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Abstract

Maternal brain adaptations occur in response to pregnancy, but little is known about

how parity impacts white matter and white matter ageing trajectories later in life.

Utilising global and regional brain age prediction based on multi-shell diffusion-

weighted imaging data, we investigated the association between previous childbirths

and white matter brain age in 8,895 women in the UK Biobank cohort (age

range = 54–81 years). The results showed that number of previous childbirths was

negatively associated with white matter brain age, potentially indicating a protective

effect of parity on white matter later in life. Both global white matter and grey matter

brain age estimates showed unique contributions to the association with previous

childbirths, suggesting partly independent processes. Corpus callosum contributed

uniquely to the global white matter association with previous childbirths, and showed

a stronger relationship relative to several other tracts. While our findings demon-

strate a link between reproductive history and brain white matter characteristics later

in life, longitudinal studies are required to establish causality and determine how par-

ity may influence women's white matter trajectories across the lifespan.
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1 | INTRODUCTION

Maternal brain adaptations have been shown during pregnancy and

postpartum, with dynamic alterations across brain regions at different

time windows since pregnancy (Duarte-Guterman, Leuner, &

Galea, 2019; Hoekzema et al., 2017; Kim et al., 2010; Kim, Dufford, &

Tribble, 2018; Luders et al., 2020). Some of these alterations involve

regions implicated in empathy, mentalising, and emotion regulation,

and may thus represent adaptations to meet the needs and demands

of the offspring, and to secure adequate expression of maternal care-

giving (Barha & Galea, 2017; Djalovski, Dumas, Kinreich, &

Feldman, 2021; Feldman, 2016; Ho & Swain, 2017; Hoekzema

et al., 2020). Recent studies also indicate that some effects of preg-

nancy may be long-lasting (Duarte-Guterman et al., 2019; Hoekzema

et al., 2017), potentially influencing brain trajectories later in life

(Barha et al., 2016; de Lange et al., 2019; Ning et al., 2020; Pawluski,

Lambert, & Kinsley, 2016). However, neuroimaging studies of the

maternal brain have largely focused on grey matter (GM) volume

(de Lange et al., 2019; de Lange, Barth, Kaufmann, Anatürk,

et al., 2020; Hoekzema et al., 2017; Lisofsky et al., 2016; Lisofsky,

Gallinat, Lindenberger, & Kühn, 2019; Luders et al., 2020; Zhang,

Wang, Zhang, Du, & Chen, 2019) and cortical thickness (Kim

et al., 2018; Orchard et al., 2020), and less is known about the effects

of pregnancy on brain white matter (WM).

Emerging evidence from animal models suggests that pregnancy

may induce WM plasticity (Chan et al., 2015; Gregg et al., 2007;

Kalakh & Mouihate, 2019). Specifically, pregnant mice exhibit

increases in oligodendrocyte progenitor cell proliferation, oligoden-

drocyte generation, and in the number of myelinated axons, indicating

an enhanced capacity for myelination in the maternal brain (Gregg

et al., 2007). Pregnancy-induced remyelination may partly explain why

pregnancy seem to cause remission of multiple sclerosis (MS), an auto-

immune disease that attacks the myelin sheath (Confavreux

et al., 1998). In line with this, slower disability progression has been

found in parous MS patients after 18 years, compared with nullipa-

rous patients (D'hooghe & Nagels, 2010). This effect was strongest in

patients that gave birth after disease onset, indicating favourable

effects of pregnancy-related adaptations on disease mecha-

nisms in MS.

While the influence of childbirth on WM trajectories in healthy

women is largely unknown, one study reported larger regional WM

volumes in mothers compared to non-mothers, as well as maternal

WM increases that were linked to changes in empathetic abilities

during the postpartum period (Zhang et al., 2019). In line with these

findings, a diffusion tensor imaging (DTI) (Basser, Mattiello, &

LeBihan, 1994) study in rats found that fractional anisotropy (FA),

which quantifies the degree of diffusion directionality, increased

significantly in the dentate gyrus during pregnancy. However, whole-

brain diffusivity also increased in pregnant rats compared to

nulliparous rats (Chan et al., 2015), indicating global changes in the

characteristics of molecular water movement—potentially linked to

increased extracellular water in the brain during pregnancy (Oatridge

et al., 2002).

Recent research assessing longitudinal changes in human brain

morphology during pregnancy found no WM changes in mothers

(Hoekzema et al., 2017), nor in female adolescents in a follow-up

study comparing longitudinal changes in mothers and two years of

pubertal development (Carmona et al., 2019). However, as adoles-

cence is known to involve substantial WM remodelling (Asato, Ter-

williger, Woo, & Luna, 2010; Barnea-Goraly et al., 2005; Giorgio

et al., 2008; Giorgio et al., 2010; Paus, 2010), the lack of effects could

possibly reflect insensitivity of the methods used to assess WM

changes (T1-weighted estimation of WM volume (Hoekzema

et al., 2017) and gyral WM thickness (Carmona et al., 2019)). In devel-

opment and ageing studies, WM is commonly investigated using DTI

(Basser et al., 1994), which yields metrics that are highly sensitive to

age (Cox et al., 2016). However, the accuracy of the DTI approach is

limited by factors such as crossing fibres. These obstacles have moti-

vated the development of advanced biophysical diffusion models

including WM tract integrity (WMTI) (Fieremans, Jensen, &

Helpern, 2011), which is derived from diffusion kurtosis imaging (DKI)

(Jensen, Helpern, Ramani, Lu, & Kaczynski, 2005), and spherical mean

technique (SMT) (Kaden, Kelm, Carson, Does, & Alexander, 2016;

Kaden, Kruggel, & Alexander, 2016). In contrast to DTI, the DKI model

yields metrics estimating the degree of non-Gaussian diffusion,

believed to better reflect the complexity of WM tissue structure

(Jelescu & Budde, 2017; Jensen et al., 2005). Based on assumptions

about the underlying tissue architecture, the WMTI and SMT models

enable estimation of the separable contribution of diffusion in the

intra- and extra-axonal space (Novikov, Kiselev, & Jespersen, 2018).

This may provide higher biological specificity, that is, additional infor-

mation about the microstructural environment (Jelescu &

Budde, 2017). However, the WMTI model does not consider the non-

straight and non-parallel nature of fibre crossings and orientation dis-

persion, something that is factored out in the SMT model to overcome

this limitation (Kaden, Kelm, et al., 2016; Kaden, Kruggel, &

Alexander, 2016).

In the current study, we utilised four diffusion models (DTI, DKI,

WMTI, SMT) to predict WM brain age, and investigated associations

between brain age estimates and previous childbirths in a sample of

8,895 UK Biobank women (mean age ± SD = 62.45 ± 7.26). In line

with studies suggesting that distinct and regional brain age estimates

may provide additional detail (de Lange, Barth, Kaufmann, Anatürk,

et al., 2020; Eavani et al., 2018; Kaufmann et al., 2019; Smith

et al., 2020), we estimated (a) global WM brain age, (b) global GM

brain age to test for modality-specific contributions, and (c) WM brain

age in 12 major WM tracts in order to identify regions of particular

importance.

2 | MATERIALS AND METHODS

2.1 | Sample characteristics

The initial sample was drawn from the UK Biobank (www.ukbiobank.

ac.uk), and included 9,899 women. Then, 899 participants with known
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brain disorders were excluded based on ICD10 diagnoses (Chapters V

and VI, field F; mental and behavioural disorders, including F00–F03 for

Alzheimer's disease and dementia, and F06.7 “Mild cognitive disorder,”

and field G; diseases of the nervous system, including inflammatory and

neurodegenerative diseases (except G55-59; “Nerve, nerve root

and plexus disorders”). An overview of the diagnoses is provided

in the UK Biobank online resources (http://biobank.ndph.ox.ac.uk/

showcase/field.cgi?id=41270), and the diagnostic criteria are listed in

the ICD10 diagnostic manual (https://www.who.int/classifications/

icd/icdonlineversions). In addition, 99 participants were excluded

based on magnetic resonance imaging (MRI) outliers (see Section 2.2)

and 11 participants were excluded based on missing data on the num-

ber of previous childbirths, yielding a total of 8,895 participants that

were included in the study. Sample demographics are provided in

Table 1.

2.2 | MRI data acquisition and processing

A detailed overview of the UK Biobank data acquisition and protocols

is available in Alfaro-Almagro et al. (2018) and Miller et al. (2016). For

the diffusion-weighted MRI data, a conventional Stejskal-Tanner

monopolar spin-echo echo-planar imaging sequence was used with

multiband factor 3. Diffusion weightings were 1,000 and 2,000 s/

mm2 and 50 non-coplanar diffusion directions per each diffusion shell.

The spatial resolution was 2 mm3 isotropic, and five anterior–

posterior versus three anterior–posterior images with b = 0 s/mm2

were acquired. All diffusion data were processed using an optimised

diffusion pipeline (Maximov, Alnaes, & Westlye, 2019) consisting of

six steps: noise correction (Veraart, Novikov, et al., 2016; Veraart,

Fieremans, & Novikov, 2016), Gibbs-ringing correction (Kellner,

Dhital, Kiselev, & Reisert, 2016), estimation of echo-planar imaging

distortions, motion, eddy-current and susceptibility-induced distortion

corrections (Andersson, Graham, Zsoldos, & Sotiropoulos, 2016;

Andersson & Sotiropoulos, 2016), spatial smoothing using fslmaths

from FSL (version 6.0.1) (Smith et al., 2004) with a Gaussian kernel of

1 mm3, and diffusion metrics estimation. DTI and DKI derived metrics

were estimated using MATLAB R2017a (MathWorks, Natick, MA) as

proposed by Veraart, Sijbers, Sunaert, Leemans, and Jeurissen (2013).

The DTI metrics included mean diffusivity (MD), FA, axial diffusivity

(AD), and radial diffusivity (RD) (Basser et al., 1994). The DKI metrics

included mean kurtosis, axial kurtosis, and radial kurtosis (Jensen

et al., 2005). WMTI metrics included axonal water fraction, extra-

axonal AD, and extra-axonal RD (radEAD) (Fieremans et al., 2011).

SMT metrics included intra-neurite volume fraction, extra-neurite

MD, and extra-neurite RD (Kaden, Kelm, et al., 2016). See Maximov

et al. (2019) for details on the processing pipeline.

Tract-based spatial statistics (TBSS) was used to extract diffusion

metrics in WM (Smith et al., 2006). Initially, all maps were aligned to

the FMRIB58_FA template supplied by FSL, using non-linear transfor-

mation in FNIRT (Andersson, Jenkinson, & Smith, 2007). Next, a mean

FA image of 18,600 UK Biobank subjects was obtained and thinned

to create a mean FA skeleton. The number N = 18,600 was obtained

from the processing of the two first UKB data releases. The maximal

FA values for each subject were then projected onto the skeleton to

minimise confounding effects due to partial volumes and any residual

misalignments. Finally, all diffusion metrics were projected onto the

TABLE 1 Sample demographics. For variables with missing data,
sample size (N) is indicated in parentheses

Total N 8,895

Age

Mean ± SD 62.40 ± 7.25

Range (years) 45.13–80.66

Number of childbirths (live)

Mean ± SD 1.74 ± 1.15

Range 0–8

N in each group:

0 = 1,825 j 1 = 1,190 j 2 = 3,911

3 = 1,535 j 4 = 348 j 5 = 55

6 = 26 j 7 = 4 j 8 = 1

Age at first birth (N = 7,066)

Mean ± SD 26.82 ± 4.99

Range 14–47

Years since last birth (N = 5,875)

Mean ± SD 32.41 ± 9.21

Range 6.77–55.19

Menopausal status (N = 8,888)

Yes 2,745

No 4,767

Not sure, had hysterectomy 925

Not sure, other reason 451

Ethnic background (N = 8,872)

% White 97.59

% Black 0.54

% Mixed 0.50

% Asian 0.62

% Chinese 0.35

% Other 0.38

% Do not know 0.02

Education (N = 8,868)

% University/college degree 42.04

% A levels or equivalent 13.97

% O levels/GCSE or equivalent 22.62

% NVQ or equivalent 3.23

% Professional qualification 5.79

% None of the above 6.47

Assessment location (imaging)

Newcastle 1,419

Cheadle 7,476

Abbreviations: GCSE, General Certificate of Secondary Education; NVQ,

National Vocational Qualification; SD, standard deviation.
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subject-specific skeletons. WM features were extracted based on

John Hopkins University atlases for WM tracts and labels (with

0 thresholding) (Mori, Wakana, van Zijl, & Nagae-Poetscher, 2005),

yielding a total of 910 WM features including mean values and

regional measures for each of the diffusion model metrics. For the

region-specific brain age models, 12 tracts of interest used in

previous ageing and development studies were extracted (Krogsrud

et al., 2016; Westlye et al., 2010); anterior thalamic radiation (ATR),

corticospinal tract (CST) cingulate gyrus (CG), cingulum hippocampus

(CING), forceps major (FMAJ), forceps minor (FMIN), inferior fronto-

occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF) superior

longitudinal fasciculus (SLF), uncinate fasciculus (UF), superior longitu-

dinal fasciculus temporal (SLFT), and corpus callosum (CC). The diffu-

sion MRI data passed TBSS post-processing quality control using the

YTTRIUM algorithm (Maximov et al., 2021), and were residualised

with respect to scanning site using linear models.

For the GM data, raw T1-weighted MRI data for all participants

were processed using a harmonised analysis pipeline, including auto-

mated surface-based morphometry and subcortical segmentation. In

line with recent brain age studies (de Lange et al., 2019; de Lange,

Anatürk, Kaufmann, Cole, et al., 2020; de Lange, Barth, Kaufmann,

Maximov, et al., 2020; Kaufmann et al., 2019), we utilised a fine-

grained cortical parcellation scheme (Glasser et al., 2016) to extract

cortical thickness, area, and volume for 180 regions of interest per

hemisphere, in addition to the classic set of subcortical and cortical

summary statistics from FreeSurfer (version 5.3) (Fischl et al., 2002).

This yielded a total set of 1,118 structural brain imaging features

(360/360/360/38 for cortical thickness/area/volume, as well as cere-

bellar/subcortical and cortical summary statistics, respectively). Linear

models were used to residualise the T1-weighted MRI data with

respect to scanning site, intracranial volume (Voevodskaya

et al., 2014), and data quality using Euler numbers (Rosen et al., 2018)

extracted from FreeSurfer. To remove poor-quality data likely due to

motion, participants with Euler numbers of SD ± 4 were identified and

excluded (n = 80). In addition, participants with SD ± 4 on the global

MRI measures mean FA, mean cortical GM volume, and/or subcortical

GM volume were excluded (n = 10, n = 5, and n = 4, respectively),

yielding a total of 8,895 participants with both WM (diffusion-

weighted) and GM (T1-weighted) MRI data.

2.3 | Brain age prediction

Brain age prediction is a method in which a machine learning algo-

rithm estimates an individual's age based on their brain characteristics

(Cole et al., 2017). This estimation is then compared to the individual's

chronological age to estimate each individual's brain age gap (BAG),

which is used to identify degrees of deviation from normative ageing

trajectories. Such deviations have been associated with a range of

clinical risk factors (Cole, 2020; de Lange, Anatürk, et al., 2020; Smith

et al., 2020) as well as neurological and neuropsychiatric diseases

(Cole et al., 2019; Cole, Marioni, Harris, & Deary, 2019; Franke &

Gaser, 2019; Kaufmann et al., 2019). They have also been assessed in

previous studies of parity and brain age (de Lange et al., 2019; de

Lange, Barth, Kaufmann, Anatürk, et al., 2020; de Lange, Barth,

Kaufmann, Maximov, et al., 2020; Ning et al., 2020).

Separate brain age prediction models were run for global WM

and GM, and for each of the WM tracts using the XGBoost regressor

model, which is based on a decision-tree ensemble algorithm (https://

xgboost.readthedocs.io/en/latest/python). XGBoost includes advanced

regularisation to reduce over-fitting (Chen & Guestrin, 2016), and uses

a gradient boosting framework where the final model is based on a

collection of individual models (https://github.com/dmlc/xgboost).

For the global WM and GM models, principal component analyses

(PCAs) were run on the features to reduce computational time. The

top 200 PCA components, explaining 97.84% of the total variance,

were used as input for the WM model, and the top 700 components,

explaining 98.07% of the variance, were used as input for the GM

model. The model parameters were set to maximum depth = 4,

number of estimators = 140, and learning rate = 0.1 for the global and

tract-specific WM models, and maximum depth = 5, number of

estimators = 140, and learning rate = 0.1 for the global GM model,

based on randomised searches with 10 folds and 10 iterations for

hyper-parameter optimisation.

The models were run using 10-fold cross-validation, which splits

the sample into subsets (folds) and trains the model on all subsets but

one, which is used for evaluation. The process is repeated 10 times

with a different subset reserved for evaluation each time. Predicted

age estimates for each participant were derived using the Scikit-learn

library (https://scikit-learn.org), and BAG values were calculated using

(predicted – chronological age). To validate the models, the 10-fold

cross validations were repeated 10 times, and average R2, root mean

square error, and mean absolute error were calculated across folds

and repetitions.

2.4 | Statistical analyses

The statistical analyses were conducted using Python 3.7.6. All vari-

ables were standardised (subtracting the mean and dividing by the SD)

before entered into the analyses; and p-values were corrected for

multiple comparisons using false discovery rate correction

(Benjamini & Hochberg, 1995). Chronological age was included as a

covariate in all analyses, adjusting for age-bias in the brain age predic-

tions as well as age dependence in number of childbirths (de Lange &

Cole, 2020; Le et al., 2018).

2.4.1 | Previous childbirths and global WM
brain age

To investigate associations between number of previous childbirths

and global WM brain age, a linear regression analysis was run using

global WM BAG as the dependent variable, and number of childbirths as

the independent variable. To control for potential confounding fac-

tors, the analysis was rerun including variables known to influence
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brain structure in ageing or number of childbirths; assessment location

(Takao, Hayashi, & Ohtomo, 2011), education (Cox et al., 2018; Ho

et al., 2011), IQ (fluid intelligence) (Cox et al., 2018), ethnic back-

ground (Farrer et al., 1997), body mass index (BMI) (Ho et al., 2011),

diabetic status (Beck et al., 2021; de Lange, Anatürk, et al., 2020),

hypertension (Beck, de Lange, Pedersen, et al., 2021; de Lange,

Anatürk, et al., 2020), smoking and alcohol intake (Beck, de Lange,

Pedersen, et al., 2021; de Lange, Anatürk, et al., 2020), menopausal

status (‘yes,” ‘no,” “not sure, had hysterectomy,” and “not sure, other
reason”) (Brinton, Yao, Yin, Mack, & Cadenas, 2015; Fjell et al., 2009),

oral contraceptive (OC) (De Bondt et al., 2013; Fox, Berzuini, &

Knapp, 2013) and hormonal replacement therapy (HRT) status (previ-

ous or current user vs. never used) (Fox et al., 2013; Kantarci

et al., 2016; Resnick et al., 2009), and experience with stillbirth, mis-

carriage, or pregnancy termination (“yes,” “no”) (Fox, Berzuini,

Knapp, & Glynn, 2018; Laisk et al., 2020) as covariates. In total, 6,977

women had data on all variables and were included in these analyses.

To test for potential non-linear associations, we added number of

childbirths squared as an additional independent variable to the previ-

ously defined multiple linear regression model. In addition, we tested

for differences in WM BAG by number of childbirths by fitting

another linear regression model with WM BAG as the dependent vari-

able and number of childbirths (0, 1, 2, 3, 4, 5–8) as a fixed factor

instead of continuous variable (adjusting for age). Women with zero

childbirth served as the reference group. Women with 5–8 childbirths

were merged due to low numbers in each group (5 = 55, 6 = 26,

7 = 4, 8 = 1). Cohen's d effect sizes (Cohen, 1988) were estimated for

each comparison.

2.4.2 | Previous childbirths and WM versus GM
brain age

To compare the contributions of global WM and GM brain age to

the association with previous childbirths, a multiple regression

analysis was run with both WM and GM based BAG estimates as

independent variables and number of childbirths as the dependent

variable, before eliminating one modality at a time to compare the

log-likelihood of the full and reduced models. The significance of

model differences was calculated using Wilk's theorem

(Wilks, 1938) as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ΔLLð Þp

, where ΔLL¼ LL1�LL2 ; the difference in

log-likelihood between the reduced model (LL1 ) and the full model

(LL2).

Next, we tested for differences between the GM and WM BAG

associations with number of previous childbirths using a Z test for cor-

related samples (Zimmerman, 2012):

Z¼ βm1�βm2ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2m1þσ2m2�2ρσm1σm2

q
, ð1Þ

where m1 is Model 1 (WM); m2 is Model 2 (GM); β indicates the beta

coefficients from the linear regressions between number of childbirths

and each model; σ is the SEs of the beta coefficients; and ρ is the

age-adjusted correlation between the modality-specific BAG esti-

mates. As a follow-up, we tested the associations between previous

childbirths and mean FA, mean MD, and total GM volume.

2.4.3 | Previous childbirths and regional WM tracts

To test for unique contributions by each tract to the global WM

association with previous childbirths, a multiple regression analy-

sis was run with all tract-specific BAG estimates as independent

variables and number of childbirths as the dependent variable,

before eliminating the tracts one at a time to compare the log-

likelihood of the full and reduced models. The significance of

model differences was calculated using Wilk's theorem as

described in Section 2.4.2. In addition, the reduced χ2 values for

each of the models were calculated to account for the difference in

number of input variables to the full and reduced models (13 for the

full model including 12 tracts þ age, vs. 11 for the reduced models

where each of the tracts were eliminated one by one). Next, we per-

formed separate regression analyses for each tract-specific BAG esti-

mate versus number of childbirths, before testing for differences

between the associations using pairwise Z tests for correlated samples

(Equation (1); Section 2.4.2).

3 | RESULTS

The age prediction accuracies for the global WM and GM models, as

well as each of the tract-specific WM models are shown in Table 2.

The correlations between predicted and chronological age for the

global models are shown in Supplementary Information (SI) Figure 1.

The associations between number of previous childbirths and BAG

estimates based on each of the predictions are shown in Table 3.

3.1 | Previous childbirths and global WM brain age

Global WM BAG showed a negative association with number of previ-

ous childbirths, indicating a younger-looking brain in parous women

(see Table 3). As shown in Figure 1, mean WM BAG was positive in

nulliparous and primiparous women (0.39 and 0.03, respectively) and

negative in multiparous women (�0.13). The model including potential

confounding factors showed a corresponding association of β¼
�:030, SE¼0:007, t¼�4:06,p¼4:94�10�5 , indicating that assess-

ment location, education, IQ, ethnic background, BMI, diabetic status,

hypertension, smoking and alcohol intake, menopausal status, and OC

and HRT use could not fully explain the association between number

of childbirths and global WM BAG. The correlations between global

WM BAG and demographics, covariates, and number of childbirths

are shown in SI Figure 2. Number of previous childbirths and age at

first birth correlated r¼�:30,p¼2:82�10�138 (adjusted for age). To

test for an association with global WM brain age, an analysis was run

with WM BAG as the dependent variable and age at first birth as
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TABLE 2 Average R2, RMSE, MAE,
and correlation (r) between predicted and
chronological age for the age prediction
models

R2 RMSE MAE r [95% CI] p

Global predictions

Modality

WM .51 ± .02 5.06 ± 0.11 4.10 ± 0.09 .72 [0.71, 0.73] <.001

GM .32 ± .02 5.98 ± 0.13 4.97 ± 0.11 .57 [0.55, 0.58] <.001

Predictions for each WM tract

Tract

ATR .31 ± .02 6.03 ± 0.13 4.92 ± 0.12 .56 [0.54, 0.57] <.001

CST .15 ± .02 6.69 ± 0.14 5.53 ± 0.13 .38 [0.37, 0.40] <.001

CG .19 ± .02 6.54 ± 0.13 5.38 ± 0.12 .44 [0.42, 0.45] <.001

CING .12 ± .02 6.81 ± 0.14 5.64 ± 0.12 .34 [0.32, 0.36] <.001

FMAJ .14 ± .02 6.71 ± 0.13 5.55 ± 0.12 .38 [0.37, 0.41] <.001

FMIN .26 ± .02 6.24 ± 0.13 5.09 ± 0.12 .51 [0.49, 0.52] <.001

IFOF .25 ± .02 6.29 ± 0.13 5.16 ± 0.12 .50 [0.48, 0.51] <.001

ILF .18 ± .02 6.55 ± 0.14 5.40 ± 0.13 .43 [0.41, 0.44] <.001

SLF .18 ± .02 6.54 ± 0.13 5.40 ± 0.12 .43 [0.41, 0.45] <.001

UF .18 ± .03 6.56 ± 0.13 5.42 ± 0.12 .42 [0.40, 0.44] <.001

SLFT .17 ± .02 6.58 ± 0.14 5.42 ± 0.13 0.42 [0.41, 0.44] <.001

CC .25 ± .02 6.26 ± 0.13 5.13 ± 0.12 .50 [0.49, 0.52] <.001

Abbreviations: ATR, anterior thalamic radiation; CC, corpus callosum; CG, cingulate gyrus; CI, confidence

interval; CING, cingulum hippocampus; CST, corticospinal tract; FMAJ, forceps major; FMIN, forceps

minor; GM, grey matter; IFOF, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus;

MAE, mean absolute error; RMSE, root mean square error; SLF, superior longitudinal fasciculus; SLFT,

superior longitudinal fasciculus temporal; UF, uncinate fasciculus; WM, white matter.

TABLE 3 Associations between each of the brain-age gap estimates and number of previous childbirths (βCB, SE, t, p, and pcorr). Chronological
age was included in the analyses for covariate purposes and p-values are reported before and after correction for multiple comparisons, with
corrected p-values <.05 highlighted in bold

βCB SE t p pcorr

Global associations

Modality

WM �.037 0.007 �5.44 5.46 � 10�8 2.31�10�7

GM �.029 0.005 �5.41 6.43 � 10�8 2.31�10�7

Associations for each WM tract

Tract

ATR � .022 0.006 � 3.66 2.51 � 10�4 5.03�10�4

CST � .006 0.004 � 1.44 .15 .16

CG � .013 0.005 � 2.73 .01 .01

CING � .013 0.004 � 3.17 .00 .00

FMAJ � .009 0.005 � 2.02 .04 .06

FMIN � .021 0.006 � 3.73 1.90 � 10�4 4.26�10�4

IFOF � .012 0.006 � 2.24 .03 .04

ILF � .008 0.005 � 1.59 .11 .14

SLF � .006 0.005 � 1.18 .24 .24

UF � .007 0.005 � 1.46 .14 .16

SLFT � .011 0.005 � 2.15 .03 .04

CC � .029 0.006 � 5.25 1.60 � 10�7 4.81�10�7

Abbreviations: ATR, anterior thalamic radiation; CC, corpus callosum; CG, cingulate gyrus; CING, cingulum hippocampus; CST, corticospinal tract; FMAJ,

forceps major; FMIN, forceps minor; GM, grey matter; IFOF, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; SE, standard error; SLF,

superior longitudinal fasciculus; SLFT, superior longitudinal fasciculus temporal; UF, uncinate fasciculus; WM, white matter.
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independent variable, including all covariates (assessment location, edu-

cation, IQ, ethnic background, BMI, diabetic status, hypertension,

smoking and alcohol intake, menopausal status, and OC and HRT use).

No association was found (β¼�:002 , SE¼0:009, t¼�0:27,p¼ :79,

N =5,515). In addition to a linear effect, we also found evidence for a

non-linear association between number of childbirths and global WM

BAG: β¼ :015, SE¼0:004, t¼3:41, p¼ :001: Differences in WM BAG

were found between nulliparous women and women with one, two,

or three previous childbirths. The differences were not significant

for women with four or more childbirths (shown in Figure 1 and

Table 4).

3.2 | Previous childbirths and WM versus GM
brain age

The age prediction based on the WM model showed higher accu-

racy compared to the GM prediction (R2 of .51 vs. .32), as shown in

Table 3. To directly compare the model predictions, a post hoc Z

test for correlated samples (Equation (1); Section 2.4.2) was run on

the model-specific fits of predicted versus chronological age

(Pearson's r values). The result showed a significant difference in

model performance in favour of the WM model; Z =�11.90, p¼
1:06�10�32.

TABLE 4 Differences in global WM BAG by number of childbirths (β, SE, t, p, and Cohen’s d ± SE), based on a regression model with WM
BAG as the dependent variable and number of childbirths as a fixed factor, where 0 childbirths served as the reference group. Chronological age
was included in the analyses for covariate purposes

Childbirths β SE t p d N

0 (intercept) �.118 0.327 0.36 .72 — 1825

1 �.368 0.132 � 2.80 5.14 � 10�3 � 0.06 ± 0.04 1190

2 �.510 0.101 � 5.06 4.35 � 10�7 � 0.12 ± 0.03 3911

3 �.680 0.123 � 5.51 3.72 � 10�8 � 0.12 ± 0.02 1535

4 �.330 0.208 � 1.59 .11 � 0.05 ± 0.04 348

5-8 �.117 0.390 0.30 .76 � 0.02 ± 0.05 86

Abbreviations: BAG, brain age gap; SE, standard error; WM, white matter.

F IGURE 1 Global white
matter (WM) brain age gap (BAG)
for groups of women based on
number of previous childbirths.
Left plot: WM BAG in nulliparous,
primiparous, and multiparous
women are displayed as raincloud
plots, which combines raw data
points (scatterplot) and the

distributions of the data
(histogram) using split-half violins.
The mean for each group is
displayed as a dot and text. Right
plot: Cohen's d effect sizes for
differences between each group
of parous women (1, 2, 3, 4, 5–8)
versus nulliparous women

TABLE 5 Difference in log-likelihood (ΔLL) between regression analyses where GM and WM-based brain age gap estimates were eliminated
one by one, compared to a model where both were included. The log likelihood (LL) value for the model including both modalities was �12,471.
Reported are values before and after correction for multiple comparisons, with corrected p-values <.05 highlighted in bold

Left-out modality LL ΔLL Z p pcorr

WM �12,479 7.75 3.94 3.44 � 10�4 4.03�10�4

GM �12,479 7.59 3.90 4.03 � 10�4 4.03�10�4

Abbreviations: GM, grey matter; WM, white matter.
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When comparing regression models including both WM and GM-

based BAG estimates to models including only one of the modalities,

both the WM-based and the GM-based estimates were found to con-

tribute uniquely to the association with number of previous child-

births, as shown in Table 5. The Z test for differences in associations

(Equation (1); Section 2.4.2) revealed similar associations between

number of childbirths and WM-based versus GM-based BAG esti-

mates, as shown in Table 6. The follow-up tests of mean FA, mean

MD, and total GM volume showed positive associations between

number of childbirths and mean FA as well as total GM volume, and a

negative association with mean MD, as shown in SI Table 1. Only the

association with MD was significant after adjusting for multiple

comparisons.

3.3 | Previous childbirths and regional WM tracts

Significant (p < .05) negative associations between number of previ-

ous childbirths and WM BAG estimates were found for ATR, CG,

CING, FMIN, IFOF, SLFT, and CC, as shown in Table 3. The correla-

tions between the tract-specific BAG estimates are shown in Figure 2.

CC contributed uniquely to the global WM association with number

of previous childbirths, as shown in Table 7. Pairwise Z tests for differ-

ences in associations revealed that ATR and FMIN had significantly

stronger associations with previous childbirths compared to SLF, while

CC was more strongly associated with previous childbirths than CST,

CG, FMAJ, IFOF, ILF, SLF, UF, and SLFT, as shown in Figure 3. As CC

showed the most prominent contribution to the association with pre-

vious childbirths, we extracted the feature importance ranking from

the CC-specific age prediction. WMTI-radEAD showed the highest

gain (SI Table 2), indicating that this diffusion metric was most impor-

tant for generating the prediction.

4 | DISCUSSION

The current study investigated the association between previous

childbirths and WM brain age by utilising global and region-specific

brain age prediction. The results showed that a higher number of pre-

vious childbirths was associated with lower brain age in global WM,

as well as in WM tracts including ATR, CG, CING, FMAJ, FMIN, IFOF,

SLFT, and CC. CC contributed uniquely to the global WM association

with previous childbirths, and showed a stronger relationship with

TABLE 6 Difference in the associations (β) between number of
previous childbirths and WM vs. GM-based brain age estimates
(Equation (1))

βWM ± SE βGM ± SE Z p

�.037 ± 0.007 �.029 ± 0.005 1.04 .30

Abbreviations: GM, grey matter; SE, standard error; WM, white matter.

F IGURE 2 The correlations (Pearson's r) between tract-specific
brain age gap (BAG) estimates. The BAG values were first corrected
for chronological age using linear models (Le et al., 2018), and the
residuals were used in the correlation analysis. ATR, anterior thalamic
radiation; CC, corpus callosum; CG, cingulate gyrus; CING, cingulum
hippocampus; CST, corticospinal tract; FMAJ, forceps major; FMIN,
forceps minor; IFOF, inferior fronto-occipital fasciculus; ILF, inferior
longitudinal fasciculus; SLF, superior longitudinal fasciculus; SLFT,
superior longitudinal fasciculus temporal; UF, uncinate fasciculus

TABLE 7 Difference in log-likelihood (ΔLL) between regression
analyses against number of previous childbirths (including age as a
covariate). The difference is calculated between models where all
tracts are included and models where single tracts are left out one at
a time. Reported are p-values before and after correction for multiple
comparisons, with corrected p-values < .05 highlighted in bold. X2

red

= reduced chi-squared values for each reduced model. For the full
model, X2

red =0.9686

Left-out tract ΔLL Z p pcorr X2
red

ATR 1.86 1.93 .13 .65 0.9689

CST 0.08 0.41 .74 .78 0.9685

CG 0.02 0.22 .78 .78 0.9685

CING 1.56 1.79 .16 .65 0.9688

FMAJ 0.39 0.88 .54 .78 0.9686

FMIN 0.64 1.14 .42 .78 0.9686

IFOF 0.02 0.19 .78 .78 0.9685

ILF 0.25 0.71 .62 .78 0.9685

SLF 1.08 1.47 .27 .68 0.9687

UF 1.03 1.44 .29 .68 0.9687

SLFT 0.28 0.75 .60 .78 0.9686

CC 6.00 3.46 .00 .02 0.9698

Abbreviations: ATR, anterior thalamic radiation; CC, corpus callosum; CG,

cingulate gyrus; CING, cingulum hippocampus; CST, corticospinal tract;

FMAJ, forceps major; FMIN, forceps minor; IFOF, inferior fronto-occipital

fasciculus; ILF, inferior longitudinal fasciculus; SLF, superior longitudinal

fasciculus; SLFT, superior longitudinal fasciculus temporal; UF, uncinate

fasciculus.
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previous childbirths relative to several other tracts. When assessing

global WM compared to GM brain age estimates, both modalities

showed unique contributions to the association with previous child-

births. Taken together, these results indicate an association between

previous childbirths and global WM ageing later in life, with regional

effects that may be particularly prominent in CC.

4.1 | Previous childbirths and global WM age

During pregnancy, several adaptations in the female body and brain take

place in order to meet the needs and demands of the offspring, and to

secure adequate expression of maternal caregiving (Barha &

Galea, 2017; Feldman, 2016). Maternal adaptation in WM may thus be

induced to meet these new demands, by promoting myelination to

ensure increased efficiency of neural transmission in relevant WM tracts.

While speculative, our results may reflect a long-term benefit of

pregnancy-induced WM plasticity, potentially promoting favourable WM

trajectories later in life (Hill, Li, & Grutzendler, 2018). In support of long-

term positive effects of childbirth on WM health, parity is associated

with protective effects on age-related decline in learning, memory, and

brain health in rats (Gatewood et al., 2005). Further evidence for benefi-

cial effects of parity on brain ageing stems from a study showing that

telomeres are significantly elongated in parous relative to nulliparous

women (Barha et al., 2016), suggesting that parity may slow down the

pace of cellular ageing.

The current results are also in line with previous studies in MS

patients showing beneficial effects of pregnancy on WM health (Chan

et al., 2015; D'hooghe & Nagels, 2010; Gregg et al., 2007; Kalakh &

Mouihate, 2019; Zhang et al., 2019). Oestradiol, a type of oestrogen

that increases 300-fold during pregnancy (Schock et al., 2016), has

been linked to pregnancy-induced MS remission (Voskuhl, 2003),

likely due to its anti-inflammatory and neuroplastic properties

(Barha & Galea, 2010). Further evidence for protective effects of

oestradiol stems from hormonal replacement studies in postmeno-

pausal women: long-term oestrogen use has been associated with

greater WM volumes (Ha, Xu, & Janowsky, 2007), indicating a protec-

tive effect on WM loss in ageing. Postnatally, oestradiol levels drop

rapidly and may promote a pro-inflammatory immune environment

(Pfeilschifter, Kditz, Pfohl, & Schatz, 2002), which has been linked to a

risk of relapse or worsening of symptoms in women suffering from

MS (Langer-Gould et al., 2009; Tutuncu et al., 2013). However, in a

long-term perspective, pregnancy does not increase the risk of exacer-

bated disability (Dobson et al., 2019), and some evidence suggests

that long-term disability progression improves in MS patients follow-

ing childbirth (D'hooghe & Nagels, 2010). Any influence of pregnancy-

related oestrogen fluctuations (i.e., perinatal surge, postpartum drop)

on brain ageing is likely to involve a complex interplay of neurobiolog-

ical processes, and evidence suggests that genetic factors may modu-

late how oestrogen exposure affects brain health (de Lange, Barth,

Kaufmann, Maximov, et al., 2020; Manly et al., 2000; Yaffe, Haan,

Byers, Tangen, & Kuller, 2000). Beside oestrogen, other hormones

such as progesterone, prolactin, oxytocin, and cortisol also fluctuate

during pregnancy and may regulate WM plasticity (Barth & de

Lange, 2020; Baulieu & Schumacher, 1997; Gregg, 2009). For

instance, emerging evidence from animal models suggests protective

F IGURE 3 The differences (Z) between tract-specific associations with previous childbirths. Left plot: the values indicate the association with
the tract on the y-axis minus the association with the tract on the x-axis (Equation (1); Section 2.4.2). The beta values for each association are
provided in Table 3. Right plot: p-values for the differences between associations, reported as the common logarithm (�log10 pð Þ) and corrected
for multiple comparisons. A �log10 pð Þ value of > 1:3 corresponds to p< :05. ATR, anterior thalamic radiation; CC, corpus callosum; CG, cingulate
gyrus; CING, cingulum hippocampus; CST, corticospinal tract; FMAJ, forceps major; FMIN, forceps minor; IFOF, inferior fronto-occipital
fasciculus; ILF, inferior longitudinal fasciculus; SLF, superior longitudinal fasciculus; SLFT, superior longitudinal fasciculus temporal; UF, uncinate
fasciculus
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effects of progesterone and prolactin on WM structure due to its pro-

myelinating properties (Baulieu & Schumacher, 1997; Faheem

et al., 2019; Liu et al., 2020). Prolactin signalling during pregnancy has

been linked to increases in oligodendrocyte precursor cells and oligo-

dendrocyte production in the maternal central nervous system,

resulting in an enhanced ability to regenerate WM damage

(Gregg, 2009). While the influence of hormone exposure on brain age-

ing trajectories is currently unclear, other pregnancy-induced adapta-

tions such as the proliferation of regulatory T cells or foetal

microchimerism may also represent mechanisms underlying potential

long-term benefits of pregnancy on brain ageing (for a review, see

Barth & de Lange, 2020). Future studies should target the links

between hormone- and immune-related neuroplasticity in pregnancy,

and the potential effect of these processes on women's brain ageing

trajectories.

Experience-dependent brain plasticity due to parenting is another

possible mechanism that may underlie individual differences in WM

BAG between parous and nulliparous women. Becoming a parent rep-

resents a significant transition in life, including extensive lifestyle

changes and brain adaptations in regions relevant for caregiving

behaviour (Barha & Galea, 2017; Djalovski et al., 2021;

Feldman, 2016; Ho & Swain, 2017; Hoekzema et al., 2020; Langer-

Gould et al., 2009; Pfeilschifter et al., 2002). For instance, studies have

found a link between caregiving behaviour, altered brain activation,

and levels of oxytocin in both fathers and mothers (Abraham

et al., 2014), and parity has been associated with brain age and cogni-

tive function in both men and women (Ning et al., 2020). While

experience-dependent brain plasticity related to parenting may influ-

ence WM trajectories later in life, animal research has demonstrated

that WM adaptations are also induced by pregnancy itself (Chan

et al., 2015;Gregg et al., 2007; Kalakh & Mouihate, 2019). Hence,

pregnancy- and parental experience-induced plasticity are not mutu-

ally exclusive, and may together shape WM brain trajectories later in

life. To disentangle the effects of pregnancy and parental experience

on WM brain ageing trajectories, further research may aim to include

fathers as well as women who have experienced adoption (parenting

experience without the pregnancy experience) and stillbirth (preg-

nancy experience without the parenting experience).

While the results showed a negative linear relationship between

parity and brain age estimates, follow-up analyses also indicated a

quadratic effect in line with what we observed in one of our previous

studies based on GM brain age (de Lange et al., 2019). However, this

non-linear GM effect was not replicated in a follow-up study con-

ducted in 8,800 new UK Biobank participants (de Lange, Barth,

Kaufmann, Anatürk, et al., 2020), and given the small number of

women with >4 children, further studies are needed to conclude on

whether any protective effects of parity may be less pronounced in

grand-parous women.

Previous childbirths also showed associations with mean FA,

mean MD, and total GM volume, but with lower t values compared to

the associations with BAG. Relative to more traditional MRI summary

measures, age prediction models have the advantage of encoding nor-

mative trajectories of brain differences across age, and condensing a

rich variety of brain characteristics into single estimates per individual.

Hence, brain age prediction provides a useful summary measure that

may serve as a proxy for brain integrity across normative and clinical

populations (Cole & Franke, 2017; Cole, Marioni, et al., 2019;

Kaufmann et al., 2019; Rokicki et al., 2020; Smith et al., 2020).

4.2 | Modality-specific and regional effects

In line with recent studies demonstrating high age prediction accuracy

based on diffusion-weighted imaging data (Beck et al., 2021; Cole,

Marioni, et al., 2019; Richard et al., 2018; Smith et al., 2020; Tønnesen

et al., 2020), the WM prediction showed higher accuracy compared to

the GM model, of which the accuracy corresponded to our previous

UK Biobank studies (de Lange et al., 2019; de Lange, Barth, Kaufmann,

Anatürk, et al., 2020; de Lange, Barth, Kaufmann, Maximov,

et al., 2020). Importantly, we found unique contributions by both

models, suggesting that the diffusion-based WM model may pick up

variance not explained by the T1-based GM model. These findings

highlight the relevance of assessing brain characteristics using differ-

ent MRI modalities to increase our understanding of possible long-

term effects of pregnancy on the brain.

The most prominent regional WM effect of childbirth was seen in

the CC, showing both a unique contribution and a stronger associa-

tion relative to several other tracts, potentially indicating regional vari-

ations. While the volume of most WM tracts increase from childhood

to young adulthood, peaks around the fifties, and subsequently

declines (Cox et al., 2016; Davis et al., 2009; Krogsrud et al., 2016;

Storsve, Fjell, Yendiki, & Walhovd, 2016; Tamnes, Roalf, Goddings, &

Lebel, 2018; Westlye et al., 2010), CC volume has been shown to

peak already in the beginning of the thirties, exhibiting an earlier onset

of age-related decline relative to other WM tracts (Westlye

et al., 2010). Sex differences have also been found in CC ageing, with

steeper volumetric decline in men relative to women (Armstrong

et al., 2019). Although speculative, our findings could potentially

reflect a mitigating effect of parity on age-related CC volumetric

decline. While little is known about pregnancy-induced alterations in

specific WM regions, an increased number of myelinated axons in the

CC have been found in healthy pregnant rats (Gregg et al., 2007), and

increased CC remyelination has been observed in pregnant rat models

of demyelination (Gregg et al., 2007; Kalakh & Mouihate, 2019). Inter-

estingly, radEAD from the WMTI diffusion model was found to be the

most important feature for the CC-specific WM age prediction.

WMTI-radEAD has been related to degree of myelination in both

ex vivo (Kelm et al., 2016) and in vivo animal histology models

(Jelescu et al., 2016), as well as in an ex vivo human model of CC

(Zhou et al., 2020). While this may potentially indicate that the

CC association with previous childbirths could be driven by individual

differences in myelin-related ageing processes, the precise underlying

neural substrates of diffusion metrics remain to be clarified. Further-

more, CC is also the most accessible WM structure to investigate

given its size and location in the brain, and the relative simple and

coherent microstructural milieu may be easier to resolve using
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diffusion MRI compared to other pathways with more complex tissue

structure. The tract extraction procedure could thus result in higher

signal-to-noise ratio for the CC than for the remaining tracts, render-

ing it more sensitive to tests of WM associations with childbirth.

4.3 | Study limitations

The cross-sectional design of the current study represents a major

limitation, and longitudinal studies following women through preg-

nancy, postpartum, and into midlife and older age are required to infer

causality between the observed associations. Furthermore, a complex

interplay of numerous underlying processes likely influence the link

between parity and WM trajectories. While the current study controls

for a range of confounding factors including neurological disease,

mental disorders, education, lifestyle behaviours, and cardiovascular

risk, the number of children a woman gives birth to, as well as their

brain health across the lifespan, may also depend on genetic predispo-

sitions, life circumstances, and additional aspects of general health.

While information on breastfeeding was not available in the current

dataset, this factor is relevant for future studies as it is known to influ-

ence oestrogen exposure (Bernstein, 2002) and maternal health

(Ciampo & Ciampo, 2018).

Our results could potentially reflect long-term effects of

pregnancy-related processes such as myelination. However, the exact

neurobiological underpinnings of diffusion metrics cannot be directly

inferred, and although we utilised advanced diffusion modelling which

is sensitive to biophysical tissue properties (Jelescu & Budde, 2017),

the biological substrates underlying these metrics remain to be eluci-

dated by future studies. In addition, controlling for the effect of extra-

cellular water or indices of hydration (Jones & Cercignani, 2010) as

well as including measures of WM hyper-intensities (Anatürk

et al., 2020; Habes et al., 2016) could potentially provide more accu-

rate models of WM ageing.

The effect sizes for differences between groups of parous and

nulliparous women ranged from 0.06 to 0.12, which is generally con-

sidered small. Small effects are common in large datasets (Dick

et al., 2021; Paulus & Thompson, 2019), and while parity may explain

only a small portion of the variance in brain age, our findings empha-

sise the importance of including female-specific variables in studies of

women's brain ageing, as well as sex differences in risk factors and

disease (de Lange, Jacobs, & Galea, 2021). While the UK Biobank

dataset enables detection of subtle effects due to its large sample size,

the cohort is homogeneous with regard to ethnic background (97%

white participants in the current study), preventing any conclusion

about associations between reproductive history and WM ageing

across ethnic groups. The cohort is also homogeneous with regard to

education level and residing in the United Kingdom. Since access

to healthcare, social welfare benefits, and maternity leave policies dif-

fer significantly across the world, such factors are important to

address in future studies including multiple cohorts. The UK Biobank

is also characterised by a “healthy volunteer effect” (Fry et al., 2017),

suggesting that it is not representative of the general population

(Keyes & Westreich, 2019). Hence, the presented results may not

apply to populations beyond those represented in this cohort. How-

ever, in context of the historical lack of research on women's brain

health (Taylor, Pritschet, Yu, & Jacobs, 2019), the current results may

prompt further study into how female-specific factors such as preg-

nancy influences neural processes involved in normal ageing—as well

as autoimmune conditions and Alzheimer's disease, of which the risks

are higher for women relative to men (Natri, Garcia, Buetow,

Trumble, & Wilson, 2019; Nichols et al., 2019).

4.4 | Conclusion

In summary, the current study found an association between a higher

number of previous childbirths and lower WM brain age, in line with

previous studies showing relationships between parity and brain char-

acteristics in midlife and older age (de Lange, Barth, Kaufmann,

Anatürk, et al., 2020; Ning et al., 2020; Orchard et al., 2020). As out-

lined above, a complex interplay of numerous underlying processes

likely influence the link between previous childbirths and brain health

in older age. Thus, while our results may suggest that reproductive

history influences women's WM ageing trajectories, prospective longi-

tudinal studies assessing this multi-factorial relationship are greatly

needed to increase the knowledge about women's brain health across

the lifespan.
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