced CD40 expression in inflammatory monocytes and macrophages implicated in the initiation
of atherosclerosis [11]

Sitagliptin Stimulates the adenosine monophosphate-activated protein kinase (AMPK) pathway and inhibits the
mitogen-activated protein kinase (MAPK) pathway [12]

Teneligliptin Suppression of CD36, acyl-coenzyme A: cholesterol acyltransferase-1 (ACAT-1) gene expression partly
by attenuating the harmful effects of advanced glycation end product (AGEs) [13]

Vildagliptin
Reduce the levels of LDL cholesterol, triglyceride, and free fatty acid and increase the levels of HDL
cholesterol in patients with T2DM; Decreases infarct size is reduction in ROS production, given that
mitochondrial dysfunction is caused by the extensive release of H2O2, as one of pro-oxidative markers

[14,15]

Autoimmune Diabetes

Sitagliptin Unknown [16]

Linagliptin Inhibits the CD26-mediated stimulation of autoimmune T-cell activation and islet infiltration [17]

Vildagliptin Increase insulin secretion and decrease the extensive peri-insulitis which was mainly formed by
CD3-positive T cells [18]

Saxagliptin Unknown [19]

Inflammatory Bowel Disease

Linagliptin
Inhibits the IL-6/JAK2/STAT3 pathway via downregulating p-JAK2/JAK2 and p-STAT3/STAT3
protein expression and HMGB1/RAGE/NF-κB cascade through lowering HMGB1, RAGE, and
p-NF-κB p65/NF-κB

[20]

Sitagliptin Enhancement of GLP-2 action and the subsequent protective effects on intestinal barrier by inhibiting
epithelial cells apoptosis and promoting their proliferation [21]

Anagliptin Unknown [22]

Graft-versus-Host Disease Sitagliptin
Block T-cell activation, resulting in decreased secretion of pro-inflammatory cytokines; attenuate
cleavage of CXCL12, facilitating the homing and engraftment of donor cells in patients undergoing
hematopoietic stem cell transplantation

[23,24]

Coronavirus-related
immunological response Sitagliptin Unknown [25]

Multiple Sclerosis (MS) Linagliptin Showed neuroprotective properties against neurodegenerative diseases., exerted an
anti-inflammatory effect in MS by reducing brain TNF-α [26]
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expression [29,30]. A recent study demonstrated CD26 inhibition reduces atherosclerosis 
and inflammation via a reduction in macrophage migration and regulating dendritic cell 
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The inhibition of CD26 was used to increase SDF-1 levels, particularly because SDF-1 is 
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the primary major adverse cardiac events composite was demonstrated. Linagliptin’s in-
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3. CD26 Inhibitors in Diabetic Cardiovascular Disease

Diabetic cardiovascular dysfunction is a common diabetes complication. Inflammation
linked to the onset and exacerbation of T2DM is a key player in the pathogenesis of diabetic
cardiovascular complications. Moreover, the inflammation of mediated myocardial fibrosis,
which includes structural heart changes, myocardial cell death, and extracellular matrix pro-
tein accumulation, is a hallmark of diabetes-induced myocardial dysfunction [27]. Chronic
inflammation plays an important role in the pathogenesis of atherosclerosis. Many of the
inflammatory mediators pertinent to atherogenic progression originate from macrophages,
monocyte, and endothelial surfaces. CD26 is one kind of inflammatory mediator target in
diabetes management, and provides a reduction in the associated cardiovascular risk. The
activity of circulating CD26 is correlated with poor cardiovascular outcome and a reduced
left ventricular ejection fraction in heart failure patients and animal models [28]. CD26
inhibition may reduce monocyte migration to atherosclerotic plaque in response to TNF-α
and soluble CD26, as well as up-regulating the adiponectin expression [29,30]. A recent
study demonstrated CD26 inhibition reduces atherosclerosis and inflammation via a reduc-
tion in macrophage migration and regulating dendritic cell (DC)/macrophage-mediated
adipose tissue inflammation in cardiovascular disease [31]. The inhibition of CD26 was
used to increase SDF-1 levels, particularly because SDF-1 is enabled to recruit leukocytes,
such as neutrophils, monocytes, T cells, and B cells, as well as other bone marrow derived
CXCR4+ cells, such as stem cells [32]. The enhanced SDF-1 mediated CXCR-4 activation
induced the effective collateral artery growth [33]. The inhibition of CD26 activity and,
thus, the stabilization of SDF-1 was suggested to be a promising approach to treat diabetic
cardiovascular and peripheral artery diseases

Various studies have identified the effect of CD26 inhibitors on inflammation relevant
to atherosclerosis [34]. Alogliptin inhibits IL-1 and TLR4-mediated IL-6 expression, as well
as reducing cholesterol and triglycerides, decelerating atherosclerosis [9,35]. Alogliptin
also completed Phase 3 Trials for type 2 diabetes and Mellitus/Acute Coronary Syndrome
(ACS) Treatment (NCT00968708). The superiority of alogliptin to a placebo for the primary
major adverse cardiac events composite was demonstrated. Linagliptin’s inhibitory effects
on xanthine oxidase activity is attributed to its methylxanthine chain which may have
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clinical potential in cardiovascular disease [36]. The study also demonstrated that the
levels of H2O2 in the myocardium and the number of 8-hydroxyguanosine-positive cells
decreased after linagliptin treatment. Notably, linagliptin is an effective strategy to relieve
the cardiovascular diseases through suppressing oxidative stress. Saxagliptin reduced
CD40 expression in inflammatory monocytes and macrophages implicated in the initiation
of atherosclerosis [11]. Sitagliptin is also reported to decrease vascular calcification [37].
Lin et al. reported that sitagliptin also prevents the initiation of arterial calcification by
inhibiting the activation of NADPH oxidase and NF-κB, which is followed by a decrease in
receptors for advanced glycation end products (RAGE) expression [37]. There is evidence
suggesting sitagliptin stimulates the adenosine monophosphate-activated protein kinase
(AMPK) pathway and inhibits the mitogen-activated protein kinase (MAPK) pathway, both
of which are implicated in inflammation and atherosclerosis [12]. Terasaki et al. found
that teneligliptin has anti-atherosclerotic properties via inhibiting foam-cell formation of
macrophages in type 1 diabetes. The mechanism is linked with the suppression of CD36
and acyl-coenzyme A: cholesterol acyltransferase-1 (ACAT-1) gene expression, partly by
attenuating the harmful effects of the advanced glycation end product (AGEs) [13]. A
potential mechanism by which vildagliptin decreases infarct size is a reduction in ROS
production, given that mitochondrial dysfunction is caused by the extensive release of
H2O2, as one of the pro-oxidative markers [14]. Moreover, CD26 inhibitors, including
sitagliptin and vildagliptin, significantly reduce the levels of LDL cholesterol, triglyceride,
and free fatty acid and increase the levels of HDL cholesterol in patients with T2DM,
indicating the contribution to the reduction in cardiovascular risk [15].

4. CD26 Inhibitors in Autoimmune Diabetes

Autoimmune diabetes is a chronic disorder caused by the autoimmune destruction
of insulin-producing β cells in the pancreatic islets [18]. The elevated activity of CD26
in diabetes patients positively correlates with the duration of the disease, while being
independent of HbA1c level [38].

Suppression of CD26 also reduced production of IL-2, IL-12, and IFN-γ by T cells
and peripheral blood mononuclear cells (PBMC) [38]. Recent research demonstrates that
the inhibition of CD26 is able to enhance islet neogenesis, β-cell regeneration, and insulin
biosynthesis. The combined sitagliptin–losartan treatment promotes β-cell regeneration via
enhanced differentiation of pancreatic progenitor cells. Coincidentally, Mu et al. reported
that des-fluoro-sitagliptin (an analog of sitagliptin) increases the number of insulin-positive
beta-cells in islets, leading to the normalization of beta-cell mass and the beta-cell-to-alpha-
cell ratio [16]. Another CD26 inhibitor, linagliptin, reduces the incidence of diabetes by
preventing the autoimmune destruction of pancreatic β-cells in NOD mice [17]. CD26
inhibition deregulates the Th1 immune response, increases secretion of Th2 cytokines,
activates Tregs, and prevents IL-17 production. Vildagliptin increases insulin secretion
and decreases the extensive peri-insulitis, which was mainly formed by CD3- positive T
cells [18]. During a cohort study, saxagliptin was effective in decreasing blood glucose
levels in glutamic acid decarboxylase antibody 65 (GADA) positive patients and tended to
improve β-cell function during a 24 week follow-up [19]. Zhang et al. also reported that
adding 2000 IU/day vitamin D3 to saxagliptin might preserve β-cell function in patients
with latent autoimmune diabetes in adults LADA [39].

5. CD26 Inhibitors in Inflammatory Bowel Disease (IBD)

Inflammatory bowel diseases (IBDs) are multisystem diseases that occur in many
patients, not just in the intestines and gastrointestinal tract, but also in extra intestinal brain
tissue [40]. T cells from patients with IBD showed elevated CD26 expression, while the
activity of circulating CD26 is decreased [40,41]. As one of the key binding proteins for
T-cell activation, CD26 plays a critical role in the pathogenesis of IBD [42–44]. Globig et al.
demonstrates that enriched Th17 in the human inflammatory lesions expresses high levels
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of CD26 in IBD patients [45]. Recent studies also suggest that CD26 inhibitor administration
is able to reduce the level of colonic inflammation [20,46,47].

Linagliptin lowered the colonic histologic scores and leukocyte invasion through the
suppression of secretion of IL-6, TNF-α, and myeloperoxidase and the upregulation of
IL-10. [20]. Recently, Ning et al. demonstrates that sitagliptin could attenuate DSS-induced
experimental colitis and the inhibition can be attributed to the enhancement of GLP-2
action, and the subsequent protective effects on intestinal barrier by inhibiting epithelial
cells apoptosis and promoting their proliferation [21]. In the mouse model of IBD, sitagliptin
and anagliptin were shown to attenuate the colitis and facilitate the healing in the lesion
sites [21,22].

6. CD26 Inhibitors in Acute Graft-versus-Host Disease (GVHD)

Graft-versus-host disease is a severe complication and the main cause of mortality in
patients undergoing hematopoietic stem cell transplantation. [48]. The accumulation of
CD26+ T cells was found in GVHD target organs [49]. Ohnuma et al.’s study demonstrated
that human IL-26+CD26+CD4+ T cells are involved in the pathophysiology of pulmonary
chronic GVHD. Abrogation of CD26 costimulation by caveolin-1-Ig before or during the
early onset of GVHD impeded the development of pulmonary chronic GVHD [50,51].
Administration of humanized anti-human CD26 monoclonal antibodies (mAb) decreased
x-GVHD severity and prolonged survival in hu-PBL-NOG mice without the loss of en-
graftment of human T cells [49,52]. Therefore, the targeting of CD26 in T cells has the
potential to be useful in studies of GVHD. CD26+ T cells infiltrate the skin and intestinal
tract in clinical GVHD, and these results strongly suggest that CD26 assists T-cell migration
across the endothelial barrier, as well as a role for CD26+ T cells in the pathophysiology of
GVHD [52,53]. In patients undergoing hematopoietic stem cell transplantation, gliptins are
capable of attenuating a cleavage of Chemokine CXCL12, thus facilitating the homing and
engraftment of donor cells.

Sitagliptin completed phase 2 trials for graft-versus-host disease (GVHD)/hematopoietic
stem cell transplantation (HSCT) Treatment (NCT02683525). The efficacy of sitagliptin, in com-
bination with tacrolimus and sirolimus for the prevention of acute GVHD after myeloablative
allogeneic peripheral-blood stem cell transplantation, was investigated. As a result, CD26
inhibition may reduce the incidence of acute GVHD after allogeneic hematopoietic stem cell
transplantation (HSCT) [50]. After myeloablative allogeneic hematopoietic stem cell transplan-
tation, CD26 can be inhibited with sitagliptin to block T-cell activation, resulting in a decreased
secretion of pro-inflammatory cytokines [23]. Gliptins are reported to attenuate the cleavage
of CXCL12, facilitating the homing and engraftment of donor cells in patients undergoing
hematopoietic stem cell transplantation [24]. Farag et al. reported that high-dose sitagliptin
enhanced engraftment, compared to historic controls at the same institution, resulting in lower
incidences of acute graft-versus-host disease [54].

7. CD26 Inhibitors in Coronavirus-Related Immunological Response

Coronavirus disease 2019 (COVID-19) is an infectious disease being spread swiftly.
Human CD26 is found to be a coronavirus receptor. The attachment of MERS-CoV to CD26
on the host cell through S protein leads to the appearance of genomic RNA in the cytoplasm.
Human-neutralizing antibodies directed against the receptor-binding domain (RBD) of the
MERS-CoV Spike protein blocks viral binding to human CD26, thereby inhibiting MERS-
CoV infection [55]. The binding of spike protein S1 to CD26 could be blocked with the
antibody against MERS-CoV Spike protein, or human ADA and the MERS-CoV infection of
cells inhibited through the human CD26 pathway [56]. Moreover, recent findings suggested
that SARS-CoV-2 can interact with CD26 in conjunction with ACE2 during the infection
procedure [57]. The wide distribution of CD26 in the human respiratory tract facilitates the
entrance of the virus into the airway tract and contributes to the development of cytokine
storm and immunopathology in the fatal COVID-19 pneumonia [58].
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The coronavirus pandemic highlights the importance of understanding shared disease
pathophysiology in potentially informing therapeutic choices in individuals with type 2
diabetes (T2D) [57,59]. Sitagliptin is associated with reduced mortality in patients with
COVID-19 and with type 2 diabetes when administered at hospital admission [25]. With
anti-inflammatory property, the CD26 inhibitors represent a promising and potentially
beneficial method for the treatment of CD26.

8. CD26 Inhibitors in Multiple Sclerosis (MS)

Multiple sclerosis is a chronic inflammatory demyelinating central nervous system
disorder leading to serious neurological deficits [60]. Neuro-inflammation is one of the
well-known features in MS patients. Recent study showed that there is an increase in
CD26+ T cells in the peripheral blood and in the cerebrospinal fluid (CSF) of MS patients
with progressive forms of the disease. Kaskow et al. found that the CD26hi memory T
cells in MS patients correlates with clinical MS disease severity. [60]. The CD26hi T cell
subset manifested an effector-memory phenotype (CD45RO+ CCR7low) and produced a
Th1 and Th17 profile of cytokines under inflammatory conditions. Inhibition of CD26
increased TGF-β1 production, and thus modulates T cell function in the central nervous
system [61,62].

The inhibition of CD26 increases immunosuppressive cytokine TGF-β1 secretion,
which TGF-β1 has anti-inflammatory effects in situ by suppressing the production of NO,
and suppressing TNF-α secretion and autoreactive T cell proliferation in autoimmune
encephalomyelitis [63]. In the MS mice model, Linagliptin showed neuroprotective proper-
ties against neurodegenerative diseases, and exerted an anti-inflammatory effect in MS by
reducing brain TNF-α [64]. A large population cohort study by Seong et al. demonstrated
that the risk of incident MS, as well as several other autoimmune diseases, was decreased
by CD26 inhibitor, which suggests its potential therapeutic effect in MS [65].

9. CD26 Inhibitors in Anti-Tumor Immune Response

CD26 was found as a soluble form in tumor-infiltrating immune cells. The character-
ization as CD26neg, CD26int, and CD26high lymphocyte subsets are meaningful towards
varying levels of antitumor activity. Bailey et al. reported that CD26high T cells employ key
mechanisms, including enhanced stemness and migration, to persist and lyse tumors [66].
Importantly, higher expressions of CD26 are found in a wide variety of tumor entities. It can
be expressed on the surface of tumor cells, such as gastrointestinal adenocarcinoma, lung
cancer, mesothelioma, and melanoma. Increased CD26 expression leads to an upregulation
in the receptor of chemokine CXCL, promoting human astrocytic tumor growth [67].

CD26 also promotes the development of metastases. Ohnuma et al. reported that
CD26 expression levels in the tumor were significantly higher in colorectal cancer (CRC)
patients bearing distant metastasis than in non-metastatic tumors [68]. The mechanism is
ascribing to CD26 binds to collagen and fibronectin, as well as an increasing degradation
of the extracellular matrix, such as chemokines and other peptides which are involved
in cell regulation, migration and the invasion of metastases, thus facilitating cancer cell
invasion and metastasis [69]. Ng et al. also reported that CD26 is an attractive therapeutic
target for combating tumor progression to improve the prognosis of CRC patients. The
CD26 function in inducing CRC migration, invasion, angiogenesis and metastasis, and the
potential involvement of matrix metalloproteinases1 (MMP1) and caveolae (CAV1) in such
process were also identified [70].

CD26 degraded CXCL 10 rapidly in the normal physiological state, resulting in de-
creased recruitment and the migration of CXCR3+ T cells into the tumor parenchyma [71].
Therefore, the inhibition of CD26 facilitated post-translational modification of chemokines
in T cell-dependent anti-tumor effects. There is robust in vivo data on the anti-tumor activ-
ity of anti-CD26 monoclonal antibody in mouse xenograft models [68]. Recently, Nishida
et al. also identified CD26 expression on human osteoclasts (OCs), and demonstrated that
humanized IgG1 monoclonal antibody targeting CD26, and huCD26 mAb was adminis-
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trated for the treatment of multiple myeloma [72]. Jang et al. reported that vildagliptin
can potentially suppress lung cancer growth through macrophage-mediated NK cell activ-
ity [73]. Moreover, the efficacy of naturally occurring and immunotherapy-based tumor
immunity can be significantly augmented through a combination of CD26 inhibition and
checkpoint blockade therapy [68]. Barreira et al. reported that triple therapy—sitagliptin
given in combination with antibodies to both CTLA-4 and PD1—remarkably delayed
melanoma tumor growth and improved tumor immunity [71].

10. Discussion

The CD26 inhibitor class of medications has established safety [74]. Several completed
preclinical studies and clinical trials have evaluated the safety and efficacy of CD26 in-
hibitors in immune-mediated diseases and anti-tumor immune response [3,65,70]. Neither
severe hypoglycemic events nor serious side effects were observed. CD26 inhibitors act
as potent immune modulators through the regulation of Th1/Th2 phenotype balance and
cytokine production. The immune responses of Th1 cells were braked, IFN-γ, TNF-α,
IL-1, IL-2 etc. were suppressed, and Th2 cytokines, such as IL-6, IL-10, and IL-17 etc.,
were up-regulated after treatment with CD26 inhibitors. Thus, the inhibition of CD26
may slow the progression of immune-mediated diseases by shifting the balance toward
anti-inflammatory T cell subsets and cytokines.

A higher expression of CD26 is found in a wide variety of malignancies, which ex-
erts interactions by cleaving other molecules selectively (Incretin hormones, chemokines,
and many other peptides). Recent research demonstrated that a tumor promoting or
suppressing role can be attributed to CD26, indicating CD26 as a therapeutic target.
Interestingly, CD26 has been reported to attenuate anti-cancer immunity via chemokine
cleavage, as well as dysregulating macrophage M1/M2 polarization [75]. Therefore,
inhibition of CD26 enzymatic activity prevents the chemokine being truncated and
increases lymphocyte trafficking into the tumor. However, CD26 in the tumor microen-
vironment deserves further exploration.

The benefit of CD26 inhibition in immune-mediated diseases and anti-tumor immune
response mostly stays in the status of preclinical study. Therefore, prospective, randomized,
large-scale clinical trials are needed to deepen the impact of CD26 inhibitors.

11. Conclusions

DPP4 (CD26) is widely expressed in immune cells, including T cells, B cells, and
dendritic cells, and is involved in the pathogenesis of immune-mediated disorders. With
the enzymatic activity, CD26 is able to process a series of chemokines and cytokines by
cleaving N-terminal dipeptides. The modulation of other CD26 substrates, especially
chemokines, raises the possibility that the use of gliptins with acceptable side effect profiles
might be applied beyond the treatment of hyperglycemia. Soluble CD26 is significantly
increased and contributes to the pathophysiology in immune-mediated disease, such as
diabetic cardiovascular disease, autoimmune diabetes, inflammatory bowel disease, GVHD,
coronavirus-related immunological response, multiple sclerosis (MS), and tumor immune
response. These findings suggest CD26 is a promising target for the treatment of immune-
related disorders and tumors. Experimental studies and clinical trials showed the potential
of CD26 inhibitors to prevent or alleviate the development of these diseases related to
abnormal immune response. Due to the broad repertoire of CD26 binding protein and
substrates, the mechanism for the immunomodulatory actions of CD26 inhibitors in these
diseases remain to be clearly elucidated.
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