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Improving human motor performance via physical guidance by an assist robot device is
a major field of interest of the society in many different contexts, such as rehabilitation
and sports training. In this study, we propose a Bayesian estimation method to predict
whether motor performance of a user can be improved or not by the robot guidance
from the user’s initial skill level. We designed a robot-guided motor training procedure
in which subjects were asked to generate a desired circular hand movement. We
then evaluated the tracking error between the desired and actual subject’s hand
movement. Results showed that we were able to predict whether a novel user can
reduce the tracking error after the robot-guided training from the user’s initial movement
performance by checking whether the initial error was larger than a certain threshold,
where the threshold was derived by using the proposed Bayesian estimation method.
Our proposed approach can potentially help users to decide if they should try a
robot-guided training or not without conducting the time-consuming robot-guided
movement training.

Keywords: haptic guidance, skill level, motor training, robotic teaching, human-robot interaction

INTRODUCTION

Collaboration between robots and humans can expand human capabilities and has been
investigated on the applicability in fields ranging from rehabilitation to collaborative
manufacturing. Many different approaches have been developed to train human movements with
robots by providing motor instructions and feedback. For this kind of application, it is essential
to predict whether an individual responds to a specific robotic training (Sigrist et al., 2013)
before actual training to avoid wasted time and effort, but such estimation methods have not
been established.

Furthermore, the efficacy of robotic instruction through haptic sense has not been sufficiently
investigated while the haptic interface that provides motor instructions to human users has been
long-term explored (Mussa-Ivaldi et al., 1985; Sigrist et al., 2013). The effect of somatosensory
feedback has been compared to that of visual guidance. For example, Feygin et al. examined
haptic guidance in short-term training to learn novel three-dimensional (3D) circular trajectories.
They found that haptic training alone was less effective than lone visual training for positional
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reproduction performance (Feygin et al., 2002). Liu et al.
also studied the short-term performance of tracking
novel 3D circular trajectories. They found that haptic
input in addition to visual demonstration did not
improve the tracing error compared to the visual-alone
condition (Liu et al., 2006). Wong et al. examined skill
learning in 3-day consecutive haptic interface training of
drawing two-dimensional (2D) trajectories. They rather
found that additional haptic demonstration showed
greater improvements than visual-alone conditions
(Wong et al., 2012).

On the other hand, previous studies suggested that
haptic instructions seem to be beneficial to initially less-
skilled participants (Sigrist et al., 2013). Marchal-Crespo
et al. (2010) found that initially less-skilled participants
significantly improved their steering skills after training
using the haptic guided driving task. However, the previous
studies did not provide a systematic approach either to
verifying the grouping depending on individual initial skill
level or selecting a specific boundary to estimate potential
motor improvement. They rather found a linear correlation
between the initial skill level and its change after robotic
haptic interaction (Marchal-Crespo et al., 2010, 2017; Duarte
and Reinkensmeyer, 2015). Although only Duarte and
Reinkensmeyer used information criteria and identified the
relevance of initial skills to the change, they have not tried to
define the boundary value.

Identifying the boundary promises positive training
effects for target users of each task or the type of robotic
training. This study proposes an identification method
to evaluate the dependence of the training effect on the
initial skill level by modeling the skill level change between
before and after receiving the haptic guidance training.
We verify the grouping’s validity based on model fitness
and propose a systematic method to set a theoretically
sound boundary value.

MATERIALS AND METHODS

Bayesian Modeling of the Skill Level
Change
To provide the boundary for estimating whether motor
performance of a user can be improved or not, we first verify the
skill level change model differs between individuals depending
on their initial skill level. For this, we referred to Sigrist’s
summary. Sigrist et al. (2013) suggested that position haptic
guidance may be useful for novices or less skilled. This can be
interpreted as the skill level change model that allows to vary
both the intercept and slope by the initial participant’s skill. We
prepared four different hypothetical models, as shown in Table 1.
To model changes in skill level for an evaluation metric, we
employed the Bayesian statistical modeling based on Markov
Chain Monte Carlo (MCMC) with a No-U-turn sampler and
variational inference (Salvatier et al., 2016). Specifically, the linear
models in Table 1 have both the intercept (α) and slope (β),
which were allowed to vary between models. The analysis used

the following basic formula:

ŷij =αij[k] + βij[k]xk + εk (1)

where i is the number of the model, j is the index of each
participant, k is the index of each trial, ŷ is the variable of interest,
and x is the session variable (that is, 0: first, 1: second session).
The formula for a participant (j) is illustrated in Figure 1A.

Model 1 (in Table 1) has the participant independent intercept
and slope, which means the change in metric is independent of
the participants and their initial skill level. If this is the case, all
participants can attain the benefit of robotic instruction. This
means all participants have the same skill level change model and
highly likely the lowest model fitness among the four. Model 2
has a participant-dependent slope, which means the change in
skill varies among participants but cannot be predicted by their
initial skill level. Model 3 has the participant-dependent intercept,
which means that the robotic instruction can equally affect their
skill change regardless of their initial skill level. Although Model
3 is ideal as an instruction, it is highly unlikely to have a high
fitness to the haptic instruction. Model 4 has varying intercepts
and slopes. Thus, the skill level change can be predicted by their
initial skill level. If the metric’s fitness to Model 4 is greater than
the others, it signifies that the haptic instruction is beneficial to
initially less skilled participants. This supports the initial skill-
based grouping statistically. Spontaneously, it also suggests that
the initial performance can result in motor improvements after
receiving instructions from the existing dataset.

TABLE 1 | Models of the skill level change.

Model number (i) Formula Description

1. Pooled ŷ1j = α1+β1xi • Independent to initial skill
• Effective equally to everybody

2. Varying slope ŷ2j = α2+β2jxi • Independent to initial skill
• Effective differently for individual

3. Varying intercept ŷ3j = α3j+β3xi • Dependent on the initial skill
• Effective equally to everybody

4. Varying intercept
and slope

ŷ4j = α4j+β4jxi • Dependent on the initial skill
• Effective differently for individual

FIGURE 1 | (A) Linear modeling of the skill level change of the participant (j).
The skill level metric (ŷ) here in this study is the error between the target
movement and performed movement. The intercept (α) is the initial skill level
(x0). The slope (β) represents the change in skill level. (B) The linear
relationship between the intercept and slope. Each dot represents a linear
model of each participant. The linear relationship allows to set the boundary
(γ) to divide participants into two groups systematically; those whose skill level
improves (β < 0) or those who decline (β > 0).
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Linear Relationship Between the
Intercept and Slope to Define the
Boundary
If the skill level change model differs between individuals, we can
derive the boundary using the relationship between the initial
metric (that is, the intercept) and the change in the metric (that
is, the slope). Hence, we included the following linear equation in
model 4:

αj = θβj + γ (2)

The formula is illustrated in Figure 1B. A non-zero θ would
highlight a significant relationship between α and β, while a non-
zero γ would signify that for some participants, performance
improved (β < 0), while for other participants, performance
declined (β > 0). Thus, γ is the boundary of the initial skill
level. γ was estimated simultaneously while estimating α and β

by MCMC, so posthoc analysis was not needed.
The complete probabilistic model is defined as follows:

Y ∼ N
(
µi, σ

2) µi ∼ αij + βij · X σ ∼ |C(5)| (3)

αij ∼

N
(
0, 10−5 ) i = 1, 2

N
(
µαi, σ

2
α

)
i = 3, 4

µαi ∼

N
(
0, 10−5 ) i = 3

θ · βij + γ i = 4
σα ∼ |C(5)|

(4)

σθ ∼ F σγ ∼ F (5)

βij ∼

N
(
0, 10−5 ) i = 1, 3

N
(
µβ, σ

2
β

)
i = 2, 4

µβ ∼ N
(
0, 10−5 ) σβ ∼ |C(5)|

(6)
where all the quantities defined in the previous paragraph
still hold, Y represents the outcomes (skill level metric), X
represents the predictors (that is, 0: first, 1: second session), N
is the Gaussian distribution, |C(5)| is a Half-Cauchy distribution
with parameter 5, and F is an uninformative (flat) prior.
All the parameters of the prior distributions were based on
the default settings of the probabilistic modeling software
(Salvatier et al., 2016).

Sample Dataset: Experiment With a
Haptic Interface
The above model was applied to the experimental data of
participants who interacted with a robot-assisted motor training
system from our laboratory, which guided the participant’s hand
to show the procedure to process an actual motor task of interest.

Participants
Participants included 20 healthy right-handed adults (17
men, 3 women; age range: 21–34 years; mean ± standard
deviation [SD] = 24.017 ± 2.596). The handedness was
determined by a verbal inquiry based on the Edinburgh
inventory. All participants provided written informed consent
before participation. The ATR Review Board Ethics Committee
approved the study protocol.

Task and Apparatus
The target task involved drawing a true circle of 10 cm radius
on a horizontal plane using one’s left hand. We selected our
task referencing existing studies with healthy subjects introduced
in section “Introduction,” especially Wong et al. (2012). Feygin
et al. (2002) identified an interference between the visual and
haptic modals, so we decided not to provide visual feedback
to our participants during haptic feedback. The subject’s hand
is hidden under a white table, on top of which additional
information can be visualized using a projector. Participants
were asked to complete the drawing within approximately 2 s.
They started drawing the circle from the 12 o’clock position and
moved in a counter-clockwise direction. All the task details were
consistent with those in our previous experiment (Takai et al.,
2018). A robotic manipulandum located under a white table
guided the target movement (Figure 2A). The table prevented
the participant from viewing their hand as it moved. The robot
was programmed to provide negligible resistance to movement
while the participants were drawing. For safety, the robot stopped
moving when the force applied at the end effector exceeded the
prescribed range or when the handle left a specified safe area.

Haptic Feedback
The manipulandum moved the participant’s left hand along
the targeted movement trajectory. Participants received
proprioceptive afferent information during the entire movement.
The robot handle moved at a constant velocity outside the
acceleration/deceleration (A/D) period, set to 0.2 s after it starts
and before it finishes the movement. The target circle was visible
during movement guidance. As with our previous study (Takai
et al., 2018), the participants could not see their hand’s current
position or the robot’s end-effector at any moment. During the
robotic guidance, the participants were instructed not to move
their arms with or against the robot’s movement. However, the
participants were not completely passive to the guidance, as
they maintained the posture of their arms to avoid coming in
contact with the table.

Score Feedback
We evaluated the drawn circles by the participants and fed back
the score to the participants soon after each trial. The equations
used to calculate the score are as follows:

ERR (t) =
√
(xhand (t)− xtarget(t))2 + (yhand (t)− ytarget(t))2 (7)

Score (t) = 100
Emax. − ERR(t)

Emax.
(8)

Trial Score =
1

te − ts

te∑
t=ts

Score(t) (9)

where ERR (t) is the error between the hand and target position
at time t, xhand (t) and yhand (t) are the coordinates of the hand
position at time t, and xtarget (t), ytarget (t) are the coordinates of
the target position at time t, ts is the starting time, and te is the
ending time. Emax. is the maximum allowed error and is set to be
the same as the target circle radius.
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FIGURE 2 | (A) Motor task and apparatus. Participants were asked to draw a true circle (dashed line) using their left hand within 2 s. A manipulandum located under
the table provided haptic guidance. The participants could hold a handle on the manipulandum, and it moved to guide their hand in the desired direction. The red
line shows a representative example of a handwritten trajectory. Both the target circle and drawn figures were hidden from the participants during motor execution,
such that the participants never saw the actual hand position. (B) Procedure. The participants completed 15 trials in which they drew a circle with score feedback at
the end of each trial. Next, the participants completed 15 trials in which they first received haptic guidance from the robot, that is, allowed the robot to move their
hand in the desired trajectory, and then executed the drawing movement by themselves without being assisted by the robot. Finally, they received their score at the
end of each trial. (C) Target movement and executed movements by a participant at both sessions in the x–y plane and its time trajectory in the x and y directions.
Early trials are plotted as blue traces, and subsequent trials are denoted by “warmer” colors.
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Experimental Design
At the beginning of the experiment, participants were
familiarized with the task by observing a human instructor
performing the task. Participants have been told the diameter
of the target circle is 10 cm. Although we did not explicitly
show ideal velocity profiles to a subject, we asked the subject
to generate the hand movement with a constant speed and also
informed that the task duration was 2 s.

Subsequently, they underwent the experimental procedure as
shown in Figure 2B. During the first session, the participants
were instructed to reproduce the target movements in terms
of both position and velocity as accurately as possible without
any assistance from the manipulandum. The participants’ active
movements were measured for 15 trials (Figure 2B, top). Before
starting a trial, the target circle is projected on the table for
approximately 3 s. Subsequently, the circle is removed, and no
visual information about the circle size, speed, or the current
hand position is provided. We evaluated the circles drawn by
the participants in each trial. The average error between the
target and the performed movement was normalized such that
the values ranged from 0 to 100 (as shown in Eq. (8)). After
each trial, the score was projected on the table for approximately
3 s using a projector. Subjects are asked to improve their score.
While the target circle and the current hand position are also
visualized with the score, the performed trajectory was not shown
to the participants.

In the second session, participants received haptic guidance
from the manipulandum. Subjects are instructed to memorize
the position and velocity of the guided motion as accurately
as possible in preparation for the following motor execution.
Figure 2B bottom shows that each trial consisted of one haptic
guided presentation by the robot and one participant’s motor
execution. There were 5 s intervals before and after the haptic
guidance. The score was shown to the participant at the end of
each trial, similar to the first session. This session continued until
the participants completed 15 trials (Figure 2B, bottom).

Both session trials in which the movement exceeded the
specified safe area were not evaluated. However, they were
counted to reach a predetermined number of 15 trials. The
average number of trials for evaluation was 14.8 (SD 0.44) in the
first session and 14.1 (SD 1.47) in the second session.

Skill Level of Each Trial
Skill level was evaluated as the positional distance from the target
circle as well as the difference between the performed velocity
and the actual target velocity. Previous studies (Feygin et al.,
2002; Liu et al., 2006; Lüttgen and Heuer, 2012; Wong et al.,
2012) suggested that tracking performances of different physical
variables such as position and velocity in a trajectory learning
task could be sensitive to different types of modalities such as
vision and haptics, respectively. These studies identified that the
shape accuracy improved more in visual training, while haptic
training was better for training the temporal aspects. Since our
robot-guided training provides haptic feedback to a user, tracking
performances of velocity profiles would be improved more
than that of position trajectories. Thus, we separately evaluated

position and velocity tracking performances to investigate the
effectiveness of the robot-guided haptic feedback. For each trial,
the position and velocity errors were evaluated for 1.46 s, starting
at the moment when the participants’ hand left the start zone,
within a circle with a diameter of 3 cm centered at 12 o’clock
position. The position and velocity errors defined in Eqs (10,
11) were only used for analysis. Note that executed movements
only by participants among all trials in the second session were
evaluated.

Ep =
1

te − ts

te∑
t=ts

|rh (t)− r| (10)

Ev =
1

te − ts

te∑
t=ts

||vh(t)− v(t)|| (11)

where Ep is the positional error from the target, ts is the starting
time, te is the ending time, rh(t) is the current hand radius with
respect to the workspace center at time t, and r = 10 cm is the
constant target radius. Ev is the velocity error from the target
velocity ||v|| = 37.62 cm/s. vh(t) is the current hand velocity with
respect to the workspace center at time t.

RESULTS

Evaluation of Models’ Fitness to the
Sample Dataset
The experimental result of a representative participant is shown
in Figure 2C. The participant drew the circle smaller than the
target in the first session, but the size increased after receiving
the haptic guidance in the second session. The participants
(n = 20) mean errors as a function of the trial numbers
decreases within each session, except the position error in the
first session (Supplementary Figure 1). After the first session, still
4.3 mm error remained as the lowest position error. Therefore,
the lowest position-error participant could further improve
the tracking performance. In other words, the remained error
indicated that the obtained results were not due to a ceiling
effect on the performance. Meanwhile, there were marginally
positive relationships between the mean of 15 trials among
each participant’s position and velocity errors in both sessions
(Supplementary Figure 2).

The position and velocity errors are shown in Figure 3.
Looking into the change in skill level for each participant (gray
lines in Figure 3), the slope ranges from strong positive to
strong negative. The lack of significant improvement in positional
accuracy could have been due to the use of average data for all
participants instead of classifying participants into groups. We
fitted the models in Table 1 to the metric to determine whether
such grouping is reasonable. The results are shown in Table 2 for
velocity and Table 3 for position.

The models’ fitnesses were evaluated using the widely
applicable information criterion (WAIC; Watanabe, 2010). The
smaller the WAIC, the better the fit. By the leave-one-subject-
out (LOSO) analysis, both criteria were tested 20 times, and
the mean and SD are as shown in Tables 2, 3. Model 4 with
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FIGURE 3 | The skill level change between sessions. The average of all participants metric is shown in black, and that of each participant is superimposed in gray.
The metric is (A) the norm of error velocity and (B) the absolute error in position. The target peripheral speed is 0.376 m/s, and the radius of the target circle is
10 cm. The paired two-sample tests are Student’s t for the velocity and Wilcoxon signed-rank test for the position.

TABLE 2 | Models’ fitness of norm of error velocity.

Models WAIC (Mean ± SD)

1. Pooled −1,129 ± 16

2. Varying slope −1,175 ± 17

3. Varying intercept −1,217 ± 18

4. Varying intercept and slope −1,311 ± 12

TABLE 3 | Models’ fitness of absolute positional error.

Models WAIC (Mean ± SD)

1. Pooled −3,733 ± 22

2. Varying slope −3,774 ± 22

3. Varying intercept −3,856 ± 17

4. Varying intercept and slope −4,035 ± 16

varying intercepts and slopes had the best fit for both velocity
and position metrics. Therefore, it was fair to divide participants
based on their initial skill level.

Deriving the Boundary
Subsequently, we inspected the linear model between the
intercept (α) and slope (β) to derive the boundary (γ). The LOSO
analysis was conducted, and the sample result excluding subject
1 is as shown in Figures 4, 5 (Figure 4 for the position and
Figure 5 for the velocity). After fitting the linear model, the
distributions of θ and γ do not include zero. Thus, a significant
relationship between α and β was identified, and it signified that
for some participants, performance improved (β < 0), while for
other participants, performance declined (β > 0). As shown in
Figure 4B, the slope (β) of subjects who have an initial error
above the boundary γ are negative; however, those with an initial
error below are positive. Based on the confusion matrix, the
accuracy of classification was 0.9 for the position and 0.7 for
the velocity models. The F measure was 0.91 for the position
model and 0.82 for the velocity model. The excluded subject’s

performance in the second session was predicted by the initial
skill level. As shown in Figure 6, the subjects are well classified
into two groups based on the boundary.

Group-Based Haptic Guidance Effect
The 20 participants were allocated into three groups based on
position and velocity boundary. The numbers of participants
in each group are shown in Table 4. Figure 7 shows the skill
level change between sessions of all the three groups. The
participants in the red group were initially low-skilled in terms
of both position and velocity, while the participants in the
green group were initially high-skilled. The blue group was
initially low-skilled in terms of velocity but was highly skilled
in terms of position. The initially low-skilled participants in
terms of position but highly skilled in terms of velocity were not
found in the dataset.

Without grouping, the efficacy of haptic guidance was
not significant, especially in positional accuracy, as shown
in Figure 3B. However, by grouping, the red group showed
significant improvements in both metrics (the velocity and
position). On the contrary, the green group shows a minor
deterioration in terms of position, while a minor improvement
in terms of velocity was also observed. These results suggest
that the initially low-skilled participants significantly improved
their skill level. Regarding the blue group, the initially low-skilled
aspect (velocity) improved; however, the initially high-skilled
aspect (position) did not improve, while both did not significantly
change. Those of who increased the velocity error also increased
the positional error (2 out of 3 subjects).

DISCUSSION

Due to the increasing demand to improve motor performance via
human-robot collaboration, numerous different approaches have
emerged; however, not all of them guarantee motor performance
improvements (Williams and Carnahan, 2014). It would be useful
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FIGURE 4 | (A) Posterior predictive plot of model 4 using 19 participants’ absolute position errors (leaving subject 1). Each gray shaded area represents multiple
samples from the posterior [the intercepts (α) and the slopes (β)] of each subject, and each blue circle shows the average of each area. Red shaded area represents
regression lines for all samples, and red line shows their average. The boundary (γ, the intercept of the red line) is 0.019 m with the credible interval (94%) from 0.017
to 0.021 m. (B) Visualization of classifying results. Subject 1, showing in red marker, is tested. Rest of 19 participants are showing in gray markers. Blue line shows
the boundary derived from model 4 in (A). Blue shaded area shows the 94% credible interval. Mean absolute position error of Subject 1 in the first session was
above the boundary. Thus, subject 1 is classified into a group that is expected to improve the performance in the second session. Actual mean absolute position
error in the second session is less than that of the first session.

FIGURE 5 | (A) Posterior predictive plot of model 4 using 19 participants’ norm of error velocity (leaving subject 1). Each gray shaded area represents multiple
samples from the posterior [the intercepts (α) and the slopes (β)] of each subject, and each blue circle shows the average of each area. Red shaded area represents
regression lines for all samples, and red line shows their average. The boundary (γ, the intercept of the red line) is 0.175 m/s with the credible interval (94%) from
0.147 to 0.204 m/s. (B) Visualization of classifying results. Subject 1, showing in red marker, is tested. Rest of 19 participants are showing in gray markers. Blue line
shows the boundary derived from model 4 in (A). Blue shaded area shows the 94% credible interval. Mean norm of error velocity of Subject 1 in the first session was
above the boundary. Thus, subject 1 is classified into a group that is expected to improve the performance in the second session. Actual mean norm of error velocity
in the second session is less than that of the first session.

and efficient if the chance of success for a user could be estimated
prior to training. Our study proposes a versatile method that can
statistically elaborate on the relationship between performance
improvements and the person’s initial skill level.

Identifying Target People Through the
Statistical Grouping Method
In this study, we have proposed a Bayesian estimation method for
examining different linear models that explain the relationship
between the initial skill level and its change. By comparing

these models, the most appropriate model to explain this
relationship can be identified. This provides a non-heuristic but
hypothesis-based approach to analyze the benefit of interest.
Moreover, hypothetical models, that is, the relationship between
motor performance and the initial skill level, can be explicitly
implemented and even compared to identify which model the
data with maximum likelihood.

Four different models have been examined in this study
(Table 1). These are fully against (Model 1), partially against
(Models 2 and 3), or in agreement with Sigrist’s summary (Model
4). If the metric’s fitness to Model 4 is greater than the others,
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FIGURE 6 | (A) The classified subject for improving velocity error based on LOSO method. Subjects were above the boundary in the first session, so they are
predicted to improve their performance in the second session. Most of them scored fewer errors in the second session. (B) Subject predicted as to improve
positional error. (C) Subject predicted as to deteriorate velocity error. (D) Subject predicted as to deteriorate positional error.

TABLE 4 | Classification in groups.

Below position threshold Above position threshold

Above velocity threshold Number of subjects = 7 (Color in Figure 7: Blue) Number of subjects = 10 (Color in Figure 7: Red)

Below velocity threshold Number of subjects = 0 Number of subjects = 3 (Color in Figure 7: Green)

it can signify that the skill level change model differs between
individuals. Hence, the performance improvement is a function
of the initial skill level and statistically supports the initial skill-
based grouping. We used WAIC for model evaluation, which
aims to select a model that makes good predictions, rather than
the likelihood ratio test, which aims for the safe rejection of the
null hypothesis and cannot show that the alternative hypothesis
is good (Posada and Buckley, 2004). As a result, WAIC is the
lowest in Model 4 with varying intercepts and slopes than the
other models for both velocity and position metrics. Therefore,
it statistically supports dividing participants based on their initial
skill level. The skill level metric (ŷ) used in this study is the error
between the target and performed movement. Thus, the method
is neither parameter- nor task-dependent and is expected to work
in a wide range of applications.

Grouping of participants either qualitatively or quantitatively
has been explored in previous studies. For example, to define
participants’ experiences, authors generally used classification
terms, such as Novice and Expert (Beilock et al., 2002). While
in another study, the motor skill level is sometimes referred to as
participants’ symptoms, for example in autism, where the patients
have motor difficulties to some extent, or typically developed
(Staples and Reid, 2010). In other studies, participants who scored
on a motor test under a specified threshold (Marchal-Crespo
et al., 2010) or the median among the participants (Etnier and
Landers, 1998) are grouped as less-skilled. Participants are also
sometimes grouped based on quantiles (Malina et al., 2007).
Grouping into an equal number of participants (Yamamoto et al.,
2019) has also been introduced insofar. However, the reason
why grouping is reasonable is not well explained. Metric-based
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FIGURE 7 | The skill level change between sessions with participants grouping based on the derived boundaries. (A) Red group velocity. (B) Red group position.
(C,D) Blue group and (E,F) Green group. The paired two-sample tests are Wilcoxon signed-rank test in (A) and Student’s t-test in (B).

approaches have also been introduced (Hook et al., 2004; Gruber
et al., 2006; Dose et al., 2007). These studies identified unique
and best metrics among many options to identify handwriting.
They developed feature-based classification algorithms. However,
the method to verify clustering relies on subjective labeling.
Aharonson and Krebs (2012) used the no-labeling method but
still had to run an exhaustive search. Thus, heuristic-based
approaches could not be avoided in previous studies. Limitations
regarding our approach are discussed in section “Challenges and
Prospects on Model Interpretation Regarding Potential Motor
Improvements.”

Defining the Skill Level Boundary
Through Linear Modeling of Its Change
We included a linear relationship between the coefficients of the
linear model (Figure 1B) to derive the boundary. By inferring the
parameters using the Bayesian inference, non-zero coefficients
provided evidence of a linear relationship. This shows an effective
boundary to identify those that can benefit from haptic guidance.
The parameters are inferred in consideration of the uncertainty
under the limited data assuming the existence of a certain
true value for each parameter because the Bayesian approach
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takes into account the uncertainties of parameter values while
providing exact inference. In contrast, most maximum likelihood
(or least squares) estimation fixes the parameter values though
there is considerable uncertainty (Punt and Hilborn, 2001).
The boundary that is suitable for practical use needs to be
estimated from a small number of data samples -as is the case
in exploratory experiments with human subjects (Sabatini and
Mannini, 2016; Kim et al., 2017)- and to be robust for new data,
and it is better not to vary with each re-estimation. Bayesian
estimates obtained from MCMC procedures are appropriate in
small samples (Dunson, 2001; Gray et al., 2015). Since Bayesian
models accommodate unobserved variables (in our case, gamma)
with associated uncertainty (Dunson, 2001), we can confidently
build a threshold.

The linear relationship between the intercept (α) and the
slope (β) fits the skill-level metric change of absolute error in
position as well as the norm of error velocity. As a result, the
boundary (γ) is derived with sufficiently low WAIC. Non-zero θ

clearly shows that for some participants’ performance improved,
while for others, performance declined. The difference in metric
change trends between the first and second session is also visible
between the participants who are above and below the boundary
(Figures 4B, 5B). Such Bayesian estimation using a complex
model cannot be done with simple linear regression (Dunson,
2001; Punt and Hilborn, 2001). Although the metrics relationship
may fit more with a non-linear model or may need more data
(Figures 4A, 5A), these results prove the concept of model-
based interpretation of the motor training effects and potential.
In future studies, an extended (for example, mixed effect, order
effect) model-based inference could be applied.

In the scenario of using the estimated parameters in this
study, an examiner of the haptic guided training can classify
subjects with confidence because the boundary is provided with
the credible interval as the most likely value from the computed
posterior distribution. When a subject’s initial skill is at the
vicinity of the boundary, the posterior probability distribution
(the certainty of the boundary) can support the examiner’s
judgment. The estimated boundary value fixed with considerable
uncertainty (Punt and Hilborn, 2001) has little merit in the above
interpretation. Hespanhol et al. (2019) demonstrated that the
credible interval is more natural and easy-to-interpret than the
frequentist intervals. Even in a small sample size, the percent of
the credible interval that contained the true population mean is
higher than that of the confidence interval (Gray et al., 2015).

Previous studies have already identified the linear correlation
of initial skill level to its change following robotic haptic
interaction (Marchal-Crespo et al., 2010, 2017; Duarte
and Reinkensmeyer, 2015). Although only Duarte and
Reinkensmeyer (Duarte and Reinkensmeyer, 2015) performed
information criteria and identified the relevance of initial skills
to changes other than fixed effects, the statistical test does not
answer the use of the identified effect in real-world applications.
Looking at rehabilitation studies, many studies have been
made regression models for predicting trial-by-trial change
in impairment (Casadio and Sanguineti, 2012) or long-term
effect, including daily-life usage-dependent changes implicitly
(Reinkensmeyer et al., 2016). Although the potential benefit

of making a prognosis based on the clinical scores and the
brain images, these studies do not predict whether a patient
responds to a specific intervention or a robotic treatment.
Meanwhile, Schweighofer and colleagues not only statistically
identified potential predictor of changes in clinical score after
arm rehabilitation but also derived a functional threshold for who
can benefit (Schweighofer et al., 2009). They successfully proved
their concept, but the accuracy was not as high as in this study.
This highlights the importance of verification using different
hypothetical models rather than examining a single model.

A linear relationship between initial skill level and changes
after robotic haptic interaction may be found in various tasks,
ranging from driving a car (Marchal-Crespo et al., 2010), golf
patting (Duarte and Reinkensmeyer, 2015), leg rehabilitation
(Marchal-Crespo et al., 2017), and tasks related to upper arm
motor functionality, as are, in this study. Therefore, the linear
modeling method may be applicable and useful in other motor
tasks and training approaches.

Efficacy of Haptic Guidance in Motor
Training
In previous studies, haptic training methods were evaluated based
on the means of all participants’ metrics (Feygin et al., 2002;
Liu et al., 2006; Lüttgen and Heuer, 2012; Wong et al., 2012).
Without grouping, as shown in Figure 3, the norm of error
velocity decreased (improved) after haptic guidance training.
However, the absolute error in position shows no change on
average. Therefore, the training effect suggested from our dataset
without grouping is questionable as is in line with previous
studies. For example, haptic training improved the timing aspect
(Feygin et al., 2002; Lüttgen and Heuer, 2012) with short-term
training but not for positional error (Wong et al., 2012). These
consistencies prove that the dataset is not peculiar or an artificial
one prepared to explain the proposed method.

This study verified the fairness in dividing participants based
on the initial skill level using a derived boundary. By grouping,
initially low-skilled participants significantly improved their
average skill level regarding both position and timing aspects.
The training’s effectiveness and identified target participants
are consistent with a previous study that used the heuristics
grouping method (Marchal-Crespo et al., 2010). Haptic guidance
is a major approach in robotic rehabilitation to facilitate motor
functional recovery (Marchal-Crespo and Reinkensmeyer, 2009;
Sigrist et al., 2013). This may be an appropriate approach for
patients who have lost motor skills.

For high-skilled participants, their performance did not
change much. This is consistent with previous studies; for
example, “Benefit of guidance-based training was not detected for
the more skilled young/old participants” (Marchal-Crespo et al.,
2010). Some previous studies explained this by referring to the
challenge point theory (Guadagnoli and Lee, 2004). The theory
states that task difficulty should be appropriately adjusted to
meet the participant’s skill level to maximize the training effect.
However, this study explains this differently using the derived
boundary and explains that performance deterioration may result
from difficulty in recognizing the difference between a goal and
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their movements. High-skilled participants make a very small
error from the goal movement but need to identify the error
only through somatosensory information. The error is in the
same range of the correctly identifiable difference between the
reference and test, as reported by Wilson et al. (2010). Since
information is successfully processed only when uncertainty
is reduced (Fitts, 1954), unreliable haptic guidance for them
may not result in motor improvements. Meanwhile, high-skilled
participants may improve their performance using score feedback
that is specific to the feature to be enhanced or using alternative
haptic interaction approaches, for example, error amplification
(Milot et al., 2010; Duarte and Reinkensmeyer, 2015; Marchal-
Crespo et al., 2017).

The motor performance of the participants in the blue
group was partially improved by the haptic guidance. This
is consistent with previous experiments that showed learning
of timing (Marchal-Crespo et al., 2010), rather than spatial.
Participants might be trapped with the speed-accuracy trade-
off as the difference in speed to be a difference in the
difficulty level of the task (Shmuelof et al., 2012). In other
words, the positional accuracy deteriorated because of improved
speed accuracy. In this study, the participants can obtain
better scores if they attempt to reduce position error at
the cost of velocity error or vice versa because the score
accounts for both positional and velocity performance. One
possible solution might be to feedback velocity and position
score separately.

Challenges and Prospects on Model
Interpretation Regarding Potential Motor
Improvements
In this study, we have applied the modeling method to sample
data of 20 participants and interpreted the outcome to divide
participants into discrete groups. Grouping analysis provided a
detailed interpretation of the efficacy of haptic guidance for each
participant at the specific initial skill level, as discussed in section
“Efficacy of Haptic Guidance in Motor Training.” For other tasks,
all subjects may improve skill level similarly (that is, no boundary
exists). This would make the fit of Model 4 worse or equal to
the others. Besides, this method may help to find other kinds of
structures in larger data. When the fit of Model 4 is better than
the others, there are two possible phenomena: the participant-
dependent training effect and the regression toward the mean.
Both can be expressed by Model 4; however, they are separable,
as the former has a large mean slope in the absolute and the latter
has a small one. Nonetheless, this approach would be valuable for
exploring the data.

To fit the Bayesian linear model, it requires datasets
a priori, similar to other data-driven methods. Also, the
boundary is highly dependent and influenced by the task. These
limitations are common to the studies presented previously;
for example, Gruber et al. (2012) made a handedness classifier.
Nevertheless, it is beneficial for trainees as they can perceive
the possible outcome before continuing the ineffective and time-
consuming training. There is, for example, a possible solution
to alternate robot approaches to fit the individuals at any

level to guarantee the motor improvements (Brown et al., 2016),
but our solution is to help identify responders who can
benefit from existing approaches. The interpretation can also
be useful in assigning suitable next motor skill training
protocols, not only for neuro-rehabilitation (Aharonson and
Krebs, 2012) but also for skill development manufacturing (Ma,
2014), for establishing personalized and comprehensive motor
training programs.

CONCLUSION

In this study, we proposed a Bayesian estimation method for
examining models that describe the changes in the skill level of
haptic guidance training and deriving a boundary for dividing
participants into initial skill-level groups. Results showed that
we were able to predict whether a novel user can improve
the performance by checking that the user’s initial skill level
was larger than the boundary. We have also demonstrated
that the general idea/heuristic suggested by previous studies
can be systematically evaluated. Such methods may be essential
to select an effective approach for individuals among other
different approaches.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by The ATR Review Board Ethics Committee. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

AT, TN, HI, and JM contributed to the study design and
project supervision. AT, GL, TN, and JM participated in the
experimental design. AT, TN, and TT performed data acquisition.
AT and GL performed data analysis, interpretation of results, and
prepared the manuscript. All authors have read and approved the
final manuscript.

FUNDING

This research has been supported by the Commissioned Research
of National Institute of Information and Communications
Technology (NICT), Japan, Impulsing Paradigm Change
through Disruptive Technologies (ImPACT) Program of Council
for Science, Technology and Innovation (Cabinet Office,
Government of Japan), The Japan Society for the Promotion

Frontiers in Neuroscience | www.frontiersin.org 11 October 2021 | Volume 15 | Article 704402

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-704402 October 19, 2021 Time: 11:36 # 12

Takai et al. Estimate Potential Motor Improvements

of Science (JSPS) KAKENHI, Grant Numbers: JP19H05725,
JP15J11807, JP20K20263, and JP21H04911, Japan Agency for
Medical Research and Development (AMED), Grant Number:
JP21he2202005, and Japan Science and Technology Agency (JST)
Moonshot R&D, Grant Number: JPMJPS2034.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.704402/full#supplementary-material

REFERENCES
Aharonson, V., and Krebs, H. I. (2012). Prediction of response to robot-aided

motor neuro-rehabilitation of children with cerebral palsy. Biomed. Signal
Process. Control 7, 180–184. doi: 10.1016/j.bspc.2011.03.003

Beilock, S. L., Carr, T. H., MacMahon, C., and Starkes, J. L. (2002). When paying
attention becomes counterproductive: impact of divided versus skill-focused
attention on novice and experienced performance of sensorimotor skills. J. Exp.
Psychol. Appl. 8, 6–16. doi: 10.1037//1076-898X.8.1.6

Brown, D. A., Lee, T. D., Reinkensmeyer, D. J., and Duarte, J. E. (2016). “Designing
robots that challenge to optimize motor learning,” in Neurorehabilitation
Technology, eds D. J. Reinkensmeyer and V. Dietz (Cham: Springer
International Publishing), 39–58. doi: 10.1007/978-3-319-28603-7_3

Casadio, M., and Sanguineti, V. (2012). Learning, retention, and slacking: a model
of the dynamics of recovery in robot therapy. IEEE Trans. Neural Syst. Rehabil.
Eng. 20, 286–296. doi: 10.1109/TNSRE.2012.2190827

Dose, M., Gruber, C., Grunz, A., Hook, C., Kempf, J., Scharfenberg, G., et al. (2007).
“Towards an automated analysis of neuroleptics’ impact on human hand motor
skills,” in Proceedings of the 2007 IEEE Symposium on Computational Intelligence
and Bioinformatics and Computational Biology, (Honolulu, HI: IEEE), 494–501.
doi: 10.1109/CIBCB.2007.4221261

Duarte, J. E., and Reinkensmeyer, D. J. (2015). Effects of robotically modulating
kinematic variability on motor skill learning and motivation. J. Neurophysiol.
113, 2682–2691. doi: 10.1152/jn.00163.2014

Dunson, D. B. (2001). Commentary: practical advantages of bayesian analysis of
epidemiologic data. Am. J. Epidemiol. 153, 1222–1226. doi: 10.1093/aje/153.12.
1222

Etnier, J. L., and Landers, D. M. (1998). Motor performance and motor learning
as a function of age and fitness. Res. Q. Exerc. Sport 69, 136–146. doi: 10.1080/
02701367.1998.10607679

Feygin, D., Keehner, M., and Tendick, R. (2002). “Haptic guidance: experimental
evaluation of a haptic training method for a perceptual motor skill,” in
Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and
Teleoperator Systems. HAPTICS 2002, (Orlando, FL: IEEE), 40–47.

Fitts, P. M. (1954). The information capacity of the human motor system in
controlling the amplitude of movement. J. Exp. Psychol. 47, 381–391. doi:
10.1037/h0055392

Gray, K., Hampton, B., Silveti-Falls, T., McConnell, A., and Bausell, C. (2015).
Comparison of Bayesian credible intervals to frequentist confidence intervals.
J. Modern Appl. Stat. Methods 14:8. doi: 10.22237/jmasm/1430453220

Gruber, C., Hook, C., Kempf, J., Scharfenberg, G., and Sick, B. (2006). “A
flexible architecture for online signature verification based on a novel biometric
pen,” in Proceedings of the 2006 IEEE Mountain Workshop on Adaptive and
Learning Systems, (Logan, UT: IEEE), 110–115. doi: 10.1109/SMCALS.2006.25
0700

Gruber, T., Meixner, B., Prosser, J., and Sick, B. (2012). Handedness tests for
preschool children: a novel approach based on graphics tablets and support
vector machines. Appl. Soft Comput. 12, 1390–1398. doi: 10.1016/j.asoc.2011.
11.022

Guadagnoli, M. A., and Lee, T. D. (2004). Challenge point: a framework for
conceptualizing the effects of various practice conditions in motor learning.
J. Mot. Behav. 36, 212–224. doi: 10.3200/JMBR.36.2.212-224

Hespanhol, L., Vallio, C. S., Costa, L. M., and Saragiotto, B. T. (2019).
Understanding and interpreting confidence and credible intervals around effect
estimates. Braz. J. Phys. Ther. 23, 290–301. doi: 10.1016/j.bjpt.2018.12.006

Hook, C., Kempf, J., and Scharfenberg, G. (2004). “A novel digitizing pen for the
analysis of pen pressure and inclination in handwriting biometrics,” in Biometric
Authentication. BioAW 2004, Vol. 3087, eds D. Maltoni and A. K. Jain (Berlin:
Springer), 283–294. doi: 10.1007/978-3-540-25976-3_26

Kim, M., Ding, Y., Malcolm, P., Speeckaert, J., Siviy, C. J., Walsh, C. J., et al. (2017).
Human-in-the-loop Bayesian optimization of wearable device parameters. PLoS
One 12:e0184054. doi: 10.1371/journal.pone.0184054

Liu, J., Cramer, S. C., and Reinkensmeyer, D. J. (2006). Learning to perform a new
movement with robotic assistance: comparison of haptic guidance and visual
demonstration. J. Neuroeng. Rehabil. 3:20. doi: 10.1186/1743-0003-3-20

Lüttgen, J., and Heuer, H. (2012). Robotic guidance benefits the learning of
dynamic, but not of spatial movement characteristics. Exp. Brain Res. 222, 1–9.
doi: 10.1007/s00221-012-3190-9

Ma, W. (2014). An Application of Quantitative Methods for Motor Ability
Level Classification, Performance Prediction and Training Protocol Selection.
Doctoral dissertation at North Carolina State University. Available online at:
https://repository.lib.ncsu.edu/handle/1840.16/9546

Malina, R. M., Ribeiro, B., Aroso, J., and Cumming, S. P. (2007). Characteristics
of youth soccer players aged 13-15 years classified by skill level. Br.
J. Sports Med. 41, 290–295. discussion 295, doi: 10.1136/bjsm.2006.03
1294

Marchal-Crespo, L., McHughen, S., Cramer, S. C., and Reinkensmeyer, D. J. (2010).
The effect of haptic guidance, aging, and initial skill level on motor learning
of a steering task. Exp. Brain Res. 201, 209–220. doi: 10.1007/s00221-009-2
026-8

Marchal-Crespo, L., Michels, L., Jaeger, L., López-Olóriz, J., and Riener, R. (2017).
Effect of error augmentation on brain activation and motor learning of a
complex locomotor task. Front. Neurosci. 11:526. doi: 10.3389/fnins.2017.
00526

Marchal-Crespo, L., and Reinkensmeyer, D. J. (2009). Review of control strategies
for robotic movement training after neurologic injury. J. Neuroeng. Rehabil.
6:20. doi: 10.1186/1743-0003-6-20

Milot, M. H., Marchal-Crespo, L., Green, C. S., Cramer, S. C., and Reinkensmeyer,
D. J. (2010). Comparison of error-amplification and haptic-guidance training
techniques for learning of a timing-based motor task by healthy individuals.
Exp. Brain Res. 201, 119–131. doi: 10.1007/s00221-009-2014-z

Mussa-Ivaldi, F. A., Hogan, N., and Bizzi, E. (1985). Neural, mechanical, and
geometric factors subserving arm posture in humans. J. Neurosci. 5, 2732–2743.
doi: 10.1523/JNEUROSCI.05-10-02732.1985

Posada, D., and Buckley, T. R. (2004). Model selection and model averaging
in phylogenetics: advantages of akaike information criterion and bayesian
approaches over likelihood ratio tests. Syst. Biol. 53, 793–808. doi: 10.1080/
10635150490522304

Punt, A. E., and Hilborn, R. (2001). BAYES-SA Bayesian Stock Assessment Methods
in Fisheries: User’s Manual. Rome: Food and Agriculture Organization of the
United Nations.

Reinkensmeyer, D. J., Burdet, E., Casadio, M., Krakauer, J. W., Kwakkel, G., Lang,
C. E., et al. (2016). Computational neurorehabilitation: modeling plasticity and
learning to predict recovery. J. Neuroeng. Rehabil. 13:42. doi: 10.1186/s12984-
016-0148-3

Sabatini, A. M., and Mannini, A. (2016). Ambulatory assessment of instantaneous
velocity during walking using inertial sensor measurements. Sensors 16:2206.
doi: 10.3390/s16122206

Salvatier, J., Wiecki, T. V., and Fonnesbeck, C. (2016). Probabilistic programming
in Python using PyMC3. PeerJ Comput. Sci. 2:e55. doi: 10.7717/peerj-cs.55

Schweighofer, N., Han, C. E., Wolf, S. L., Arbib, M. A., and Winstein, C. J. (2009).
A functional threshold for long-term use of hand and arm function can be
determined: predictions from a computational model and supporting data from
the extremity constraint-induced therapy evaluation (EXCITE) trial. Phys. Ther.
89, 1327–1336. doi: 10.2522/ptj.20080402

Shmuelof, L., Krakauer, J. W., and Mazzoni, P. (2012). How is a motor skill learned?
Change and invariance at the levels of task success and trajectory control.
J. Neurophysiol. 108, 578–594. doi: 10.1152/jn.00856.2011

Frontiers in Neuroscience | www.frontiersin.org 12 October 2021 | Volume 15 | Article 704402

https://www.frontiersin.org/articles/10.3389/fnins.2021.704402/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2021.704402/full#supplementary-material
https://doi.org/10.1016/j.bspc.2011.03.003
https://doi.org/10.1037//1076-898X.8.1.6
https://doi.org/10.1007/978-3-319-28603-7_3
https://doi.org/10.1109/TNSRE.2012.2190827
https://doi.org/10.1109/CIBCB.2007.4221261
https://doi.org/10.1152/jn.00163.2014
https://doi.org/10.1093/aje/153.12.1222
https://doi.org/10.1093/aje/153.12.1222
https://doi.org/10.1080/02701367.1998.10607679
https://doi.org/10.1080/02701367.1998.10607679
https://doi.org/10.1037/h0055392
https://doi.org/10.1037/h0055392
https://doi.org/10.22237/jmasm/1430453220
https://doi.org/10.1109/SMCALS.2006.250700
https://doi.org/10.1109/SMCALS.2006.250700
https://doi.org/10.1016/j.asoc.2011.11.022
https://doi.org/10.1016/j.asoc.2011.11.022
https://doi.org/10.3200/JMBR.36.2.212-224
https://doi.org/10.1016/j.bjpt.2018.12.006
https://doi.org/10.1007/978-3-540-25976-3_26
https://doi.org/10.1371/journal.pone.0184054
https://doi.org/10.1186/1743-0003-3-20
https://doi.org/10.1007/s00221-012-3190-9
https://repository.lib.ncsu.edu/handle/1840.16/9546
https://doi.org/10.1136/bjsm.2006.031294
https://doi.org/10.1136/bjsm.2006.031294
https://doi.org/10.1007/s00221-009-2026-8
https://doi.org/10.1007/s00221-009-2026-8
https://doi.org/10.3389/fnins.2017.00526
https://doi.org/10.3389/fnins.2017.00526
https://doi.org/10.1186/1743-0003-6-20
https://doi.org/10.1007/s00221-009-2014-z
https://doi.org/10.1523/JNEUROSCI.05-10-02732.1985
https://doi.org/10.1080/10635150490522304
https://doi.org/10.1080/10635150490522304
https://doi.org/10.1186/s12984-016-0148-3
https://doi.org/10.1186/s12984-016-0148-3
https://doi.org/10.3390/s16122206
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.2522/ptj.20080402
https://doi.org/10.1152/jn.00856.2011
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-704402 October 19, 2021 Time: 11:36 # 13

Takai et al. Estimate Potential Motor Improvements

Sigrist, R., Rauter, G., Riener, R., and Wolf, P. (2013). Augmented visual, auditory,
haptic, and multimodal feedback in motor learning: a review. Psychon. Bull. Rev.
20, 21–53. doi: 10.3758/s13423-012-0333-8

Staples, K. L., and Reid, G. (2010). Fundamental movement skills and autism
spectrum disorders. J. Autism. Dev. Disord. 40, 209–217. doi: 10.1007/s10803-
009-0854-9

Takai, A., Rivela, D., Lisi, G., Noda, T., Teramae, T., Imamizu, H., et al. (2018).
“Investigation on the neural correlates of haptic training,” in Proceedings of the
2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC),
(Miyazaki: IEEE), 519–523. doi: 10.1109/SMC.2018.00098

Watanabe, S. (2010). Asymptotic equivalence of bayes cross validation and widely
applicable information criterion in singular learning theory. J. Mach. Learn. Res.
11, 3571–3594.

Williams, C. K., and Carnahan, H. (2014). Motor learning perspectives on haptic
training for the upper extremities. IEEE Trans. Haptics 7, 240–250. doi: 10.
1109/TOH.2013.2297102

Wilson, E. T., Wong, J., and Gribble, P. L. (2010). Mapping proprioception across
a 2D horizontal workspace. PLoS One 5:e11851. doi: 10.1371/journal.pone.
0011851

Wong, J. D., Kistemaker, D. A., Chin, A., and Gribble, P. L. (2012). Can
proprioceptive training improve motor learning? J. Neurophysiol. 108, 3313–
3321. doi: 10.1152/jn.00122.2012

Yamamoto, R., Akizuki, K., Kanai, Y., Nakano, W., Kobayashi, Y., and Ohashi,
Y. (2019). Differences in skill level influence the effects of visual feedback
on motor learning. J. Phys. Ther. Sci. 31, 939–945. doi: 10.1589/jpts.3
1.939

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Takai, Lisi, Noda, Teramae, Imamizu and Morimoto. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Neuroscience | www.frontiersin.org 13 October 2021 | Volume 15 | Article 704402

https://doi.org/10.3758/s13423-012-0333-8
https://doi.org/10.1007/s10803-009-0854-9
https://doi.org/10.1007/s10803-009-0854-9
https://doi.org/10.1109/SMC.2018.00098
https://doi.org/10.1109/TOH.2013.2297102
https://doi.org/10.1109/TOH.2013.2297102
https://doi.org/10.1371/journal.pone.0011851
https://doi.org/10.1371/journal.pone.0011851
https://doi.org/10.1152/jn.00122.2012
https://doi.org/10.1589/jpts.31.939
https://doi.org/10.1589/jpts.31.939
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Bayesian Estimation of Potential Performance Improvement Elicited by Robot-Guided Training
	Introduction
	Materials and Methods
	Bayesian Modeling of the Skill Level Change
	Linear Relationship Between the Intercept and Slope to Define the Boundary
	Sample Dataset: Experiment With a Haptic Interface
	Participants
	Task and Apparatus
	Haptic Feedback
	Score Feedback
	Experimental Design

	Skill Level of Each Trial

	Results
	Evaluation of Models' Fitness to the Sample Dataset
	Deriving the Boundary
	Group-Based Haptic Guidance Effect

	Discussion
	Identifying Target People Through the Statistical Grouping Method
	Defining the Skill Level Boundary Through Linear Modeling of Its Change
	Efficacy of Haptic Guidance in Motor Training
	Challenges and Prospects on Model Interpretation Regarding Potential Motor Improvements

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


