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Imaging-genomics reveals driving pathways @
of MRI derived volumetric tumor
phenotype features in Glioblastoma
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Abstract

Background: Glioblastoma (GBM) tumors exhibit strong phenotypic differences that can be quantified using
magnetic resonance imaging (MRI), but the underlying biological drivers of these imaging phenotypes remain
largely unknown. An Imaging-Genomics analysis was performed to reveal the mechanistic associations between
MRI derived quantitative volumetric tumor phenotype features and molecular pathways.

Methods: One hundred fourty one patients with presurgery MRI and survival data were included in our analysis.
Volumetric features were defined, including the necrotic core (NE), contrast-enhancement (CE), abnormal tumor

volume assessed by post-contrast T1w (tumor bulk or TB), tumor-associated edema based on T2-FLAIR (ED), and

total tumor volume (TV), as well as ratios of these tumor components. Based on gene expression where available
(n=91), pathway associations were assessed using a preranked gene set enrichment analysis. These results were
put into context of molecular subtypes in GBM and prognostication.

Results: Volumetric features were significantly associated with diverse sets of biological processes (FDR < 0.05).
While NE and TB were enriched for immune response pathways and apoptosis, CE was associated with signal
transduction and protein folding processes. ED was mainly enriched for homeostasis and cell cycling pathways. ED
was also the strongest predictor of molecular GBM subtypes (AUC = 0.61). CE was the strongest predictor of overall

survival (C-index = 0.6; Noether test, p = 4x10™%).

Conclusion: GBM volumetric features extracted from MRI are significantly enriched for information about the
biological state of a tumor that impacts patient outcomes. Clinical decision-support systems could exploit this
information to develop personalized treatment strategies on the basis of noninvasive imaging.
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Background

Glioblastoma (GBM) is a highly invasive and diffuse
WHO grade IV tumor and is the most lethal central ner-
vous system malignancy with an annual age-adjusted in-
cidence rate of 3.19/100,000 per population [1]. Despite
aggressive surgical therapy, radiation therapy, and temo-
zolomide administration the 2-year survival rate remains
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around 27 % [2]. As a result, recent investigations have
focused on capitalizing on the high molecular hetero-
geneity of gliomas to develop personalized treatment
strategies [3].

One promising avenue of these investigations involves
quantitative analyses of radiographic data, where imaging
modalities are used to quantify tumor phenotype noninva-
sively. In magnetic resonance imaging (MRI), GBM tumors
exhibit strong phenotypic features such as Necrosis, Edema,
Contrast Enhancement, and Tumor Bulk (Fig. 1). These
properties can be captured without and with intravenous
administration of gadolinium-based contrast agents includ-
ing T1-weighted or FLuid-Attenuated Inversion Recovery
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Fig. 1 Examples of volumetric tumor phenotype features. Glioblastoma (GBM) tumors show strong phenotypic differences, which can be objectively
quantified with volumetrics. This figure shows examples of GBM tumors exhibiting high (top) and low (bottom) volumetric feature values for Necrosis,
Contrast Enhancement, Edema, and Tumor Bulk (columns) as they appear on T1 weighted (columns 1,2, and 4) or T2-FLAIR (column 3)

Edema Tumor Bulk

(FLAIR) (Fig. 2). In this way, visible tumor phenotype fea-
tures can be systematically quantified.

As the underlying drivers of these phenotypes are bio-
logical in nature, recent efforts have been conducted in-
dicating underlying genetic characteristics of imaging
features. For example, tumor “Ring Enhancement” was
found to be significantly associated with unmethylated
MGMT promoter status [4, 5], which is known to be a
biomarker for response to temozolomide and survival.
Similarly, “Contrast Enhancement” and “Mass Effect”
imaging features were found to be strongly correlated
with expression of groups of genes involved in hypoxia
and proliferation, respectively [6]. However, a systematic
classification of tumor phenotype features in terms of
their underlying cell biological processes on a genome-
wide scale in GBM remains absent, although clinical ap-
plicability of these image features will depend on know-
ledge about how these features are driven by tumor
biological processes that determine disease progression.

In this study, we present an Imaging-Genomics analysis
to investigate the associations of a large set of biological
processes and presurgical diagnostic MRI derived quantita-
tive volumetric tumor phenotype features, such as Necrosis
or Edema, focusing on the publicly available GBM dataset
from The Cancer Genome Atlas (TCGA). These analyses
were tied to molecular subtypes in GBM and prognostics.
Image based volumetric features provide noninvasive tumor
phenotype information complementary to genomic tech-
nologies and clinical information, potentially allowing ad-
vances in patient stratification and clinical decision-making.

Methods
Magnetic resonance imaging
DICOM formatted files of presurgical T1 and T2 sequence
magnetic resonance images (MRIs) were accessed and
downloaded in November 2014 from TCIA (https://wiki.-
cancerimagingarchive.net/display/Public/ TCGA-GBM), a
large archive of medical images of cancer patients who
have matched molecular data at The Cancer Genome
Atlas (TCGA). Cases that had both T1 and T2-FLAIR im-
ages available, were of reasonable quality to perform
tumor segmentation, and had presurgical negative status
were included. As the presurgical status of an image is not
explicitly included in the TCIA data, presurgical status
was verified to the best of our ability by a trained neurora-
diologist (CH, 17 years of experience) by examining the
skull surrounding the tumor for signs of surgeries. The pa-
tients in our study were originally imaged at Thomas Jef-
ferson University Hospital and Henry Ford Hospital.
Images of sufficient quality were next analyzed for volu-
metric features. Briefly, 2D masks which were annotated
using FSLView, a module in the FMRIB Software Library
5.0 (ESL [7]), were applied surrounding the tumor regions
on the post gadolinium (GD) contrast T1-weighted im-
ages and T2-weighted images. For the T1 images, a single
contour was segmented including both the dark (Necrotic
or NE) and bright (Contrast Enhancement or CE) areas,
and the entire volume was referred to as Tumor Bulk
(TB). The pixels contained in these masks were then clus-
tered into dark (NE) and bright (CE) areas by K-means
clustering using the FSL FEAT (fMRI Expert Analysis
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Fig. 2 Volumetric phenotype features within the same tumor. Detailed example of a glioblastoma tumor in a patient. (a,b) On T1-weighted
post-Gadolinium contrast (T1C) images, a central area of Necrosis is typically surrounded by a Contrast Enhancing ring, both of which can be
derived from dark and light regions, respectively. Tumor Bulk represents the addition of these tumor features. (c) The Total Tumor Volume is represented
by hyperintensity extracted from T2-FLAIR images. Edema is the difference of Tumor Bulk from Total Tumor Volume

Tool, Version 5.0). The area volume contained within the
mask of the T2 FLAIR image set encompasses the Edema
(ED) envelope, including regions of hyperintense signal
and inclusive of any other abnormal signal in the region
previously identified on the T1 (i.e., TB), and was referred
to as Total Abnormal Tumor Volume (TV). Afterwards,
all masks were visually checked by a trained radiologist
(CH). We did not attempt to discriminate between peritu-
moral edema and non-enhancing tumor, as both appear
hyperintense on FLAIR. In addition to the raw volumetric
features, we calculated the following feature ratios as in-
vestigated in previous studies [8—10] mainly to investigate
combined T1/FLAIR signals: NE/TV, CE/TV, ED/TV, TB/
TV, NE/CE, and CE/TB. A representation of the tumor
volumes analyzed are displayed in Fig. 2.

Gene expression

Matching GBM gene expression (mRNA) data for the TCIA
patient cohort was obtained from TCGA using the CBioPor-
tal [11] with the ‘cgdsr’ R package version 1.1.33. The profile
identifier ‘gbm_tcga_pub_mrna_median_Zscores’ was used

together with the case identifier ‘gbm_tcga_pub_mrna’ to
download the expression values of 18,055 genes given as
median Z-scores across the Agilent, Affymetrix U133, and
Affymetrix Exon platforms. Expression data were down-
loaded on April 3, 2015, for 91 patients for which also im-
aging data was available. Based on expression of 1740 genes,
Verhaak et al. [12] classified TCGA-GBM patients into the
four molecular GBM subtypes proneural, neural, classical,
and mesenchymal, which were functionally annotated by
presence of oncogenic events. To test predictive power
for subtypes, we downloaded the classification results
on TCGA patients by Verhaak et al. from https://tcga-
data.nci.nih.gov/docs/publications/gbm_exp/TCGA_u-
nified_ CORE_ClaNC840.txt and calculated the multiclass
area under curves (AUCs) of the receiver operator charac-
teristic [13] of the volumetric features. Imaging and subtype
data were available for 79 patients.

Pathway analysis
To quantify the association of a volumetric features with
biological processes, preranked Gene Set Enrichment
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Analysis [14] (GSEA) version 2.2.0 was performed;
gene ranks were calculated for every feature according
to -logl0(p) r, where r is the Spearman rank correlation
coefficient, and p its p-value. GSEA was performed on
the C5-BP collection version 5.0 from the Molecular
Signature Database [15] (MSigDB), which contains the
expert-curated Gene Ontology [16] (GO) gene sets for
biological processes. Those 583 gene sets containing at
least 15 and at most 500 genes were analyzed. We investi-
gated gene sets that were significantly enriched under a
false-discovery-rate (FDR) < 0.05 as specified by GSEA to
account for multiple hypothesis-testing [17].

Survival analysis

Overall survival data was available for 141 patients
with imaging data, and was downloaded from CBio-
Portal on April 3, 2015. Prognostic associations of
volumetric features were assessed with the concord-
ance index (CI) using the ‘survcomp’ package in Bio-
conductor [18]. All statistical analyses were carried
out using R version 3.1.0 [19] on a Linux operating
system.
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Results

To investigate which biological processes drive volumet-
ric tumor phenotype features in GBM, we performed a
pathway analysis based on gene expression profiles using
a preranked Gene Set Enrichment Analysis [14]. We
compared these results to molecular subtypes in GBM
and evaluated the prognostic value.

Volumetric tumor phenotype features in GBM

Based on MRI, we quantified the following volumetric fea-
tures in GBM: Necrosis (NE), Contrast Enhancement (CE),
Edema (ED), Tumor Bulk (TB), and Total Tumor Volume
(TV). In addition, we calculated the following ratios mainly
to investigate combined T1/FLAIR signals: NE/TV, CE/TV,
ED/TV, TB/TV, NE/CE, and CE/TB. The areas of the
tumor that these features correspond to are highlighted in
Fig. 2b and Fig. 2c. In general, we found that these features
were not or only moderately correlated (mean Spearman
rho 0.48 and -0.41 for positive and negative correlation, re-
spectively), however a number of features were highly posi-
tively correlated (e.g, NE and TB, rho=0.96) and a
number of features ratios were highly anti-correlated (e.g.,
NE/CE and CE/TB, rho = -0.98) as shown in Fig. 3.
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Fig. 3 Correlation map. Pairwise Pearson correlation coefficients of volumetric features. Only few volumes were highly correlated (blue) or highly
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Biological processes underlying volumetric features
In total, 64 biological processes were significantly associ-
ated in at least one of the volumetric features or their
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ratios (FDR < 0.05, Fig. 4). Table 1 summarizes the bio-
logical themes associated with each volumetric feature.
These features were generally negatively (anti-correlated)

-

.
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Fig. 4 Pathway enrichment analysis. In total, 64 biological processes (rows) were significantly (FDR < 0.05) enriched for at least one volumetric
feature (columns) as indicated by an asterisk. Heatmap shows normalized enrichment scores (NES) calculated with Gene Set Enrichment Analysis.
Positive NES (blue) correspond to correlated pathways and negative NES (yellow) correspond to anti-correlated pathways
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Table 1 Summary of pathways associated with volumetric tumor phenotype features of the original volumes (top rows) and their

ratios (bottom rows)

Biological processes (positive correlation)

Biological processes (negative correlation)

Volume
Necrosis
Contrast Enhancement

Edema Homeostasis

Tumor Bulk

Total Volume

Ratios
Necrosis/Total Volume

Contrast Enhancement/
Tumor Volume

Edema/Tumor Volume Protein complex assembly, defense

response, signal transduction,

Immune response, apoptosis
Signal transduction

Cell cycle, proliferation, replication, DNA repair,
DNA metabolic process

Apoptosis, signal transduction, immune system

Synaptogenesis, biogenesis, extracellular structure organization

Defense response, immune response, Nf-kB, signal transduction

Protein complex assembly, signal transduction, biogenesis

cytokine production, immune response, Nf-kB

Tumor Bulk/
Tumor Volume

Necrosis/Contrast
Enhancement

Contrast Enhancement/

Tumor Bulk response, locomotory behaviour

Signal transduction, protein complex assembly, cytokine,
immune response, Nf-kB

Response to other organism, Nf-kB, immune response,
locomotory behaviour

Response to other organism, Nf-kB, immune

enriched for biological processes unless stated otherwise.
NE and TB were mainly enriched for pathways involved
in immune response and apoptosis, whereas CE was
enriched for signal transduction and protein folding pro-
cesses. ED was enriched for cell cycling, proliferation,
and replication mechanisms, but also positively enriched
for homeostasis. TV was associated with synaptogenesis,
biogenesis, and excretion.

Volumetric feature ratios were associated with a larger
number of biological processes than the original fea-
tures. Signal transduction was associated with all of the
ratios we computed; processes involved in immune sys-
tem were found for all ratios except for CE/TV. CE/TYV,
TB/TV, and ED/TV were enriched for protein complex
assembly. In addition, ED/TV showed positive enrich-
ment for defense response, cytokine production, and Nf-
kB. Nf-kB was also found in NE/TV and TB/TV, as well
as in NE/CE and CE/TB. Notably, NE/CE and CE/TB
were also inversely enriched for inflammation, immune
system response pathways, and anti-apoptosis.

Molecular subtypes in GBM

Based on a study by Verhaak et al. [12], patients from
the TCGA-GBM cohort were classified to belong to ei-
ther one of the four following molecular subtypes: pro-
neural, neural, classical, and mesenchymal. Compared to
TV, ED had the largest median size across subtypes
(Fig. 5a); ED was larger in classical GBM and smaller in

proneural (Fig. 5b). Other volumetric features were com-
parably similar in terms of median values across
subtypes.

We tested predictive value for GBM subtypes of all
volumetric features by calculating the area under the
curve (AUC) of the receiver operator characteristic. We
found that most features performed relatively low
(Table 2). ED and TV were the strongest predictors of
subtypes (AUCs = 0.61). Ratios of features generally were
poor predictors of subtype.

Prognostic value of volumetrics

To link our pathway-imaging results to clinical patient
outcome, we tested prognostic value of volumetric fea-
tures for overall survival (OS). Four features (NE, CE, TB,
and TV) significantly predicted OS (Noether, p < 0.05),
but prognostic performances as measured by the concord-
ance index [20] were only moderate (Fig. 6). Importantly,
NE, CE, and TB performed significantly better than TV
(one-sided t-test, p<0.05). Furthermore, Kaplan-Meier
and Log-Rank analyses revealed significant assessments of
low and high risk survival groups by NE, CE, and TB
(Additional file 1: Figure S1).

Discussion

The translation of quantitative imaging data into defined
clinical settings requires knowledge of how volumetric
tumor phenotype features are driven by biological
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Fig. 5 Size distribution of volumetric tumor features across molecular subtypes of GBM. (a) Compared to the Total Volume, Edema had the
largest median size across all molecular GBM subtypes. (b) Classical and neural tumors showed larger Edema areas than mesenchymal and
proneural tumors. Size variation of volumetric feature areas other than Edema was generally low across subtypes
A

processes that determine the outcome of a patient. This
study presents an Imaging-Genomics analysis of presur-
gical diagnostic MRI derived volumetric features in
GBM to evaluate if tumor phenotype features are associ-
ated with underlying tumor biology. We found different
features to be enriched for different sets of biological
processes. Molecular subtypes of GBM were difficult to
be predicted by volumetric features. However, four out
of five features showed significant prognostic value.

As correlations among our volumetric features were
low to moderate in general, this suggests that quantifying
each of those areas individually yields complementary

Table 2 Performances of volumetric features in predicting
molecular subtypes of GBM

Volume Multiclass AUC
Necrosis 0.57
Contrast Enhancement 0.57
Edema 061
Tumor Bulk 0.57
Total Volume 061
Ratios

Necrosis/Total Volume 0.56
Contrast Enhancement/Tumor Volume 0.55
Edema/Tumor Volume 0.56
Tumor Bulk/Tumor Volume 0.56
Necrosis/Contrast Enhancement 0.54
Contrast Enhancement/Tumor Bulk 0.54

information about the tumor phenotype beyond the Total
Tumor Volume (TV). Interestingly, we found most of the
biological processes to be anti-correlated to pathway ex-
pression. The most prevalent pathways were apoptosis,
immune system, and signaling pathways, which were ob-
served mainly for Necrosis (NE), Contrast Enhancement
(CE), and Tumor Bulk (TB); features that were also signifi-
cantly prognostic. As those pathways are known drivers of
survival outcome [21-23], this hence explains why NE,
CE, and TB were found to be prognostic as well. Import-
antly, all of these features performed significantly better
than TV, which highlights that quantification of individual
imaging features should be preferred over calculating only
the total tumor volume. Our finding that NE is anti-
correlated with immune response and prognostic is in line
with Gevaert et al. [24], who also correlated quantitative
imaging features of GBM areas to molecular data and who
found significant imaging associations to approximately
20 pathways. This analysis, however, differs from our ana-
lysis in that Gevaert et al. investigated a single slice of a
tumor (in axial view), whereas we performed quantifica-
tion using the 3D tumor volumes.

Edema (ED) was the only feature that was correlated
with homeostasis, cell cycling, and proliferation pathways.
Surprisingly, ED was not prognostic in our analysis, al-
though cell cycling and proliferation are known to be in-
volved in carcinogenesis [25]. However, using the publicly
available MRI scoring scheme VASARI (https://wiki.nci.-
nih.gov/display/CIP/VASARI), Gutman et al. [26] found
ordinal ED assessment to be not prognostic as well. Inter-
estingly, in a related study by Diehn et al. [6], binary


https://wiki.nci.nih.gov/display/CIP/VASARI
https://wiki.nci.nih.gov/display/CIP/VASARI

Grossmann et al. BMC Cancer (2016) 16:611

Page 8 of 10

0.575

0.525

ost0 -

Fig. 6 Prognostic value of volumetric tumor features. Necrosis, Contrast Enhancement, Tumor Bulk, and Total Tumor Volume were significantly
(asterisk) prognostic (p < 0.05). The Contrast Enhancement feature showed the highest prognostic performance as measured by the C-index
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assessment of ED resulted in significant survival predic-
tions. Similarly, a recent study indicated that an ED vol-
ume cutoff of 85000 mm?® is a significant prognostic
factor using Kaplan-Meier analysis [8]; however, the ra-
tionale for this cutoff was not given. Prognostic perform-
ance of quantitative ED features could increase in cohorts
of extended sample sizes, as ED has been reported to be a
univariate predictor of survival in a large patient cohort
previously [27]. Furthermore, our analysis suggests that
CE and NE are prognostic. This is partially in line with
Gutman et al. [26], according to whom CE is prognostic,
but NE is not. The contradictions between our results and
the studies by Diehn et al. and Gutman et al. could be due
to the nature of the ED and NE assessments, which in our
analysis were continuous, but binary and ordinal in Diehn
et al. and Gutman et al., respectively. Likewise, our meth-
odology could be compared to a study by Jamshidi et al.
[28], but comparison remains challenging as their analysis
focused on binary imaging traits on a relatively small co-
hort of patients and a subset of oncogenic pathways only.

Although ED was the only feature that was not prognos-
tic in our analysis, it was the highest predictor of molecu-
lar subtypes in GBM instead. This is likely because ED
was the only feature that expressed a different volumetric
size distribution across molecular subtypes. Similar indica-
tions have been given by Gevaert et al. [24], who found
three out of four features that correlated with molecular
subtypes to be quantitative Edema features. In general, we
found volumetric features to be only moderate predictors
of subtypes suggesting that subtypes do not generally alter
the size composition of tumor areas in GBM. Further-
more, we could not confirm that the proneural subtype
has lower proportions of CE as suggested by Gutman
et al. [26]. Poor predictability of Verhaak molecular sub-
types by relative cerebral blood volume using T2-weighted
MRI has been also described by Jain et al. [29].

In our analysis, ratios of volumetric features were not
significantly prognostic or predictive of GBM subtypes.
Generally, many more biological processes were signifi-
cantly associated with the feature ratios, usually showing
a trend towards a mix of pathways associated with the
individual features that the ratios were composed of
(e.g., NE/TV were enriched for signal transduction and
biogenesis). While our study associated MRI volumetric
features with biological processes, molecular subtypes,
and survival outcome using genome-wide data and
aimed at explaining the rationale for why MRI derived
volumetric features are associated with survival on a
pathway level, other studies have focused on revealing
specific genetic variations between MRI features and
survival [30-34].

Our analysis was limited to a retrospective dataset. To es-
tablish volumetric biomarkers in clinical applications, pro-
spective evaluation of our results will be required. Biological
significance could be further validated by analyses of com-
plementary molecular data such as mutational or epigenetic
data. Such analyses could provide further insight into why
separate quantification of distinct volumetric tumor pheno-
type features yield different biological and prognostic infor-
mation. We acknowledge that the prognostic and predictive
performances of the volumetric features in the TCGA-GBM
dataset were moderate. Heterogeneity of GBM tumors [35]
could be an explanation for this, which limits the definition
of a single molecular subtype especially on the basis of
single-needle biopsy [36, 37]. As imaging approaches target
the entire visible tumor, we however expect in future studies
that prognostic performances will drastically increase when
Imaging-Genomic cohorts with even larger numbers of
samples and standardized image processing become avail-
able for GBM.

While our study focused on volumetric phenotype fea-
tures, alternative definitions of imaging phenotypes are
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available. This may, for example, include tumor location
as this determines the extent of possible resection and
hence is a prognostic factor in GBM [38]. In addition to
such semantic phenotypes, agnostic phenotyping ap-
proaches such as radiomics could be added [39].

Conclusions

In conclusion, quantitative imaging biomarkers hold great
potential, as, unlike traditional biopsies, medical imaging is
noninvasive and captures the entire tumor volume. As we
have shown, a relationship exists between individual
volumetric phenotype features describing local, clinically
relevant subareas of GBM tumors and global expression of
genes. Knowledge about how these specific tumor areas
are related to underlying biological cell processes may
allow for advanced patient stratification and treatment de-
cision on the basis of standard medical imaging, but efforts
in optimization of prognostic and predictive performances
need to continue.
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these features also showed significant classification in low (blue) and high
(red) risk groups based on the mean feature value. (PDF 111 kb)
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